Series 2600A System SourceMeter Instruments

See page 26 for Model 2651A Single-Channel System SourceMeter Instrument (High Power)

- Combines a power supply, true current source, 6½-digit DMM, arbitrary waveform generator, V or I pulse generator with measurement, electronic load, and trigger controller – all in one instrument
- Family of products offers wide dynamic range: 1fA to 50A and 1µV to 200V
- 20,000 rdg/s provides faster test times and ability to capture transient device behavior
- Precision timing and channel synchronization (<500ns)
- LXI Class C compliance supports high speed data transfer and enables quick and easy remote testing, monitoring, and troubleshooting
- Software:
 - TSP® Express for quick and easy I-V test (embedded)
 - ACS Basic Edition for semiconductor component characterization (optional)

Series 2600A System SourceMeter instruments are Keithley’s latest I-V source measurement unit (SMU) instruments for use as either bench-top I-V characterization tools or as building block components of multi-channel I-V test systems. For bench-top use, Series 2600A instruments feature an embedded TSP Express Software Tool that allows users to quickly and easily perform common I-V tests without programming or installing software. For system level applications, the Series 2600A’s Test Script Processor (TSP) architecture, along with other new capabilities such as parallel test execution and precision timing, provides the highest throughput in the industry, lowering the cost of test. To simplify the testing, verification, and analysis of semiconductor components, the optional ACS Basic Edition software is also available.

Performing nested sweeps to characterize a transistor with TSP Express is quick and easy. Data can be exported to a .csv file for use with spreadsheet applications such as Excel.

Quick and Easy Lab and Bench-Top Use
Each Series 2600A SourceMeter instrument is a complete I-V measurement solution with unmatched ease of use, capability, and flexibility. They simplify the process of making high-performance measurements.

The TSP Express Software Tool quickly sets up and runs basic and advanced tests, including nested step/sweeps, pulse sweeps, and custom sweeps for device characterization applications. The resulting data can be viewed in graphical or tabular format and exported to a .csv file for use with spreadsheet applications.

TSP Express runs on a PC connected to the SourceMeter instrument via an Ethernet cable (provided with the instrument). The intuitive user interface resides on the built-in LXI web page, so no software installation is needed.

1.888.KEITHLEY (U.S. only)
www.keithley.com
Series 2600A

System SourceMeter® Instruments

Simplify Semiconductor Component Test, Verification, and Analysis

The optional ACS Basic Edition software maximizes the productivity of customers who perform packaged part characterization during development, quality verification, or failure analysis, with:

- Rich set of easy-to-access test libraries
- Script editor for fast customization of existing tests
- Data tool for comparing results quickly
- Formulator tool that analyzes captured curves and provides a wide range of math functions

For more information about the ACS Basic Edition software, please refer to the ACS Basic Edition data sheet.

Unmatched Throughput and Flexibility for High Performance I-V Test Systems

TSP technology provides remarkable capabilities when a Series 2600A is integrated as part of a multi-channel I-V test system. For example, the embedded scripting capability allows test scripts to be run by the instrument. Test scripts are complete test programs based on an easy to use but highly efficient and compact scripting language called Lua (<www.lua.org>). Since test scripts can contain any sequence of routines that are executable by conventional programming languages (including decision making algorithms), this feature allows entire tests to be managed by the instrument without sending readings back to a PC for decision making. This eliminates the delays caused by GPIB traffic congestion and greatly improves overall test times.

Also, TSP technology offers “mainframe-less channel expansion.” The TSP-Link channel expansion bus (which uses a 100 Base T Ethernet cable) allows multiple Series 2600A and other TSP instruments to be connected in a master-slave configuration and behave as one integrated system. TSP-Link technology supports up to 32 units or 64 SMU instrument channels per GPIB or IP address, making it easy to scale a system to fit the particular requirements of an application.

Parallel Test Capability

The Series 2600A takes system level performance to a new height with parallel testing capability. This feature tests multiple devices in parallel to meet the high throughput requirements of production test and advanced semiconductor lab applications.

This parallel testing capability enables each instrument in the system to run its own complete test sequence, creating a fully multi-threaded test environment. Hence, the number of tests that can be running in parallel on a Series 2600A system can be as many as the number of instruments in the system. In contrast, most conventional test systems run a single thread test, usually on the controller PC instead of the instrument itself. Testing multiple devices at the same time means dramatically improved test throughput and reduced overall cost of test.

When all or some of your test requirements change, your Series 2600A system can be reconfigured via software without rewiring. The internal software can match the different pin layouts of the devices-under-test to the appropriate SMU instrument-per-pin configurations.

Tight Timing and Synchronization

Today’s test engineers are challenged with testing increasingly more complex and more sensitive devices that require precise timing and synchronization. Whether you need to synchronize electrical and optical tests for an
Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2601A</td>
<td>Single-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(3A DC, 10A Pulse)</td>
</tr>
<tr>
<td>2602A</td>
<td>Dual-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(3A DC, 10A Pulse)</td>
</tr>
<tr>
<td>2611A</td>
<td>Single-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(200V, 10A Pulse)</td>
</tr>
<tr>
<td>2612A</td>
<td>Dual-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(200V, 10A Pulse)</td>
</tr>
<tr>
<td>2635A</td>
<td>Single-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(1fA, 10A Pulse)</td>
</tr>
<tr>
<td>2636A</td>
<td>Dual-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(1fA, 10A Pulse)</td>
</tr>
<tr>
<td>2651A</td>
<td>Single-channel System SourceMeter Instrument</td>
</tr>
<tr>
<td></td>
<td>(2000W, 50A Pulse)</td>
</tr>
</tbody>
</table>

Accessories Supplied

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600-ALG-2</td>
<td>Low Noise Triax Cable with Alligator Clips, 2m (6.6 ft.) (two supplied with 2636A, one with 2635A)</td>
</tr>
<tr>
<td>2600-Kit</td>
<td>Mating Screw Terminal Connectors with strain relief and covers (2601A/2602A/2611A/2612A)</td>
</tr>
<tr>
<td>CA-180-3A</td>
<td>TSP-Link/Ethernet Cable (two per unit)</td>
</tr>
<tr>
<td>TSP Express Software Tool</td>
<td>(embedded)</td>
</tr>
<tr>
<td>Test Script Builder Software</td>
<td>(supplied on CD)</td>
</tr>
<tr>
<td>ACS Basic Edition Software</td>
<td>(optional)</td>
</tr>
</tbody>
</table>

Third-generation SMU Instrument Design Ensures Faster Test Times

Based on the proven architecture of earlier Series 2600 instruments, the Series 2600A's new SMU instrument design enhances test speed in several ways. For example, while earlier designs used a parallel current ranging topology, the Series 2600A uses a patented series ranging topology, which provides faster and smoother range changes and outputs that settle more quickly.

