Consumer Units and Enclosures

Standards and approvals
All Sentry consumer units are designed to fully comply with the requirements of BS EN 60439-3.
Weatherproof enclosures are designed to fully comply with the requirements of EN 60670.

Technical specification

Electrical
- Maximum current rating: All Sentry consumer units have a maximum rating of 100A except K5504s, K5604s, which are rated at 63A
- Terminal capacity: 16mm² earth and neutral
- Rated frequency: 50Hz
- Rated operational voltage:
 - Consumer unit: 220-250V
 - 2 module enclosure: 220-250V
 - 4 module enclosure: 220-415V
- Rated insulation voltage:
 - Consumer unit: 300V
 - 2 module enclosure: 300V
 - 4 module enclosure: 660V
- Short circuit withstand: 16kA rms (based on the use of a BS 1361 Type 2 fuse of rating not exceeding 100A)
- Earthing system: Suitable for use with TN-S, TN-C-S and TT systems

Split load
Split load units are supplied with a pre-fitted switch, RCD and suitable cables.

The following versions are offered:

<table>
<thead>
<tr>
<th>Model</th>
<th>Main Incomer</th>
<th>RCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>K5682s</td>
<td>100A Switch</td>
<td>63A</td>
</tr>
<tr>
<td>K5662s</td>
<td>100A Switch</td>
<td>80A</td>
</tr>
<tr>
<td>K5632s</td>
<td>100A TD RCD</td>
<td>63A</td>
</tr>
<tr>
<td>K5666s</td>
<td>100A Switch</td>
<td>63A</td>
</tr>
<tr>
<td>K5686s</td>
<td>100A Switch</td>
<td>80A</td>
</tr>
<tr>
<td>K5636s</td>
<td>100A TD RCD</td>
<td>80A</td>
</tr>
<tr>
<td>K5681s</td>
<td>100A Switch</td>
<td>80A</td>
</tr>
<tr>
<td>K5631s</td>
<td>100A TD RCD</td>
<td>80A</td>
</tr>
<tr>
<td>K5626s</td>
<td>100A TD RCD</td>
<td>63A</td>
</tr>
<tr>
<td>K5582s</td>
<td>100A Switch</td>
<td>63A</td>
</tr>
<tr>
<td>K5566s</td>
<td>100A Switch</td>
<td>63A</td>
</tr>
<tr>
<td>K5586s</td>
<td>100A Switch</td>
<td>80A</td>
</tr>
<tr>
<td>K5581s</td>
<td>100A Switch</td>
<td>80A</td>
</tr>
<tr>
<td>K5531s</td>
<td>100A TD RCD</td>
<td>80A</td>
</tr>
</tbody>
</table>

For a full range of corresponding products, see pages 216–220 in the product selector.

Description
Sentry consumer units and enclosures are available in various surface metal, surface insulated and flush metal types, designed on a modular basis, with 2 to 21 module enclosures in the range, to accommodate the range of MK modular protection and control products. In addition, 24, 32, and 42 module surface metal and insulated dual rail consumer units can be assembled using a suitable stacking kit.

Surface insulated units provides an all insulated housing. Metal units provide a housing with facility for earthing the metal box.

The enclosures are provided with ample wiring space and cable entry points. The lids can be locked with a barrel lock & key (accessory K5593s).

Colours / finishes
All insulated and metal consumer units have a textured magnolia cover and lid. The surface metal consumer unit bases are in magnolia (powder coated paint). The flush bases are of galvanized steel. All 2 and 4 module and weatherproof enclosures are available in light grey.

Certain models are provided with a pre-assembled split load arrangement with switch and RCD. The range is complemented by a versatile selection of small, two and four module enclosures suitable for housing RCDs or other combinations of Sentry products. A 2 module enclosure K5592s is suitable for housing the one module RCBO.

All Sentry Consumer Units have neutral and earth terminal bars with 16mm² capacity for solid stranded copper cables.

For enquiries where large number of similarly designed consumer units i.e. specified. MK can provide complete pre-assembled factory built units, subject to certain conditions. For further information please contact the MK Technical Sales Services Department.

Features
- Attractive styling
- Modular design
- Suitable for most residential, commercial and light industrial applications
- Fully comply with British and European Harmonised Standards
- Available as an empty enclosure or pre-fitted with switch disconnector and RCD
- Factory built options available
Technical specification

Electrical (weatherproof enclosures only)

Maximum current rating:
- 5702s: 2 pole devices up to 100A
- 5704s: 4 pole devices up to 63A

Note:
- 5702s – Can accept up to 4 module ways with removal of moulded blanks.
- 5704s – Can accept up to 8 module ways with removal of moulded blanks.

