Safewash Super #217-3841, 241-2449 (NZ) RS Components

Chemwatch: 5617-48 Version No: 2.1

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 3

Issue Date: **18/07/2023** Print Date: **20/07/2023** L.GHS.NZL.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Safewash Super #217-3841, 241-2449 (NZ)	
Chemical Name	Not Applicable	
Synonyms	Product Code: 217-3841; 241-2449	
Proper shipping name	CORROSIVE LIQUID, N.O.S. (contains ethanolamine)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Cleaning product.
Neievanii identined uses	Use according to manufacturer's directions

Details of the manufacturer or supplier of the safety data sheet

Registered company name	RS Components	
Address	PO Box 12-127 Penrose, Auckland New Zealand	
Telephone	4 27 4747122	
Fax	+64 9 579 1700	
Website	www.nz.rs-online.com	
Email	Not Available	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone numbers	+64 800 700 112	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	2		0 = Minimum
Body Contact	3	- :	1 = Low
Reactivity	1		2 = Moderate
Chronic	3		3 = High 4 = Extreme

Classification ^[1]	Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Determined by Chemwatch using GHS/HSNO criteria	8.1A, 6.1D (oral), 8.2A, 8.3A, 9.1C

Label elements

Hazard pictogram(s)

Chemwatch: 5617-48 Version No: 2.1

Page 2 of 17

Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: 18/07/2023 Print Date: 20/07/2023

Signal word	Dange

Hazard statement(s)

H290	May be corrosive to metals.	
H302	Harmful if swallowed.	
H314	4 Causes severe skin burns and eye damage.	
H412	H412 Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.	
P264	Wash all exposed external body areas thoroughly after handling.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P234	Keep only in original packaging.	
P270	Do not eat, drink or smoke when using this product.	
P273	Avoid release to the environment.	

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P305+P351+P338	P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER/doctor/physician/first aider.	
P363	P363 Wash contaminated clothing before reuse.	
P390 Absorb spillage to prevent material damage.		
P301+P312	P301+P312 IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.	
P304+P340	P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
97-99-4	10-30	tetrahydrofurfuryl alcohol
68439-46-3	5-10	alcohols C9-11 ethoxylated
141-43-5	1-5	<u>ethanolamine</u>
85117-50-6	1-5	(C10-14)alkylbenzenesulfonic acid, sodium salt
Not Available	balance 30nonhaz	
Legend:	Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

D

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.	
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. 	

Chemwatch: 5617-48 Page 3 of 17 Issue Date: 18/07/2023

Version No: 2.1 Print Date: 20/07/2023

Safewash Super #217-3841, 241-2449 (NZ)

 Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. ▶ Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ► Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

Withhold oral feedings initially.

- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

▶ Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- Water spray or fog.
- ▶ Foam
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot.

- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire
- Equipment should be thoroughly decontaminated after use.

► Slight f

- Combustible.Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.

 On computing may emit toxic types of corbon managing (CO)
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
 - Mists containing combustible materials may be explosive.

Fire/Explosion Hazard

Combustion products include: carbon dioxide (CO2)

nitrogen oxides (NOx)

nitrogen oxides (NO sulfur oxides (SOx)

other pyrolysis products typical of burning organic material.

May emit corrosive fumes

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

SECTION 6 Accidental release measures

Chemwatch: 5617-48 Issue Date: 18/07/2023 Page 4 of 17 Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Print Date: 20/07/2023

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for cont	ainment and cleaning up
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.

If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling ▶ DO NOT allow clothing wet with material to stay in contact with skin The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date Unopened containers received from the supplier should be safe to store for 18 months. Opened containers should not be stored for more than 12 months. Avoid all personal contact, including inhalation. Safe handling Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Avoid contact with moisture. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. DO NOT store near acids, or oxidising agents No smoking, naked lights, heat or ignition sources. Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Other information Store in a cool, dry, well-ventilated area. ▶ Store away from incompatible materials and foodstuff containers.

Conditions for safe storage, including any incompatibilities

Lined metal can, lined metal pail/ can.

- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

▶ Protect containers against physical damage and check regularly for leaks.

Suitable container

- For low viscosity materials ▶ Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- Iow pressure tubes and cartridges

Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: **18/07/2023**Print Date: **20/07/2023**

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	ethanolamine	2-Aminoethanol (Ethanolamine)	3 ppm / 7.5 mg/m3	15 mg/m3 / 6 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
ethanolamine	6 ppm	170 ppm	1,000 ppm
(C10-14)alkylbenzenesulfonic acid, sodium salt	2.1 mg/m3	23 mg/m3	87 mg/m3

Ingredient	Original IDLH	Revised IDLH
tetrahydrofurfuryl alcohol	Not Available	Not Available
alcohols C9-11 ethoxylated	Not Available	Not Available
ethanolamine	30 ppm	Not Available
(C10-14)alkylbenzenesulfonic acid, sodium salt	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
tetrahydrofurfuryl alcohol	E	≤ 0.1 ppm	
alcohols C9-11 ethoxylated	E	≤ 0.1 ppm	
(C10-14)alkylbenzenesulfonic acid, sodium salt	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

range of exposure concentrations that are expected to protect worker health.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type or contaminant	7 opood.
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Type of Contaminant:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Air Speed:

Safewash Super #217-3841, 241-2449 (NZ)

Print Date: 20/07/2023

Individual protection measures, such as personal protective equipment

Eye and face protection

more when extraction systems are installed or used.

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or

- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

- ► Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Hands/feet protection

- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced.
- As defined in ASTM F-739-96 in any application, gloves are rated as:
- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Body protection

See Other protection below

Other protection

- Overalls. PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Safewash Super #217-3841, 241-2449 (NZ)

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter

Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: **18/07/2023**Print Date: **20/07/2023**

Material	СРІ
BUTYL	A
BUTYL/NEOPRENE	A
HYPALON	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
PVA	A
VITON	A
NATURAL RUBBER	В
NITRILE+PVC	В
PVC	В

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

76ak-p

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

	· · · · · · · · · · · · · · · · · · ·			
Appearance	Blue alkaline liquid with a characteristic odour; mixes with water.			
Physical state	Liquid	Relative density (Water = 1)	0.99-1.1 @20C	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	11-13	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	5-10 @ 15C	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Available	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Available	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours.

A: Best Selection

B: Satisfactory: may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Chemwatch: 5617-48 Page 8 of 17 Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: 18/07/2023 Print Date: 20/07/2023

Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system $depression - characterised \ by \ headache \ and \ dizziness, increased \ reaction \ time, fatigue \ and \ loss \ of \ co-ordination$ Ingestion of anionic surfactants/ hydrotropes may produce diarrhoea, intestinal distension and occasional vomiting. Lethal doses in animals range Ingestion from 1 to 5 gm/kg. The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants **Skin Contact** Anionic surfactants/ hydrotropes generally produce skin reactions following the removal of natural oils. The skin may appear red and may become sore. Papular dermatitis may also develop. Sensitive individuals may exhibit cracking, scaling and blistering. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material can produce severe chemical burns following direct contact with the skin. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Some nonionic surfactants may produce a localised anaesthetic effect on the cornea; this may effectively eliminate the warning discomfort produced by other substances and lead to corneal injury. Irritant effects range from minimal to severe dependent on the nature of the surfactant, Eve its concentration and the duration of contact. Pain and corneal damage represent the most severe manifestation of irritation. Direct eye contact with some concentrated anionic surfactants/ hydrotropes produces corneal damage, in some cases severe. Low concentrations may produce immediate discomfort, conjunctival hyperaemia, and oedema of the corneal epithelium. Healing may take several days. Temporary clouding of the cornea may occur. The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Cyclic ethers, including tetrahydrofuran, furan and 1,4-dioxane, produce neoplasms and carcinomas in experimental animals, typically of the liver; other target organs include the adrenal gland, nasal cavity and gall-bladder. 1,4-Dioxane was a promoter in a two-stage skin carcinogenic study in mice. Results of studies with cyclic ethers indicate that carcinogenicity is often species and sex dependent. Furan has been used to induce apoptosis (programmed cell death). Oxetanes are under investigation. Chronic Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. TOXICITY IRRITATION Safewash Super #217-3841, 241-2449 (NZ) Not Available Not Available TOXICITY IRRITATION dermal (guinea pig) LD50: 5000 mg/kg $^{[2]}$ Eye (rabbit): 20 mg/24h - mod tetrahydrofurfuryl alcohol Eye: adverse effect observed (irritating) $^{[1]}$ Oral (Guinea) LD50; 800 mg/kg^[2] Skin: no adverse effect observed (not irritating)[1]TOXICITY IRRITATION Dermal (rabbit) LD50: >2000 mg/kg^[2] Eve (human): SEVERE Eye: adverse effect observed (irritating) $^{[1]}$ alcohols C9-11 ethoxylated Inhalation(Rat) LC50: >1.6 mg/l4h^[1] Oral (Rat) LD50: 1378 mg/kg^[2] Skin: no adverse effect observed (not irritating) $^{[1]}$ Skin: SEVERE * [SHELL CCINFO 1441905] IRRITATION TOXICITY Dermal (rabbit) LD50: 1000 mg/kg^[2] Eye (rabbit): 0.76 mg - SEVERE ethanolamine Inhalation(Guinea) LC50; ~0.145 mg/l4h[2] Skin (rabbit):505 mg open-moderate Oral (Guinea) LD50; 620 mg/kg^[2] TOXICITY IRRITATION Oral (Rat) LD50: 650 mg/kg^[2] Eye: adverse effect observed (irritating)^[1] (C10-14)alkylbenzenesulfonic acid, sodium salt Skin: adverse effect observed (corrosive)[1] Skin: no adverse effect observed (not irritating)^[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

TETRAHYDROFURFURYL ALCOHOL

for tetrahydrofurfuryl alcohol:

Acute toxicity: In an acute oral toxicity study [OECD TG 423] of tetrahydrofurfuryl alcohol in rats, no changes in survival rate, body weight gain or necropsy findings were observed at 2000 mg/kg bw. At this dose, decreased locomotor activity and hypotonia were observed.

Chemwatch: 5617-48 Page 9 of 17 Issue Date: 18/07/2023

Version No: 2.1 Print Date: 20/07/2023

Safewash Super #217-3841, 241-2449 (NZ)

This chemical was a moderate eye irritant in rabbits but did not irritate the rabbit skin. Review sources suggest that it might be a moderate skin and eye irritant in humans.

Repeat dose toxicity: In a repeated oral dose toxicity study [Japanese TG equivalent to OECD TG 407], rats were administered by gavage at 0 (vehicle: distilled water), 10, 40, 150 or 600 mg/kg bw/day for 28 days. Increased locomotor activity followed by decreased locomotor activity and adoption of a prone position in males and females, and lowered grip strength of the hindlimb in males were found at 600 mg/kg bw/day. Increased locomotor activity was observed in females at 150 mg/kg bw/day. At 600 mg/kg bw/day, animals showed decreased body weight gain in males, reduced food consumption in males and females, and decreased urinary pH in males. Decreases in the relative weights of the thymus in males and females and pituitary in females, and an increase in the relative weights of the kidney in females were found at 600 mg/kg bw/day. At 150 mg/kg bw/day, a decrease in the relative weight of the pituitary was noted in females. Histopathological examinations revealed atrophy of the thymus in males and females, and atrophy of the red pulp with decreased extramedullary haematopoiesis and inflammation of the capsule of the spleen in males at 600 mg/kg bw/day. Necrosis of seminiferous tubular epithelium of the testes was observed at 150 and 600 mg/kg bw/day. Examination of the spermatogenic cycle showed a decrease in the ratio of the spermatid to Sertoli cell counts at 600 mg/kg bw/day. Histopathological examinations of the testes revealed a tendency for increase in the severity of changes at the end of the 14-day recovery period. Based on these findings, the NOAELs for repeated dose toxicity were 40 mg/kg bw/day in males and females.