The Series 2600A SMU instrument design supports two modes of operation for use with a variety of loads. In normal mode, the SMU instrument provides high bandwidth performance for maximum throughput. In high capacitance (high-C) mode, the SMU instrument uses a slower bandwidth to provide robust performance with higher capacitive loads.

Each Series 2600A SMU instrument channel offers a highly flexible, four-quadrant source coupled with precision voltage and current meters. Each channel can be configured as a:

- Precision power supply
- True current source
- DMM (DCV, DCl, ohms, and power with 6½-digit resolution)
- Electronic load (with sink mode capability)
- V or I pulse generator (Pulse width: 100µs and longer)
- V or I waveform generator

All analog-to-digital (A/D) converters in Series 2600A instruments are both high speed and high precision for maximum flexibility. The two A/D converters per channel (one for I, one for V) can run simultaneously, providing precise source-readback without sacrificing test throughput. These A/D converters offer the versatility of programmable integration rates, allowing you to optimize for either high speed (>20,000 rdgs/s at 0.001 NPLC setting) or for high resolution (up to 24 bits at 10 NPLC setting) measurements.

In addition to the high speed or high resolution modes, the Model 2651A offers a digitizing measurement mode that enables 1µs per point sampling. See the Model 2651A on page 26 for more information.

Digital I/O Interface

A back panel port on every Series 2600A instrument provides 14 bits of universal digital I/O to link the instrument to a variety of popular component handlers and/or probe stations. These digital I/O lines are compatible with the triggering technology of Keithley's earlier Trigger-Link instruments. These lines simplify integrating Series 2600A instruments into systems that employ other electrical, mechanical, optical, or RF equipment.

TSP-Link Trigger Lines

The TSP-Link bus supports dedicated trigger lines that provide synchronous operations between multiple Series 2600A instruments (and other TSP instruments, such as Series 3700 DMM/Switch Systems) without the need for additional trigger connections.
1. **Built-in Contact Check Function**

The Contact Check function makes it simple to verify good device-under-test connections quickly and easily before an automated test sequence begins. This eliminates the measurement errors and false product failures associated with contact fatigue, breakage, contamination, loose or broken connections, relay failures, etc.

2. **Powerful Software Tools**

In addition to the embedded TSP Express and optional ACS Basic Edition software, the free Test Script Builder software tool is provided to help users create, modify, debug, and store TSP test scripts. Table 1 describes key features of Series 2600A software tools.

3. **Complete Automated System Solutions**

While the ACS Basic Edition software only supports component characterization tests, wafer and cassette level testing can be performed by Keithley’s ACS Integrated Test Systems. ACS systems are highly configurable, instrument-based systems that generally include a number of Series 2600A instruments. These systems are designed for semiconductor device characterization, reliability/WLR, parametric, and component functional testing.

TYPICAL APPLICATIONS

I-V functional test and characterization of a wide range of devices, including:
- **Discrete and passive components**
 - Two-leaded – Sensors, disk drive heads, metal oxide varistors (MOVs), diodes, zener diodes, sensors, capacitors, thermistors
 - Three-leaded – Small signal bipolar junction transistors (BJTs), field-effect transistors (FETs), and more
- **Simple ICs** – Optos, drivers, switches, sensors
- **Integrated devices** – small scale integrated (SSI) and large scale integrated (LSI)
- **Radio frequency**
 - Application specific integrated circuits (ASICs)
- **System on a chip (SOC) devices**
- **Optoelectronic devices** such as light-emitting diodes (LEDs), laser diodes, high brightness LEDs (HBLEDs), vertical cavity surface-emitting lasers (VCSELs), displays
- **Wafer level reliability**
- **NBTI, TDDB, HCI, electromigration**
- **Solar Cells**
- **Batteries**

Table 1. Series 2600A software tools

<table>
<thead>
<tr>
<th>Feature/Functionality</th>
<th>ACS Basic Edition</th>
<th>TSP Express</th>
<th>Test Script Builder (TSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Semiconductor characterization software for component test, verification, and analysis</td>
<td>Quick Start Tool for fast and easy I-V testing, primarily for bench and lab users</td>
<td>Custom script writing tool for TSP instruments</td>
</tr>
<tr>
<td>Supported hardware</td>
<td>24xx, 26xxA, 4200-SCS, 237</td>
<td>26xxA</td>
<td>26xxA, 37xx</td>
</tr>
<tr>
<td>Supported buses</td>
<td>GPIB, Ethernet</td>
<td>Ethernet only</td>
<td>GPIB, RS-232, Ethernet</td>
</tr>
<tr>
<td>Functionality</td>
<td>Intuitive, wizard-based GUI, Rich set of test libraries</td>
<td>Linear, Log Sweeps, Pulsing, Custom sweeps, Single point source-measures. Note: Uses new 2600A's new API's for precision timing and channel synchronization</td>
<td>Custom scripts with total flexibility</td>
</tr>
<tr>
<td>Data management</td>
<td>Formulator tool with wide range of math functions</td>
<td>.csv export, basic curve tracing (no math formula or analysis support)</td>
<td>N/A</td>
</tr>
<tr>
<td>Installation</td>
<td>Optional purchase</td>
<td>Not necessary</td>
<td>Embedded in the instrument</td>
</tr>
</tbody>
</table>

The flexible software architecture of ACS Basic Edition allows configuring systems with a wide range of controllers and test fixtures, as well as the exact number of SourceMeter instruments the application requires.
In the first and third quadrants, Series 2600A instruments operate as a source, delivering power to a load. In the second and fourth quadrants, they operate as a sink, dissipating power internally.
SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2601A and 2602A System SourceMeter® instruments. Specifications are the standards against which the Models 2601A and 2602A are tested. Upon leaving the factory, the 2601A and 2602A meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2601A and 2602A) or SourceMeter CHANNEL B (2602A) terminals under the following conditions:

1. 23°C ± 5°C, <70% relative humidity
2. After 2 hour warm-up
3. Speed normal (1 NPLC)
4. A&D auto-zero enabled
5. Remote sense operation or properly zeroed local operation
6. Calibration period = 1 year

SOURCE SPECIFICATIONS

VOLTAGE SOURCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (peak-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>23°C ± 5°C</td>
<td>±(% rdg. + volts)</td>
</tr>
<tr>
<td>100.000 mV</td>
<td>5 µV</td>
<td>0.02% + 250 µV</td>
<td>20 µV</td>
</tr>
<tr>
<td>1.00000 V</td>
<td>50 µV</td>
<td>0.02% + 400 µV</td>
<td>50 µV</td>
</tr>
<tr>
<td>6.00000 V</td>
<td>50 µV</td>
<td>0.02% + 1.8 mV</td>
<td>100 µV</td>
</tr>
<tr>
<td>40.0000 V</td>
<td>500 µV</td>
<td>0.02% + 12 mV</td>
<td>500 µV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°C–18°C and 28°–50°C): ±(0.15% accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

MAXIMUM OUTPUT POWER AND SOURCE/SINK LIMITS: ±40.4W per channel maximum. ±40.4V @ ±1.0A, ±6.06V @ ±3.0A, four quadrant source or sink operation.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout × Rload = 1V unless noted.

