Commercial Surface Mount Chips

EXAMPLE: 08055A101J AT2A

A	T	2	A
Failure	Terminations	Packaging	Special
Rate	T = Plated Ni	Available	Code
$\mathrm{A}=\mathrm{N} / \mathrm{A}$	and Sn	2 = 7" Reel	$\mathrm{A}=\mathrm{Std}$.
4 = Automotive	7 = Gold Plated	$4=13$ "Reel	
	$J=$ Tin/Lead	7 = Bulk Cass.	
		9 = Bulk	

Contact Factory For

0805	5	A
Size	Voltage	Dielectric
(L" x W")	$4=4 \mathrm{~V}$	A $=$ NP0(C0G)
0201	$6=6.3 \mathrm{~V}$	$\mathrm{C}=\mathrm{X7R}$
0402	$\mathrm{Z}=10 \mathrm{~V}$	$\mathrm{D}=\mathrm{X} 5 \mathrm{R}$
0603	$\mathrm{Y}=16 \mathrm{~V}$	$\mathrm{G}=\mathrm{Y} 5 \mathrm{~V}$
0805	$3=25 \mathrm{~V}$	$\mathrm{U}=\mathrm{U}$ Series
1206	$\mathrm{D}=35 \mathrm{~V}$	W = X6S
1210	$5=50 \mathrm{~V}$	$\mathrm{Z}=\mathrm{X7S}$
1812	$1=100 \mathrm{~V}$	
1825	$2=200 \mathrm{~V}$	
2220	$7=500 \mathrm{~V}$	
2225		

Contact Factory for	
Special Voltages	
$F=63 \mathrm{~V}$	$9=300 \mathrm{~V}$
$*=75 \mathrm{~V}$	$X=350 \mathrm{~V}$
$E=150 \mathrm{~V}$	$8=400 \mathrm{~V}$
$\mathrm{~V}=250 \mathrm{~V}$	

101	J*
Capacitance	Tolerance
2 Sig. Fig +	$\mathrm{B}= \pm .10 \mathrm{pF}$
No. of Zeros	$\mathrm{C}= \pm .25 \mathrm{pF}$
Examples:	$\mathrm{D}= \pm .50 \mathrm{pF}$
$100=10 \mathrm{pF}$	$\mathrm{F}= \pm 1 \%$ ($\geq 10 \mathrm{pF}$)
$101=100 \mathrm{pF}$	$\mathrm{G}= \pm 2 \%$ ($\geq 10 \mathrm{pF}$)
$102=1000 \mathrm{pF}$	J = $\pm 5 \%$
$223=22000 \mathrm{pF}$	$\mathrm{K}= \pm 10 \%$
$224=220000 \mathrm{pF}$	$\mathrm{M}= \pm 20 \%$
$105=1 \mu \mathrm{~F}$	$\mathrm{Z}=+80 \%,-20 \%$
$106=10 \mu \mathrm{~F}$	$\mathrm{P}=+100 \%,-0 \%$
$107=100 \mu \mathrm{~F}$	
For values below	
10 pF , use "R"	
in place of	
Decimal point, e.g., $91 \mathrm{pF}=9 \mathrm{R} 1$	

Contact Factory For 1 = Pd/Ag Term Z $=$ Soft Termination

	T
Failure Rate A = N/A 4 = Automotive	Terminations
	T = Plated Ni
	and Sn
	7 = Gold Plated
	$\mathrm{J}=$ Tin/Lead
	Contact
	1 = Pd/Ag Term
	Z = Soft

* $B, C \& D$ tolerance for $\leq 10 \mathrm{pF}$ values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness.
See individual part tables for tape material type for

High Voltage Surface Mount Chips
EXAMPLE: 1808AA271KA11A

1808	A	A	271	K	A	1	1A
		\|			I		
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging/Marking
Style	$\mathrm{C}=600 \mathrm{~V}$	Coefficient	Code	Tolerance	Rate	$1=\mathrm{Pd} / \mathrm{Ag}$	$1 \mathrm{~A}=7{ }^{\text {r Reel }}$
1206	$\mathrm{A}=1000 \mathrm{~V}$	A $=$ COG	(2 significant digits	COG: J = $\pm 5 \%$	A $=$ Not	T = Plated Ni	Unmarked
1210	$\mathrm{S}=1500 \mathrm{~V}$	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	+ no . of zeros)	$\mathrm{K}= \pm 10 \%$	Applicable	and Sn	$3 \mathrm{~A}=13$ "Reel
1808	$\mathrm{G}=2000 \mathrm{~V}$		Examples:	$\mathrm{M}= \pm 20 \%$			Unmarked
1812	$\mathrm{W}=2500 \mathrm{~V}$		$10 \mathrm{pF}=100$	X7R: $K= \pm 10 \%$			$9 \mathrm{~A}=\mathrm{Bulk} / \mathrm{Unmarked}$
1825	$\mathrm{H}=3000 \mathrm{~V}$		$100 \mathrm{pF}=101$	$\mathrm{M}= \pm 20 \%$			
2220	$\mathrm{J}=4000 \mathrm{~V}$		$1,000 \mathrm{pF}=102$	$\mathrm{Z}=+80 \%$,			
2225	$\mathrm{K}=5000 \mathrm{~V}$		$2,000 \mathrm{pF}=223$	-20\%			
3640			$\begin{array}{r} 0,000 \mathrm{pF}=224 \\ 1 \mu \mathrm{~F}=105 \end{array}$				

Capacitor Array

EXAMPLE: W2A43C 103MAT2A

Low Inductance C apacitors (LICC)

EXAMPLE: 0612ZD105MAT2A

Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

Decoupling Capacitor Arrays (LICA)

EXAMPLE: LICA3T183M3FC4AA

COG (NPO) is the most popular formulation of the "tempera-ture-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \Delta \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NP0) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.
The C0G (NPO) formulation usually has a "Q" in excess of 1000 and shows little capacitance or "Q" changes with frequency. Their dielectric absorption is typically less than 0.6% which is similar to mica and most films.

PART NUMBER (see page 2 for complete part number explanation)

Variation of Impedance with Chip Size
Impedance vs. Frequency
1000 pF - C OG (NPO)

Insulation Resistance vs Temperature

