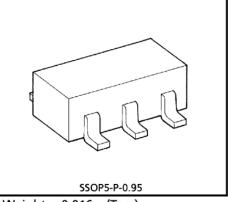
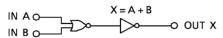
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

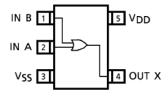

TC4S71F

2 INPUT OR GATE

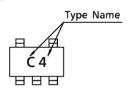
The TC4S71F is 2-input positive logic OR gates. Gate output with inverter buffer improve the inputoutput characteristics and even if the load capacitance increases, it can be stopped the change of propagation time.


MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Input Voltage	VIN	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	V
Output Voltage	Vout	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V
DC Input Current	IN	± 10	mA
Power Dissipation	PD	200	mW
Operating Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature Range	T _{stg}	- 65~150	°C
Lead Temperature (10s)	TL	260	°C



Weight: 0.016g (Typ.)


LOGIC DIAGRAM

PIN CONFIGURATION (TOP VIEW)

MARKING

2008-06-03

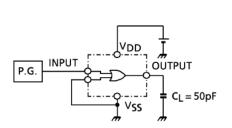
RECOMMENDED OPERATING CONDITIONS $(V_{SS} = 0V)$

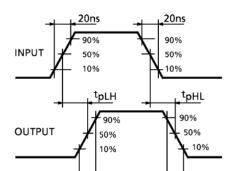
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V_{DD}	_	3	_	18	V
Input Voltage	VIN	1	0	_	V_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS $(V_{SS} = 0V)$

CHARACTERISTIC	SYM-	TEST CONDITION	VDD	– 40°C		25°C			85°C		UNIT
BOL	TEST CONDITION	V _{DD}	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	OINIT	
High-Level		l _{OUT} <1μΑ	5	4.95		4.95		I	4.95	l .	
Output Voltage	Vон	$V_{IN} = V_{SS}$, V_{DD}	10	9.95		9.95		ı	9.95	l .	
		11N 1337 100	15	14.95		14.95			14.95		l v l
Low-Level Output Voltage	 l _{OUT} <1μΑ	5	-	0.05	—	0.00	I	—	0.05	-	
	VOL	$V_{IN} = V_{SS}$	10	-	0.05	—	0.00		—	0.05	
- Catput Fortage			15	_	0.05	_	0.00		_	0.05	
		V _{OH} = 4.6V	5	- 0.61		- 0.51	- 1.0	I	- 0.42	l .	
Output High	ІОН	V _{OH} = 2.5V	5	- 2.5		- 2.1	- 4.0	I	- 1.7	—	
Current	l'OH	V _{OH} = 9.5V	10	- 1.5		- 1.3		I	- 1.1		
		$V_{IN} = V_{DD}$, V_{SS}	15	- 4.0		- 3.4	- 9.0	_	- 2.8	_	
		V _{OL} = 0.4V	5	0.61		0.51			0.42		mΑ
Output Low	ļ.,.	$V_{OL} = 0.5V$	10	1.5	_	1.3	3.2	—	1.1	_	
Current	lOL	V _{OL} = 1.5V	15	4.0	_	3.4	12.0	—	2.8	_	
		$V_{IN} = V_{SS}$									
		V _{OUT} = 4.5V	5	3.5		3.5	2.75	_	3.5	_	
Innut High Valtons	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{OUT} = 9.0V	10	7.0	_	7.0	5.5	—	7.0	_	
Input High Voltage	VIH	V _{OUT} = 13.5V	15	11.0	_	11.0	8.25	—	11.0	_	
		l _{OUT} <1μA]								.,
		V _{OUT} = 4.5V, 0.5V	5	_	1.5	_	2.25	1.5	_	1.5	V
Input Low Voltage V _I [V _{OUT} = 9.0V, 1.0V	10	—	3.0	—	4.5	3.0	—	3.0	
	VIL	V _{OUT} = 13.5V, 1.5V	15	—	4.0	—	6.75	4.0	—	4.0	
		l _{OUT} <1μA	1								
Input H Level	ΊΗ	V _{IH} = 18V	18	_	0.1	-	10-5		_	1.0	
Current L Level	ΊL	V _{IL} = 0V	18	_	- 0.1	_	- 10 ^{- 5}	- 0.1	—	- 1.0	μ A
Quiescent		V _{IN} = V _{SS} , V _{DD}	5	_	0.25	_	0.001		_	7.5	
Device Current	lDD	* NIM = ASS' ADD	10	—	0.5	_	0.001	0.5	—	15	μ A
Device Current		"	15	_	1.0	_	0.002	1.0	—	30	

^{*} All valid input combinations.

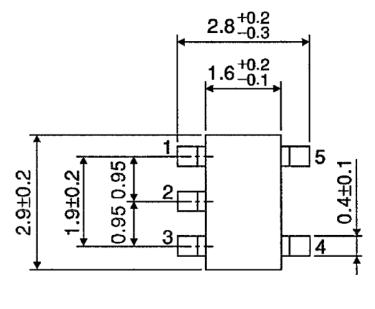

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, $V_{SS} = 0V$, $C_L = 50pF$)

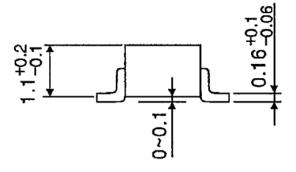

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT	
Output Transition Time			5	_	70	200		
Output Transition Time	tTLH	_	10	_	35	100		
(Low to High)			15	_	30	80		
Output Transition Time (High to Low)			5	_	70	200	ns	
	^t THL	_	10	_	35	100		
			15	_	30	80		
	t _{pLH}		5	_	65	200		
Propagation Delay Time		_	10	_	30	100		
			15	_	25	80	200	
	t _{pHL}		5	_	65	200	ns	
Propagation Delay Time		_	10	_	30	100		
			15	_	25	80		
Input Capacitance	CIN	_	_	5	7.5	pF		

WAVEFORM

CIRCUIT AND WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

TEST CIRCUIT


^tTLH


tTHL

PACKAGE DIMENSIONS

SSOP5-P-0.95

Unit: mm

Weight: 0.016g (Typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.