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground.

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME: <70µs for the output to recover to within 0.1% for a 10% to 90% step change in load.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range.

VOLTAGE SOURCE SETTLE TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout × Rload = 1V unless noted.

NOTES

1. Add 50µV to source accuracy specifications per volt of HI lead drop.
2. Add 150µs when measuring on the 1A range.
3. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 100mV range add an additional 60mV of uncertainty.
4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit.
5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
6. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
7. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
9. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 100mV range add an additional 60mV of uncertainty.
10. Add 150µs when measuring on the 1A range.
11. Add 50µV to source accuracy specifications per volt of HI lead drop.
Series 2600A specifications

SOURCE SPECIFICATIONS (continued)

PULSE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>Maximum Current Limit</th>
<th>Maximum Pulse Width</th>
<th>Minimum Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 A @ 40 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>3 A @ 6 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>1.5 A @ 40 V</td>
<td>100 ms</td>
<td>25%</td>
</tr>
<tr>
<td>3</td>
<td>5 A @ 35 V</td>
<td>4 ms</td>
<td>4%</td>
</tr>
<tr>
<td>4</td>
<td>10 A @ 20 V</td>
<td>1.8 ms</td>
<td>1%</td>
</tr>
</tbody>
</table>

MINIMUM PROGRAMMABLE PULSE WIDTH

16. 200µs. 17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term. Add appropriate % of range term using table below.

PULSE WIDTH PROGRAMMING ACCURACY

17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term. Add appropriate % of range term using table below. 18. Applies when in single channel display mode.

QUADRANT DIAGRAM

- DC: Blue
- Pulse: Green
- Bias: Yellow
- Time to Memory
- Time To Memory

NOTES

12. Times measured from the start of pulse to the start off-time; see figure below.

15. Times measured from the start of pulse to the start off-time; see figure below.

13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the reference manual for more information.

14. Typical performance for minimum settled pulse widths:

<table>
<thead>
<tr>
<th>Source Value</th>
<th>Load</th>
<th>Source Setting (% of range)</th>
<th>Min. Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 V</td>
<td>2 mΩ</td>
<td>0.2%</td>
<td>150 µs</td>
</tr>
<tr>
<td>20 V</td>
<td>2 mΩ</td>
<td>1%</td>
<td>200 µs</td>
</tr>
<tr>
<td>35 V</td>
<td>2 mΩ</td>
<td>0.5%</td>
<td>500 µs</td>
</tr>
<tr>
<td>40 V</td>
<td>2 mΩ</td>
<td>0.1%</td>
<td>400 µs</td>
</tr>
<tr>
<td>5 A</td>
<td>2 mΩ</td>
<td>0.2%</td>
<td>150 µs</td>
</tr>
<tr>
<td>5 A</td>
<td>2 mΩ</td>
<td>0.5%</td>
<td>500 µs</td>
</tr>
<tr>
<td>10 A</td>
<td>2 mΩ</td>
<td>0.5%</td>
<td>200 µs</td>
</tr>
</tbody>
</table>

METER SPECIFICATIONS

VOLTAGE MEASUREMENT ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Display Resolution</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.000 mV</td>
<td>1 µV</td>
<td>>10 GΩ</td>
<td>±(0.05% + 150 µV)</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.025% + 500 µA</td>
</tr>
<tr>
<td>10.0000 mA</td>
<td>100 µA</td>
<td><1 mV</td>
<td>0.02% + 200 µA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>1000 µA</td>
<td><1 mV</td>
<td>0.02% + 2.5 µA</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.03% + 15 µA</td>
</tr>
<tr>
<td>1.00000 A</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.03% + 5 µA</td>
</tr>
<tr>
<td>1.00000 A</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.04% + 25 µA</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µA</td>
<td><1 mV</td>
<td>0.0% + 25 mA</td>
</tr>
</tbody>
</table>

CURRENT MEASUREMENT ACCURACY

17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term. Add appropriate % of range term using table below.

CONTACT CHECK

<table>
<thead>
<tr>
<th>Speed</th>
<th>Maximum Measurement</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>1 (1.2) ms</td>
<td>±(0.05% + 10 µA)</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>4 (5) ms</td>
<td>±(0.05% + 1 µA)</td>
</tr>
<tr>
<td>SLOW</td>
<td>56 (42) ms</td>
<td>±(0.05% + 0.3 µA)</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM SOURCE METRICA

- Total Current: 200 mA
- Total Voltage: 40 V
- Internal Load Resistance: <4500Ω

OVERRANGE: 10% of source range, 10% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 1µΩ for rated accuracy.

SENS INPUT IMPEDANCE: >10GΩ

NOTES

16. Add 50µV to source accuracy specifications per volt of HI lead drop.

17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term.

18. Applies when in single channel display mode.

19. High Capacitance Mode accuracy is applicable for 23°C ±5°C only.

20. Applies when in single channel display mode.

21. Four-wire remote sense only with current meter mode selected. Voltage measurement set to 100 mV or 1V range only.

22. 10A range accessible only in pulse mode.

23. Compliance equal to 100mA.

24. High Capacitance Mode accuracy is applicable for 23°C ±5°C only.

25. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances.
2601A
2602A

System SourceMeter® Instruments

HIGH CAPACITANCE MODE

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A.

<table>
<thead>
<tr>
<th>Voltage Source Range</th>
<th>Settling Time with C<sub>load</sub> = 4.7µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>1 V</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>6 V</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>40 V</td>
<td>7 µs (typical)</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME: Time required to reach 0.1% of final value after voltage source is stabilized on a fixed range. Values below for V_{load} = 1V unless noted.

<table>
<thead>
<tr>
<th>Current Measure Range</th>
<th>Settling Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 A – 1 A</td>
<td><120 µs (typical)</td>
</tr>
<tr>
<td>100 mA – 10 mA</td>
<td><100 µs (typical)</td>
</tr>
<tr>
<td>1 mA</td>
<td>< 3 ms (typical)</td>
</tr>
<tr>
<td>100 µA</td>
<td>< 3 ms (typical)</td>
</tr>
<tr>
<td>10 µA</td>
<td>< 3 ms (typical)</td>
</tr>
<tr>
<td>100 mA</td>
<td>< 3 ms (typical)</td>
</tr>
<tr>
<td>100 mA</td>
<td>< 200 ms (typical)</td>
</tr>
<tr>
<td>1 µA</td>
<td>< 250 µs (typical)</td>
</tr>
</tbody>
</table>

CAPACITOR LEAKAGE PERFORMANCE USING HIGH-C SCRIPTS:

- 1 µA: < 230 ms (typical)
- 10 µA: < 230 ms (typical)
- 100 µA: < 3 ms (typical)
- 1 mA: < 3 ms (typical)
- 100 mA – 10 mA: <100 µs (typical)
- 3 A – 1 A: <120 µs (typical)

MODE CHANGE DELAY:

- 100µA Current Range and Above:
 - Delay into High Capacitance Mode: 10ms.
 - Delay out of High Capacitance Mode: 10ms.