Genotoxicity: In a reverse gene mutation assay [OECD TG 471], this chemical was not mutagenic in Salmonella typhimurium TA100, TA1535, TA1537, TA98 or Escherichia coli WP2 uvrA/ pKM101 with or without an exogenous metabolic activation. In a chromosomal aberration test [OECD TG 473], this chemical did not cause structural chromosomal aberration or polyploidy with or without an exogenous metabolic activation in cultured Chinese hamster lung (CHL/IU) cells.

Reproductive toxicity: Male rats were dosed for a total of 47 days beginning 14 days before mating. Female rats were dosed for a total of 42-52 days beginning 14 days before mating to day 4 of lactation throughout the mating and gestation period. At 500 mg/kg bw/day, decreased relative weights of the thymus, testes and epididymides, atrophy of the seminiferous tubule with hyperplasia of the interstitial cell in the testes, and decreased intraluminal sperms with cell debris in the epididymides were noted in males. Prolonged oestrous cycles were observed at 500 mg/kg bw/day. At this dose, no females delivered their offspring and examination of the uterus of dams revealed early embryonic resorptions. Prolonged gestation length, decreased gestation index, and lowered delivery index, live birth index, numbers of pups born and live pups on postnatal days (PNDs) 0 and 4, and viability on PND 4 were observed at 150 mg/kg bw/day. No increase in the incidence of morphological abnormalities was found in pups of rats given this chemical. Based on these findings, the NOAEL for reproductive/developmental toxicity was 50 mg/kg bw/day

Rats (eight animals/group) were orally given this chemical at 0, 10, 50, 100, 500 or 1000 mg/kg bw/day on days 6 to 15 of pregnancy. Decreases in maternal body weight gain and food consumption were observed at 500 and 1000 mg/kg bw/day. A 100% incidence of early resorptions at 500 and 1000 mg/kg bw/day and decreased foetal weight at 100 mg/kg bw/day were found. The NOAELs for maternal and developmental toxicity were considered to be 100 and 50 mg/kg bw/day, respectively.

Decreased testes weight, low sperm activity and/or testicular atrophy were caused in Beagle dogs fed a diet containing 1000 ppm tetrahydrofurfuryl alcohol- and higher for 90 days.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Somnolence, ataxia, diarrhoea recorded,

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations.

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used

Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology

http://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

ALCOHOLS C9-11 ETHOXYLATED

Chemwatch: 5617-48 Page 10 of 17 Issue Date: 18/07/2023

Version No: 2.1 Print Date: 20/07/2023

Safewash Super #217-3841, 241-2449 (NZ)

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing

Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis.

Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) .

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death. Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

Chemwatch: 5617-48 Page 11 of 17 Issue Date: 18/07/2023

Version No: 2.1 Print Date: 20/07/2023

Safewash Super #217-3841, 241-2449 (NZ)

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or

haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats in a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

* Bayer

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

Inhalation:

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs.

Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease

ETHANOLAMINE

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

Eye Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.)

Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract.

Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs.

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

Chemwatch: 5617-48 Page 12 of 17 Issue Date: 18/07/2023 Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Print Date: 20/07/2023

No significant acute toxicological data identified in literature search.

Linear alkylbenzene sulfonates (LAS) are classified as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) according to CESIO (CESIO 2000). LAS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC.

Linear alkylbenzene sulfonic acids (LABS) are strong acids (pKa<2) are classified as corrosive (R34)

Branched materials exhibit comparable toxicity to linear species.