- 1A and 10A Current Ranges:
 - Delay into High Capacitance Mode: 230ms.
 - Delay out of High Capacitance Mode: 10ms.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT:

- <400mV + 0.1% of larger range (typical).
- Overshoot into a 100kΩ load, 20MHz BW.

NOTES

- 26. High Capacitance Mode specifications are for DC measurements only.
- 27. 100A range is not available in High Capacitance Mode.

GENERAL

GND Pin
+5V Pin
(on DIGITAL I/O connector)

USB: USB 1.0 Host Controller (Memory Stick I/O)

POWER SUPPLY: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max.

COOLING: Forced air: Side intake and rear exhaust. One side must be unobstructed when rack mounted.

DIMENSIONS: 89mm high × 213mm wide × 466mm deep (3½ in × 8½ in × 18 in). Bench Configuration (with handle and feet): 80mm high × 258mm wide × 466mm deep (4 in × 10¼ in × 18 in).

WEIGHT: 2601A: 4.75kg (10.4 lbs). 2602A: 5.50kg (12.0 lbs).

ENVIRONMENT: For indoor use only.

Altitude: Maximum 2000 meters above sea level.

Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.

Storage: −25°C to 65°C.

SEE PAGES 24 AND 25 FOR MEASUREMENT SPEEDS AND OTHER SPECIFICATIONS.
SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2611A and 2612A System SourceMeter® instruments. Specifications are the standards against which the Models 2611A and 2612A are tested. Upon leaving the factory the 2611A and 2612A meet these specifications. Supplemental and typical values are non-warranted, apply at 25°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes.

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) ±0.15 × accuracy specification °C.

OVERSHOOT:

Applicable for normal mode only. Not applicable for high capacitance mode.

MAXIMUM OUTPUT POWER AND SOURCE/SINK LIMITS 50.3W per channel maximum. ±20.2V (±1.5A, ±202V/Ω), four quadrant source or sink operation.

VOLTAGE REGULATION: Line: ±0.01% of range + 100µV.

VOLTAGE PROGRAMMING ACCURACY ±(0.15 × accuracy specification)/°C.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <5% of larger range + 300mV/R load (typical).

VOLTAGE SOURCE SPECIFICATIONS

SOURCE SPECIFICATIONS

PULSE SPECIFICATIONS

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME: <70µs for the output to recover to within 0.1% for a 10% to 90% step change in load.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to within 0.1% of final value after source level command is processed on a fixed range.

MAXIMUM VOICE PROGRAMMING ACCURACY 16:

MAXIMUM PULSE WIDTH PROGRAMMING ACCURACY 15, 16:

PULSE WIDTH JITTER:

MINIMUM PROGRAMMABLE PULSE WIDTH 15, 16:

TIME REQUIRED TO WITHIN 0.1% FOR A 10% TO 90% STEP CHANGE IN LOAD

MAXIMUM POWER SOURCE AND SOURCE/SINK LIMITS 5.3W per channel maximum. ±20.2V (±1.5A, ±202V/Ω), four quadrant source or sink operation.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <300mV + 0.1% of larger range (typical).

CURRENT SOURCE RANGE CHANGE OVERSHOOT: <500mV + 0.1% of larger range (typical).

VOLTAGE SOURCE OUTPUT HEADROOM:

PULSE WIDTH PROGRAMMING RESOLUTION:

PULSE WIDTH PROGRAMMING ACCURACY:

PULSE WIDTH JITTER:

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground.

REMOTE SOURCE OPERATING RANGE 16:

NOTES

1. Add 50µV to source accuracy specifications per volt of HI lead drop.

2. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.

3. Full power source operation regardless of load to 50°C ambient. Above 50°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.

4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled.

5. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2611A and 2612A) terminals under the following conditions:

6. Source and measurement accuracies are specified at the SourceMeter CHANNEL A (2611A and 2612A) terminals under the following conditions:

7. Accuracy specifications do not include connector leakage. Derate accuracy by V out/2E11 per °C when operating <18°C and >28°C.

8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.

10. Maximum pulse width for settled source level command is processed on a fixed range. Values below for I max Rload = 2V unless noted.

11. Maximum voltage between HI and SENSE HI = 3V.

12. Minimum value is 20mV. Accuracy is the same as voltage source.

13. Accuracy specifications do not include connector leakage. Derate accuracy by V out/2E11 + (0.15·Vout/2E11) per °C when operating <18°C and >28°C.

14. Accuracy specifications do not include connector leakage. Derate accuracy by V out/2E11 ± 0.1% of larger range (typical).

15. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.

16. Pulse Width Jitter is measured with a 20MHz BW.

PULSE WIDTH PROGRAMMING RESOLUTION: 1µs.

PULSE WIDTH PROGRAMMING ACCURACY: ±5µs.

PULSE WIDTH JITTER: 2µs (typical).
SOURCE SPECIFICATIONS (continued)

PULSE SPECIFICATIONS (continued)

QUADRANT DIAGRAM:

NOTEs
12. Times measured from the start of pulse to the start off-time; see figure below.

13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the reference manual for more information.

14. Voltage source operation with 1.5 A current limit.

15. Typical performance for minimum settled pulse widths:

<table>
<thead>
<tr>
<th>Source Value</th>
<th>Load</th>
<th>Source Settling (% of range)</th>
<th>Min. Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>0.5 Ω</td>
<td>0.5%</td>
<td>500 μs</td>
</tr>
<tr>
<td>20 V</td>
<td>200 Ω</td>
<td>0.2%</td>
<td>200 μs</td>
</tr>
<tr>
<td>100 V</td>
<td>100 Ω</td>
<td>0.2%</td>
<td>5 ms</td>
</tr>
<tr>
<td>200 V (1.5 A Limit)</td>
<td>200 Ω</td>
<td>0.2%</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>100 mA</td>
<td>200 Ω</td>
<td>1%</td>
<td>200 μs</td>
</tr>
<tr>
<td>1 A</td>
<td>200 Ω</td>
<td>1%</td>
<td>500 μs</td>
</tr>
<tr>
<td>5 A</td>
<td>180 Ω</td>
<td>0.2%</td>
<td>5 ms</td>
</tr>
<tr>
<td>10 A</td>
<td>0.5 Ω</td>
<td>0.5%</td>
<td>500 μs</td>
</tr>
</tbody>
</table>

Typical tests were performed using remote operation, 6W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600A Reference Manual.