Acute toxicity: The available data indicate minimal to moderate toxicity, with LD50 values ranging from 500 to 2000 mg/kg body weight (bw). Acute inhalation data also indicate a lack of significant toxicity. Available dermal exposure data also shows a lack of significant toxicity. LAS are readily absorbed by the gastrointestinal tract after oral administration in animals. LAS are not readily absorbed through the skin The bulk is metabolised in the liver to sulfophenylic carboxyl acids. The metabolites are excreted primarily via the urine and faces. The main urinary metabolites in rats are sulfophenyl butanoic acid and sulfophenyl pentanoic acid. Accumulation of LAS or its main metabolites has not been established in any organ after repeated oral ingestion.

No serious injuries or fatalities in man have been reported following accidental ingestion of LAS-containing detergent. The main clinical signs observed after oral administration to rats of doses near or greater than the LD50 values consisted of reduced voluntary activity, diarrhoea, weakness etc. Death usually occurred within 24 hours of administration. Rats appear to be more sensitive to LAS than mice. LAS and branched alkylbenzene sulfonates may cause irritation of the eyes, skin and mucous membranes. LAS are relatively more irritating to the skin than the corresponding branched alkylbenzene sulfonates. The potential of LAS to irritate the skin depends on the concentration applied. LAS have been classified as irritating to skin at concentrations above 20% according to EU-criteria. Human skin can tolerate contact with solution of up to 1% LAS for 24 hours resulting in only mild irritation. Application of > 5% LAS to the eyes of rabbits produced irritation. Concentration of < 0.1% LAS produced mild to no irritation.

Skin sensitization was not seen in 2,294 volunteers exposed to LAS or in 17,887 exposed to formulations of LAS.

Repeat dose toxicity: A feeding study indicated that LAS, when administered for 2 years at extremely high levels (0.5%) in the diets to rats, produced no adverse effects on growth, health or feed efficiency.

Genotoxicity: The mutagenic potential of LAS was tested using Salmonella typhimurium strains, using Ames test. In these studies, LAS was not mutagenic. The available long-term studies are inadequate for evaluating the carcinogenic potential of LAS in laboratory animals. The studies available (oral administration to rats and mice) do not show any evidence of carcinogenicity.

Reproductive toxicity: In general no specific effect of LAS on reproductive processes has been seen, although dosages causing maternal toxicity may also induce some effects on reproduction. No teratogenic effects attributed to LAS exposure have been observed. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency)

For aromatic sulfonic acids

Aromatic sulfonic acids are very corrosive as was demonstrated in skin and eye irritation studies, in the acute oral studies, and in the single repeated dose oral study.

Health records from industrial manufacturing exposure, including manufacturing plant book of injuries and a physician report, show toluene-4-sulphonic acid (as handled in manufacturing plants; i.e., a 65% aqueous solution with < 5% free sulphuric acid) is an irritant to the eye and skin.

Sensitisation:

There is a single, key study for sensitization of the aromatic sulphonic acids. None of the tested animals showed positive responses in a, well documented, GLP guinea pig sensitization study with toluene-4-sulphonic acid (CAS No. 104-15-4). The test substance can be considered a non-sensitizer in guinea pigs as none of the test animals showed a positive response to combined intradermal and topical induction followed by topical challenge.

A GLP guideline study with p-toluenesulphonic acid (CAS No. 104-15-4) reported no adverse effects to male and female rats exposed orally for 28 days. The highest dose was 500 mg/kg bw/day (>490 mg/kg bw/day based on >98% active ingredient). Therefore the NOAEL was set at 500 mg/kg bw/dav.

Toxicity to reproduction:

No fertility studies are reported for the aromatic sulphonic acids. There are however studies for the chemically related hydrotrope substances that looked at reproductive organs and development of offspring. Hydrotropes are the salt form of the sulphonic acids and therefore are used as read-across for this endpoint. The 90-day oral rat and oral mouse studies and the 2-year chronic dermal rat and mouse studies with the closely related compound sodium xylene sulfonate (CAS No. 1300-72-7) included examination of sex organs of both sexes. No treatment related effects on reproductive organs were reported at doses roughly equivalent to those in the developmental toxicity study. he NOAEL for both maternal and foetal toxicity was the highest dose tested - 3000 mg/kg bw /day which is equivalent to 936 mg active ingredient per kilogram body weight per day. The conclusion of the study was no indications of developmental toxicity including teratogenesis