16. Times measured from the start of pulse to the start off-time; see figure below.

METER SPECIFICATIONS

VOLTAGE MEASUREMENT ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Display Resolution</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 mV</td>
<td>1 µV</td>
<td>>10 GΩ</td>
<td>0.015% + 225 µV</td>
</tr>
<tr>
<td>2,000,000 µV</td>
<td>10 µV</td>
<td>>10 GΩ</td>
<td>0.02% + 350 µV</td>
</tr>
<tr>
<td>20,000,000 µV</td>
<td>100 µV</td>
<td>>10 GΩ</td>
<td>0.015% + 5 mV</td>
</tr>
<tr>
<td>2,000,000 V</td>
<td>1 mV</td>
<td>>10 GΩ</td>
<td>0.015% + 50 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±0.15 × accuracy specification/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CURRENT MEASUREMENT ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Display Resolution</th>
<th>Voltage Burden</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.000 nA</td>
<td>1 pA</td>
<td><1 mV</td>
<td>0.06% + 100 pA</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>10 pA</td>
<td><1 mV</td>
<td>0.025% + 500 pA</td>
</tr>
<tr>
<td>10.0000 µA</td>
<td>100 pA</td>
<td><1 mV</td>
<td>0.025% + 1.5 nA</td>
</tr>
<tr>
<td>100.000 µA</td>
<td>1 nA</td>
<td><1 mV</td>
<td>0.02% + 25 nA</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 nA</td>
<td><1 mV</td>
<td>0.02% + 200 nA</td>
</tr>
<tr>
<td>10.0000 mA</td>
<td>100 nA</td>
<td><1 mV</td>
<td>0.02% + 2.5 µA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>1 µA</td>
<td><1 mV</td>
<td>0.02% + 20 µA</td>
</tr>
<tr>
<td>1.00000 A</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.01% + 3.5 mA</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µA</td>
<td><1 mV</td>
<td>0.05% + 5 mA</td>
</tr>
</tbody>
</table>

CURRENT MEASUREMENT SETTLING TIME (Time for measurement to settle after a Vstep): Time required to reach 0.1% of final value after source level command is processed on a fixed range. Values for Vout = 2V unless noted. Current Range: 1mA. Settling Time: <100µs (typical).

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±0.15 × accuracy specification/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CONTACT CHECK

<table>
<thead>
<tr>
<th>Speed</th>
<th>Maximum Measurement Time to Memory For 60Hz (50Hz)</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>1 (1.2) ms</td>
<td>5% + 10 Ω</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>4 (5) ms</td>
<td>5% + 1.4 Ω</td>
</tr>
<tr>
<td>SLOW</td>
<td>56 (42) ms</td>
<td>5% + 0.3 Ω</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM LOAD IMPEDANCE:
Normal Mode: 1mΩ (typical). High Capacitance Mode: 50μF (typical).

COMMON MODE VOLTAGE: 250VDC.

COMMON MODE ISOLATION: >1GΩ, <400pF.

OVERRANGE: 101% of source range, 102% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 1kΩ for rated accuracy.

SENSl INPUT IMPEDANCE: >10GΩ.
METER SPECIFICATIONS (continued)

NOTES
17. Add 90µV to source accuracy specifications per volt of HI lead drop.
18. Dc-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below.

<table>
<thead>
<tr>
<th>NPLC Setting</th>
<th>200mV Range</th>
<th>2V–200V Ranges</th>
<th>100mA Range</th>
<th>1µA–100mA Ranges</th>
<th>1A–1A.5A Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

19. Applies when in single channel display mode.
20. High Capacitance Mode accuracy is applicable at 21°C ±5°C only.
21. Accuracy specifications do not include connector leakage. Dc-rate accuracy by V_n-2E11 per °C when operating between 18°–28°C. Derate accuracy by V_n-2E11 ± 0.15 V_n-2E11 per °C when operating <18° and >28°C.
22. Applies when in single channel display mode.
23. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only.
24. 10A range accessible only in pulse mode.
25. Compliance equal to 100mA.
26. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.
27. Includes measurement of SENSE HI to HH and SENSE I/O to I/O contact resistances.

HIGH CAPACITANCE MODE 28, 29, 30

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A.
Voltage Source Range	Settling Time with C_{load} = 4.7µF
200mV | 600 µs (typical)
2V | 600 µs (typical)
20V | 15 µs (typical)
200V | 20 µs (typical)

CURRENT MEASURE SETTLING TIME: Time required to reach within 0.1% of final value after voltage source is stabilized on a fixed range. Values below for V_{in} = 2V unless noted.

Current Measure Range	Settling Time
1.5 A – 1 A | <120 µs (typical) (<i>R_{load}</i> >6Ω)
100 mA – 10 mA | <100 µs (typical) (<i>R_{load}</i> >6Ω)
1 mA | <5 ms (typical)
100 µA | <3 ms (typical)
10 µA | <250 ms (typical)
1 µA | <250 ms (typical)

CAPACITOR LEAKAGE PERFORMANCE USING HIGH-C SCRIPTS 31: Load = 5µF/|10MΩ. Test: 5V step and measure 200ms (typical) @ 50mA.

MODE CHANGE DELAY:
100µA Current Range and Above:
Delay into High Capacitance Mode: 10ms.
Delay out of High Capacitance Mode: 10ms.

1A and 10µA Current Ranges:
Delay into High Capacitance Mode: 250ms.
Delay out of High Capacitance Mode: 10ms.

VOLTmeter INPUT IMPEDANCE: 50GΩ in parallel with 3300pF.
NOISE, 10Hz–20MHz (20V Range): <50µV peak-peak (typical).
VOLTAGE SOURCE RANGE CHANGE OVERTHREAD (for 20V range and below): <400mV + 0.1% of larger range (typical). Overshoot into a 200µΩ load, 20MHz BW.

NOTES
28. High Capacitance Mode specifications are for DC measurements only.
29. 300nA range is not available in High Capacitance Mode.
30. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

SEE PAGES 24 AND 25 FOR MEASUREMENT SPEEDS AND OTHER SPECIFICATIONS.
SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2635A and 2636A System SourceMeter® instruments. Specifications are the standards against which the Models 2635A and 2636A are tested. Upon leaving the factory the 2635A and 2636A meet these specifications. Supplemental and typical values are non-warranted, apply at 25°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2635A and 2636A) or SourceMeter CHANNEL B (2636A) terminals under the following conditions:

1. 23°C ± 5°C, <70% relative humidity.
2. After 2 hour warm-up
3. Speed normal (1 NPLC)
4. A/D auto-zero enabled
5. Remote sense operation or properly zeroed local sense operation
6. Calibration period = 1 year

SOURCE SPECIFICATIONS

VOLTAGE SOURCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (peak-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000 mV</td>
<td>5 µV</td>
<td>0.02% ± 5 µV</td>
<td>20 µV</td>
</tr>
<tr>
<td>20,000 V</td>
<td>50 µV</td>
<td>0.02% ± 600 µV</td>
<td>500 µV</td>
</tr>
<tr>
<td>20,000 V</td>
<td>500 µV</td>
<td>0.02% ± 5 mV</td>
<td>5000 µV</td>
</tr>
<tr>
<td>200,000 V</td>
<td>5 mV</td>
<td>0.02% ± 50 mV</td>
<td>500 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°C–+5°C and 28°C–+50°C): ±0.15 x accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

MAXIMUM OUTPUT POWER AND SOURCE/SINK LIMITS: 50.3 W per channel maximum. ±2.0 A (±20 A) ±20A/200 mA, four quadrant source or sink operation.

VOLTAGE REGULATION: Line: ±0.01% of range. Load: ±0.1% of range +100 µA.

NOISE: 10Hz–20MHz: <0.1% of range +100 µV.

CURRENT LIMIT/COMPLIANCE:

1. 1.5 A – 1 A <100 µA (typical) (Rload > 60 kΩ)
2. 1 A – 10 mA <8 µA (typical)
3. 0.1 A – 100 mA <1 µA (typical)
4. 0.1 A – 10 µA <200 pA (typical)
5. 0.1 A – 1 µA <150 pA (typical)
6. 0.1 A – 1 nA <150 pA (typical)

CURRENT SOURCE SPECIFICATIONS

1. 2.5 A – 1 A <120 µA (typical) (Rload > 60 kΩ)
2. 1 A – 100 mA <100 µA (typical)
3. 0.1 A – 10 µA <150 µA (typical)
4. 0.1 A – 1 µA <500 µA (typical)
5. 0.1 A – 1 nA <2 µs (typical)
6. 0.1 A – 10 nA <20 ms (typical)
7. 0.1 A – 100 nA <40 ms (typical)
8. 0.1 A – 1 µA <2 ms (typical)
9. 0.1 A – 10 µA <150 µs (typical)

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC.

REMOTE SENSE OPERATING RANGE:

1. 2.5 A – 1 A Max. output voltage = 202.3 V – total voltage drop across source leads (maximum 10% per source lead).
2. 1 A – 100 mA Max. output voltage = 23.3 V – total voltage drop across source leads (maximum 10% per source lead).

OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT:

1. 100000 µA <300 µV ±10% of range +500 µV (typical) – with source settling set to SETTLE_SMOOTH_100A.

CURRENT SOURCE RANGE CHANGE OVERSHOOT:

1. ±5% of range +500 mV/Rload (typical) – With source settling set to SETTLE_SMOOTH_100A. See Current Source Output Settling Time for additional test conditions.

PULSE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>Maximum Current Limit</th>
<th>Maximum Pulse Width</th>
<th>Maximum Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 mA @ 200 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>1.5 A @ 20 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>1 A @ 180 V</td>
<td>8.5 ms</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>10 A @ 5 V</td>
<td>1 ms</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

MINIMUM PROGRAMMABLE PULSE WIDTH:

Minimum pulse width for settled source at a given I/V output and load can be longer than 100 µs.

PULSE WIDTH PROGRAMMING RESOLUTION: 1µs.

PULSE WIDTH PROGRAMMING ACCURACY:

Minimum pulse width for settled source at a given I/V output and load can be longer than 100 µs.

PULSE WIDTH JITTER:

500 µs (typical).

QUADRANT DIAGRAM:

[Diagram showing the four quadrants (I, II, III, IV) with DC, Pulse, and waves for different current and voltage ranges.]
Series 2600A specifications

SMI INSTRUMENTS

14. Typical performance for minimum settled pulse widths:
13. Voltage source operation with 1.5 A current limit.
12. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the Reference Manual for additional power derating information.
11. Times measured from the start of pulse to the start of ftime; see figure below.
10. Add 50µV to source accuracy specifications per volt of HI lead drop.
9. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 200mV range add an additional 120mV of uncertainty.
8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
7. High Capacitance Mode accuracy is applicable at 23°C ±5°C only.
6. 10A range accessible only in pulse mode.
5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit setting. Applicable for normal mode only. Not applicable for high capacitance mode.
3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
2. High Capacitance Mode accuracy is applicable at 23°C ±5°C only.
1. Add 50µV to source accuracy specifications per volt of HI lead drop.

NOTES
SOURCE SPECIFICATIONS (continued)

1. Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600A Reference Manual.

SMU INSTRUMENTS

1.888.KEITHLEY (U.S. only)
www.keithley.com

A GREATER MEASURE OF CONFIDENCE

2635A
2636A

VOLTAGE MEASUREMENT ACCURACY 16, 17

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Display Resolution 18</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000 mV</td>
<td>1 µV</td>
<td>>10^4 Ω</td>
<td>±(0.015% + 225 µV)</td>
</tr>
<tr>
<td>2.00000 V</td>
<td>10 µV</td>
<td>>10^4 Ω</td>
<td>±(0.02% + 550 µV)</td>
</tr>
<tr>
<td>20.0000 V</td>
<td>100 µV</td>
<td>>10^3 Ω</td>
<td>±0.015% + 5 mV</td>
</tr>
<tr>
<td>200.000 V</td>
<td>1 mV</td>
<td>>10^4 Ω</td>
<td>±0.015% + 50 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°C–18°C and 28°C–50°C) 19: ±0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CURRENT MEASUREMENT ACCURACY 17

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Display Resolution*20</th>
<th>Voltage Burden*21</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00 pA</td>
<td>1 fA</td>
<td>1 mV</td>
<td>±(0.015% + 120 fA)</td>
</tr>
<tr>
<td>1.00000 nA</td>
<td>10 fA</td>
<td>1 mV</td>
<td>±(0.03% + 240 fA)</td>
</tr>
<tr>
<td>10.0000 nA</td>
<td>100 fA</td>
<td>1 mV</td>
<td>±0.03% + 3 pA</td>
</tr>
<tr>
<td>100.000 nA</td>
<td>1 µA</td>
<td>1 mV</td>
<td>±0.06% + 40 pA</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>10 µA</td>
<td>1 mV</td>
<td>±0.025% + 400 pA</td>
</tr>
<tr>
<td>10.0000 µA</td>
<td>100 µA</td>
<td>1 mV</td>
<td>±0.025% + 1.5 nA</td>
</tr>
<tr>
<td>100.000 µA</td>
<td>1 mA</td>
<td>1 mV</td>
<td>±0.02% + 25 nA</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 mA</td>
<td>1 mV</td>
<td>±0.02% + 100 µA</td>
</tr>
<tr>
<td>10.0000 mA</td>
<td>100 mA</td>
<td>1 mV</td>
<td>±0.02% + 25 µA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>1 µA</td>
<td>1 mV</td>
<td>±0.02% + 250 µA</td>
</tr>
<tr>
<td>1.00000 A</td>
<td>10 µA</td>
<td>1 mV</td>
<td>±0.03% + 15 mA</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µA</td>
<td>1 mV</td>
<td>±0.04% + 25 mA</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME (Time for measurement to settle after a Vstep): Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values for V_{ref} = 2V unless noted. Current Range: 1mA. Settling Time: <100µs (typical).