There is a fully documented, GLP Guideline (OECD 471) Ames Test and a fully documented, GLP Guideline (OECD 473) Chromosome Aberration Test for one of the aromatic sulphonic acids, p-toluenesulphonic acid (CAS No. 104-15-4). Both tests were conducted with and without metabolic activation. The Ames test exposed up to 5000 micrograms/plate and the chromosome aberration test exposed up to 1902 micrograms per liter of the test substance. These studies conclude the substance is neither mutagenic norcytotoxic.

There is an additional, published report of an Ames Test for another of the aromatic sulphonic acids, benzenesulfonic acid (CAS No. 98-11-3). Exposures up to 10,000 micrograms/plate were done with and without metabolic activation. The conclusion is the same as for the p-toluenesulphonic acid; that is, not mutagenic and not cytotoxic.

There are no in vivo mutagenicity studies for the aromatic sulphonic acids, but there are two in vivo mouse micronucleus studies for the related hydrotropes - sodium cumene sulfonate (CAS 28348-53-0) and calcium xylene sulfonate (CAS 28088-63-3). Both are GLP-compliant Guideline mouse micronucleus studies with full documentation. Both studies conclude the test substances were not mutagenic in these assays.

Disulfonic acids have not been the subject of concern.

Carcinogenicity:

There are no carcinogenicity studies for the aromatic sulphonic acids Two hydrotrope studies involve 2-year rat and mouse dermal exposures conducted under GLP. Up to 240 mg (rats) and 727 mg (mice) sodium xylenesulfonate/kg body weight in 50% ethanol were dosed 5 days per week for 104 weeks. There were no treatment related incidences of mononuclear cell leukenia, neoplasms, or nonneoplatic lesions of the skin and other organs. The increased incidence of epidermal hyperplasia may have been related to exposure to the test substance. The NOAEL was reported as 240 mg/kg bw/day for rats and 727 mg/kg bw/day for mice.

Elimination:

The US EPA has evaluated the metabolism of analogs in in the sodium alkyl naphthalenesulfonate cluster (SANS), a group of sodium salts of naphthalenesulfonic acids . In a US EPA final rule for SANS, it was stated that "the 1- or 2-sulfonic acid sodium salt moieties on the naphthalene ring may provide a handle by which these compounds can be readily conjugated and eliminated."

ALCOHOLS C9-11 ETHOXYLATED & ETHANOLAMINE

(C10-14)ALKYLBENZENESULFONIC

ACID, SODIUM SALT

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

ETHANOLAMINE & (C10-14)ALKYLBENZENESULFONIC ACID. SODIUM SALT

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of Chemwatch: **5617-48** Page **13** of **17**

Version No: 2.1 Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: **18/07/2023**Print Date: **20/07/2023**

RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	X
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

Safewash Super #217-3841, 241-2449 (NZ)	Endpoint	Test Duration (hr)	Species		Value	Source
	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	EC50	72h	Algae or other aquatic plants		>98.9mg/l	2
tetrahydrofurfuryl alcohol	EC50	48h	Crustacea		>91.7mg/l	2
	EC50(ECx)	48h	Crustacea		>91.7mg/l	2
	LC50	96h	Fish		>101mg/l	2
	Endpoint	Test Duration (hr)	Species	Value		Source
	EC50	48h	Crustacea	2.217-	3.523mg/l	4
alcohols C9-11 ethoxylated	EC50	96h	Algae or other aquatic plants	1.4mg	/I	2
	LC50	96h	Fish	7mg/l		Not Availabl
	NOEC(ECx)	720h	Fish	0.11-0	.28mg/l	2
	Endpoint	Test Duration (hr)	Species		Value	Source
	EC50	72h	Algae or other aquatic plants		15mg/l	1
ath an about to	EC50	48h	Crustacea		65mg/l	1
ethanolamine	EC50	96h	Algae or other aquatic plants		80mg/l	2
	LC50	96h	Fish		75mg/l	1
	NOEC(ECx)	72h Algae or other aquatic plants		4mg/l	1	
	Endpoint	Test Duration (hr)	Species		Value	Source
C10-14)alkylbenzenesulfonic acid, sodium salt	EC50	72h	Algae or other aquatic plants		43.2mg/l	1
aciu, scuiuili salt	NOEC(ECx)	504h	Crustacea		0.3mg/l	1