TEMPERATURE COEFFICIENT (0°C–18°C and 28°C–50°C) 19: ±0.15 × accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CONTACT CHECK 18

<table>
<thead>
<tr>
<th>Speed</th>
<th>Maximum Measurement</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>1 (1.2) ms</td>
<td>±(0.01% + ohms)</td>
</tr>
<tr>
<td>Medium</td>
<td>4 (5) ms</td>
<td>±0.01% + 10 Ω</td>
</tr>
<tr>
<td>Slow</td>
<td>36 (42) ms</td>
<td>±0.03% + 10 Ω</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM LOAD IMPEDANCE:
Normal Mode: 80mΩ (typical) High Capacitance Mode: 580mΩ (typical).

COMMON MODE VOLTAGE: 250VDC.

COMMON MODE ISOLATION: >1GΩ. <800pF.

OVERRANGE: 101% of source range. 1% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 1kΩ for rated accuracy.

SENSE INPUT IMPEDANCE: >100Ω.
METER SPECIFICATIONS (continued)

NOTES
16. Add 50µV to source accuracy specifications per volt of HI lead drop.
17. De-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below.

<table>
<thead>
<tr>
<th>NPLC Setting</th>
<th>200mV Range</th>
<th>2V–200V Range</th>
<th>100mA Range</th>
<th>1µA–100mA Range</th>
<th>1A–1.5A Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.01</td>
<td>0.08%</td>
<td>0.07%</td>
<td>0.1%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>0.001</td>
<td>0.8%</td>
<td>0.6%</td>
<td>1%</td>
<td>0.5%</td>
<td>1%</td>
</tr>
</tbody>
</table>

18. Applies when in single channel display mode.
19. High Capacitance Mode accuracy is applicable at 23°C ±5°C only.
20. Applies when in single channel display mode.
21. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only.
22. 10-NPLC, 11-Point Median Filter, <200V range, measurements made within 1 hour after zeroing. 23°C ± 1°C
23. High Capacitance Mode accuracy is applicable at 23°C ±5°C only.
24. Under default specification conditions: ±(0.15% + 1pA).
25. 10A range accessible only in pulse mode.
26. Delay factor set to 1. Compliance equal to 100mA.
27. Applies when in single channel display mode.
29. Delay out of High Capacitance Mode: 10ms.
31. Fuse: 600mA
32. Transformer: 120V Input, 120V Output, 5kΩ
33. **Connector**
 - 25-pin female D.
 - Input/Output Pins: 14 open drain I/O bits.
 - Absolute Maximum Input Voltage: 5.25V
 - Absolute Maximum Input Voltage: 0.3V
 - Maximum Logic Low Input Voltage: 0.7V, +850µA max.
 - Maximum Logic High Input Voltage: 2.1V, +570µA
 - Maximum Source Current @ Maximum Logic Low Voltage (0.7V): <5mA
 - Maximum Sink Current @ Maximum Logic High Voltage (2.0V): <5.0mA
 - Voltage Source Range Change Overshoot (for 20V range and below): <400mV + 0.1% of larger range (typical). Overshoot into a 200kΩ load, 20MHz BW

NOTES
29. High Capacitance Mode specifications are for DC measurements only.
30. 100µA range and below are not available in high capacitance mode.
31. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

GEneral

RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the SourceMeter instrument can use the RS-232 interface to control other instrumentation.

ETHERNET: RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX.

EXPANSION INTERFACE: The TSP-link expansion interface allows TSP enabled instruments to trigger and communicate with each other.

Cable Type: Category 5e or higher LAN crossover cable.
Length: 3 meters maximum between each TSP enabled instrument.

LXI COMPLIANCE: LXI Class C.1.2

DIGITAL I/O INTERFACE:

Connectors
- 25-pin female D.
- Input/Output Pins: 14 open drain I/O bits.
- Absolute Maximum Input Voltage: 5.25V
- Absolute Maximum Input Voltage: 0.3V
- Maximum Logic Low Input Voltage: 0.7V, +850µA max.
- Maximum Logic High Input Voltage: 2.1V, +570µA
- Maximum Source Current @ Maximum Logic Low Voltage (0.7V): <5mA
- Maximum Sink Current @ Maximum Logic High Voltage (2.0V): <5.0mA
- Voltage Source Range Change Overshoot (for 20V range and below): <400mV + 0.1% of larger range (typical). Ourshoot into a 200kΩ load, 20MHz BW

MODE CHANGE DELAY
- 100µA Current Range and Above: 10ms.
- Delay into High Capacitance Mode: 10ms.
- Delay out of High Capacitance Mode: 10ms.
- 1µA and 10µA Current Ranges: Delay into High Capacitance Mode: 230ms
- Delay out of High Capacitance Mode: 10ms.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT
- (for 20V range and below): <400mV + 0.1% of larger range (typical). Overshoot into a 200kΩ load, 20MHz BW

NOTES
- 29. High Capacitance Mode specifications are for DC measurements only.
- 30. 100µA range and below are not available in high capacitance mode.
- 31. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

SYSTEM SOURCE METER INSTRUMENTS

2635A
- 17½ in. wide x 17½ in. high x 5.50kg (12.0 lbs).
- For indoor use only. Altitude: Maximum 2000 meters above sea level.
- Operating: 0° to 50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.
- Storage: –25°C to 65°C.
- Power Supply: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max.
- Cooling: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.
- Dimensions: 460mm wide x 238mm high x 5.50kg (12.0 lbs).

2636A
- 17½ in. wide x 17½ in. high x 5.50kg (12.0 lbs).
- For indoor use only. Altitude: Maximum 2000 meters above sea level.
- Operating: 0° to 50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.
- Storage: –25°C to 65°C.
- Power Supply: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max.
- Cooling: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.
- Dimensions: 460mm wide x 238mm high x 5.50kg (12.0 lbs).
MEASUREMENT SPEED SPECIFICATIONS 1, 2, 3

MAXIMUM SWEEP OPERATION RATES (operations per second) FOR 60Hz (50Hz):

<table>
<thead>
<tr>
<th>A/D Converter Speed</th>
<th>Trigger Origin</th>
<th>Measure To Memory Using User Scripts</th>
<th>Measure To GPIB Using User Scripts</th>
<th>Source Measure To Memory Using User Scripts</th>
<th>Source Measure To GPIB Using User Scripts</th>
<th>Source Measure To Memory Using Sweep API</th>
<th>Source Measure To GPIB Using Sweep API</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 NPLC</td>
<td>Internal</td>
<td>20000 (20000)</td>
<td>10500 (10500)</td>
<td>7000 (7000)</td>
<td>6200 (6200)</td>
<td>12000 (12000)</td>
<td>5900 (5900)</td>
</tr>
<tr>
<td>0.001 NPLC</td>
<td>Digital I/O</td>
<td>8100 (8100)</td>
<td>7100 (7100)</td>
<td>5500 (5500)</td>
<td>5100 (5100)</td>
<td>11200 (11200)</td>
<td>5700 (5700)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Internal</td>
<td>5000 (4000)</td>
<td>4000 (3500)</td>
<td>3400 (3000)</td>
<td>3200 (2900)</td>
<td>4200 (3700)</td>
<td>3100 (2800)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Digital I/O</td>
<td>5650 (5200)</td>
<td>5100 (5000)</td>
<td>5000 (2700)</td>
<td>4900 (2600)</td>
<td>4100 (3650)</td>
<td>3650 (2775)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Internal</td>
<td>580 (490)</td>
<td>560 (475)</td>
<td>550 (465)</td>
<td>550 (460)</td>
<td>570 (480)</td>
<td>545 (460)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Digital I/O</td>
<td>560 (470)</td>
<td>540 (460)</td>
<td>540 (460)</td>
<td>540 (450)</td>
<td>570 (480)</td>
<td>545 (460)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Internal</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Digital I/O</td>
<td>58 (48)</td>
<td>58 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
</tr>
</tbody>
</table>

MAXIMUM SINGLE MEASUREMENT RATES (operations per second) FOR 60Hz (50Hz):

<table>
<thead>
<tr>
<th>A/D Converter Speed</th>
<th>Trigger Origin</th>
<th>Measure To GPIB</th>
<th>Source Measure To GPIB</th>
<th>Source Measure Pass/Fail To GPIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 NPLC</td>
<td>Internal</td>
<td>1900 (1800)</td>
<td>1400 (1400)</td>
<td>1400 (1400)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Internal</td>
<td>1550 (1400)</td>
<td>1200 (1100)</td>
<td>1100 (1100)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Internal</td>
<td>450 (390)</td>
<td>425 (370)</td>
<td>425 (375)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Internal</td>
<td>58 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
</tr>
</tbody>
</table>

MAXIMUM MEASUREMENT RANGE CHANGE RATE: <150µs for ranges >10µA, typical. When changing to or from a range ≥1A, maximum rate is <450µs, typical.

MAXIMUM SOURCE RANGE CHANGE RATE: <2.5ms for ranges >10µA, typical. When changing to or from a range ≥1A, maximum rate is <5.2ms, typical.

MAXIMUM SOURCE FUNCTION CHANGE RATE: <1ms, typical.

COMMAND PROCESSING TIME: Maximum time required for the output to begin to change following the receipt of the smux.source.levelv or smux.source.leveli command. <1ms typical.

TRIGGERING AND SYNCHRONIZATION SPECIFICATIONS

TRIGGERING:
- Trigger in to trigger out: 0.5µs, typical.
- Trigger in to source change: 10 µs, typical.
- Trigger Timer accuracy: ±2µs, typical.
- Source change after LXI Trigger: 280µs, typical.

SYNCHRONIZATION:
- Single-node synchronized source change: <0.5µs, typical.
- Multi-node synchronized source change: <0.5µs, typical.

NOTES

2. Exclude current measurement ranges less than 1mA.
3. 2635A/2636A with default measurement delays and filters disabled.

Series 2600A specifications

Series 2600A
System SourceMeter® Instruments

SUPPLEMENTAL INFORMATION

FRONT PANEL INTERFACE: Two-line vacuum fluorescent display (VFD) with keypad and rotary knob.
Display:
 - Show error messages and user defined messages
 - Display source and limit settings
 - Show current and voltage measurements
 - View measurements stored in dedicated reading buffers
Keypad Operations:
 - Change host interface settings
 - Save and restore instrument setups
 - Load and run factory and user defined test scripts (i.e. sequences) that prompt for input and send results to the display
 - Store measurements into dedicated reading buffers

PROGRAMMING: Embedded Test Script Processor (TSP) accessible from any host interface. Responds to individual instrument control commands. Responds to high speed test scripts comprised of instrument control commands and Test Script Language (TSL) statements (e.g. branching, looping, math, etc.). Able to execute high speed test scripts stored in memory without host intervention.
Minimum Memory Available: 16MB (approximately 250,000 lines of TSL code).

Test Script Builder: Integrated development environment for building, running, and managing TSP scripts. Includes an instrument console for communicating with any TSP enabled instrument in an interactive manner. Requires:
 - VISA (NI-VISA included on CD)
 - Microsoft .NET Framework (included on CD)
 - Keithley I/O Layer (included on CD)
 - Pentium III 800MHz or faster personal computer
 - Microsoft Windows 98, NT, 2000, or XP
Software Interface: TSP Express (embedded), Direct GPIB/VISA, READ/WRITE for VB, VC/C++, LabVIEW, LabWindows/CVI, etc.

READING BUFFERS: Dedicated storage area(s) reserved for measurement data. Reading buffers are arrays of measurement elements. Each element can hold the following items:
 - Measurement
 - Measurement status
 - Timestamp
 - Source setting (at the time the measurement was taken)
 - Range information
Two reading buffers are reserved for each SourceMeter channel. Reading buffers can be filled using the front panel STORE key and retrieved using the RECALL key or host interface.
Buffer Size, with timestamp and source setting: >60,000 samples.
Buffer Size, without timestamp and source setting: >140,000 samples.

SYSTEM EXPANSION: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. See figure below:

Each SourceMeter instrument has two TSP-Link connectors to facilitate chaining instruments together.
 - Once SourceMeter instruments are interconnected via TSP-Link, a computer can access all of the resources of each SourceMeter instrument via the host interface of any SourceMeter instrument.
 - A maximum of 32 TSP-Link nodes can be interconnected. Each SourceMeter instrument consumes one TSP-Link node.

TIMER: Free running 47-bit counter with 1MHz clock input. Reset each time instrument powers up. Rolls over every 4 years.
Timestamp: TIMER value automatically saved when each measurement is triggered.
Resolution: 1µs.
Accuracy: ±100ppm.