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

- Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient Persistence: Water/Soil		Persistence: Air	
tetrahydrofurfuryl alcohol	LOW	LOW	
ethanolamine	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation	
tetrahydrofurfuryl alcohol	LOW (LogKOW = -0.1104)	
ethanolamine	LOW (LogKOW = -1.31)	

Mobility in soil

Ingredient	Mobility
tetrahydrofurfuryl alcohol	HIGH (KOC = 1)
ethanolamine	HIGH (KOC = 1)

Page **14** of **17** Issue Date: 18/07/2023 Version No: 2.1 Print Date: 20/07/2023 Safewash Super #217-3841, 241-2449 (NZ)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.

Product / Packaging disposal

- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant.
- Faratment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	2X

Land transport (UN)

UN number or ID number	1760			
UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains ethanolamine)			
Transport hazard class(es)	Class 8 Subsidiary risk Not Applicable			
Packing group				
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions 223; 274 Limited quantity 5 L			

Air transport (ICAO-IATA / DGR)

UN number	1760			
UN proper shipping name	Corrosive liquid, n.o.s. * (contains ethanolamine)			
Transport hazard class(es)	ICAO/IATA Class 8 ICAO / IATA Subrisk Not Applicable ERG Code 8L			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A3 A803 856 60 L 852 5 L Y841 1 L	

Version No: 2.1

Safewash Super #217-3841, 241-2449 (NZ)

Issue Date: 18/07/2023 Print Date: 20/07/2023

UN number	1760		
UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains ethanolamine)		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-A, S-B Special provisions 223 274 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

•	
Product name	Group
tetrahydrofurfuryl alcohol	Not Available
alcohols C9-11 ethoxylated	Not Available
ethanolamine	Not Available
(C10-14)alkylbenzenesulfonic acid, sodium salt	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
tetrahydrofurfuryl alcohol	Not Available
alcohols C9-11 ethoxylated	Not Available
ethanolamine	Not Available
(C10-14)alkylbenzenesulfonic acid, sodium salt	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard	
HSR100425	Pharmaceutical Active Ingredients Group Standard 2020	
HSR100756	Active Ingredients for Use in the Manufacture of Agricultural Compounds Group Standard 2020	

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

tetrahydrofurfuryl alcohol is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

alcohols C9-11 ethoxylated is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

ethanolamine is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

(C10-14)alkylbenzenesulfonic acid, sodium salt is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Compliance Certificate)	Quantity (Compliance Certificate - Farms >4 ha)
8.2A	50 kg or 50 L	500 kg or 500 L

Page **16** of **17**

Issue Date: 18/07/2023 Version No: 2.1 Print Date: 20/07/2023 Safewash Super #217-3841, 241-2449 (NZ)

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
8.2A	prohibited	prohibited	prohibited	

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (tetrahydrofurfuryl alcohol; alcohols C9-11 ethoxylated; ethanolamine; (C10-14)alkylbenzenesulfonic acid, sodium salt)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (alcohols C9-11 ethoxylated)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (tetrahydrofurfuryl alcohol)
Vietnam - NCI	Yes
Russia - FBEPH	No (alcohols C9-11 ethoxylated)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	18/07/2023
Initial Date	18/07/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average

PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit₀

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

Chemwatch: 5617-48 Page 17 of 17 Issue Date: 18/07/2023 Version No: 2.1 Print Date: 20/07/2023

Safewash Super #217-3841, 241-2449 (NZ)

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.