Terminal capacity:
- 5702s: 4 x 6mm² earth and neutral
- 5704s: 2 x 6mm² and 6 x 4mm² earth and neutral

Rated operational voltage: 220-415V

Rated insulation voltage: 660V

Physical

Ambient operating temperature:
- –5°C to +40°C (not to exceed an average of more than +35°C in any 24 hour period)

IP ratings: (see also ‘Service Conditions’, below)
- Consumer unit IP2XC
- 2 module enclosure 5502s: IP3X
- 2 module enclosure 5702s: IP65
- 2 module enclosure K5592s: IP30
- 4 module enclosure 5504s: IP3X
- 4 module enclosure 5604s: IP3X
- 4 module enclosure 5704s: IP65

Max. installation altitude: 2000m

Dimensions (mm)

Note: Knockout details on following page

Flush mounted cavity dimensions, K6508s to K6521s

<table>
<thead>
<tr>
<th>Height</th>
<th>Width</th>
<th>Depth*</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 module</td>
<td>236-246</td>
<td>242-252</td>
</tr>
<tr>
<td>12 module</td>
<td>236-246</td>
<td>314-324</td>
</tr>
<tr>
<td>16 module</td>
<td>236-246</td>
<td>386-396</td>
</tr>
<tr>
<td>21 module</td>
<td>236-246</td>
<td>476-486</td>
</tr>
</tbody>
</table>

*Depth does not apply if panel-mounted

Flush metal, K6508s to K6521s

Stacked assemblies K5504s to K5586s

Dual Rail (Insulated or Metal) using stacking kits K6061s, K6062s and K6063s.

See page 216 for details.
Dimensions (mm)

Two module enclosures

<table>
<thead>
<tr>
<th>Unit</th>
<th>Top Face</th>
<th>Bottom Face</th>
<th>Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 module</td>
<td>2 x 20mm</td>
<td>3 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>8 module</td>
<td>5 x 20mm</td>
<td>5 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>12 module</td>
<td>7 x 20mm</td>
<td>7 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>16 module</td>
<td>10 x 20mm</td>
<td>10 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>21 module</td>
<td>12 x 20mm</td>
<td>12 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
</tbody>
</table>

Four module enclosures

<table>
<thead>
<tr>
<th>Unit</th>
<th>Top Face</th>
<th>Bottom Face</th>
<th>Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 module</td>
<td>2 x 20mm</td>
<td>3 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>8 module</td>
<td>5 x 20mm</td>
<td>5 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>12 module</td>
<td>7 x 20mm</td>
<td>7 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>16 module</td>
<td>10 x 20mm</td>
<td>10 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>21 module</td>
<td>12 x 20mm</td>
<td>12 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
</tbody>
</table>

IP65 enclosures

<table>
<thead>
<tr>
<th>Unit</th>
<th>Top Face</th>
<th>Bottom Face</th>
<th>Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 module</td>
<td>2 x 20mm</td>
<td>3 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>8 module</td>
<td>5 x 20mm</td>
<td>5 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>12 module</td>
<td>7 x 20mm</td>
<td>7 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>16 module</td>
<td>10 x 20mm</td>
<td>10 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
<tr>
<td>21 module</td>
<td>12 x 20mm</td>
<td>12 x 20mm</td>
<td>1 x 32mm per side</td>
</tr>
</tbody>
</table>

Knockout details for Surface and Flush-Mount Sentry Ranges

234 REF

300 REF

370 REF

460 REF
Installation

Consumer units

The Consumer units are provided with internal busbar shields or covers.

Front covers have lockable lid (using barrel lock & key accessory K5593s), which masks the front cover retaining screw. Removal of the front cover for internal access requires the use of tools.

Cover mounted blanks are provided with each Sentry Consumer unit to fill unused ways.

- 4, 8 and 12 module – 1 off x 2
- 16 and 21 module – 2 off x 2

If additional unused ways are required, the DIN rail mounted blank 5544s or cover mounted blank K5544s must be used to complete the installation.

Skeleton units

The Skeleton unit is a spine backplate assembly designed to fit the majority of Mantel / Clifton enclosures, as used in Local Authority housing.

The Skeleton unit is provided with an internal busbar shield.

Removal of the front cover for internal access requires the use of tools.

If any unused ways are required the DIN rail mounted blank 5544s must be used to complete the installation.

Two / four module enclosures

Front covers require tools to enable removal and gain internal access.

5604s has provision for tamper-proofing.

If there are any unused ways required the DIN rail mounted blank 5544s must be used to complete the installation. 5604s, 5702s, 5704s are provided with moulded blanks.

Note: Only the K5592s enclosure will accept the one module RCBOs.

Service conditions

Wiring of these products must comply with current IEE regulations.

Consumer units and two and four module enclosures are intended for indoor use in dry conditions and are not suitable for locations where high humidity and/or high temperatures may be experienced.

It is important that during installation of any Sentry enclosure, steps are taken to ensure that the IP rating is maintained, e.g. correct use of cable glands and knockouts / cutouts.

Testing

Site assembled consumer units using MK components comply fully with BS EN 60439-3 so do not require further site testing other than normal routine installation tests.

Split load and multi-incomer arrangements

Such assemblies must utilise the relevant Sentry kit in order to comply with BS EN 60439-3 and to avoid the need for additional testing.

Stacking kits

Accessory kits (stacking frame, fittings and earth cable) can be used to produce stacked dual rail units in the insulated and surface metal ranges for the 12, 16 and 21 module units.

K6061s – for 12 module units to create 24 module dual rail consumer unit.

K6062s – for 16 module units to create 32 module dual rail consumer unit.

K6063s – for 21 module units to create 42 module dual rail consumer unit.

Weatherproof enclosures

The weatherproof enclosures may be used for outdoor applications up to the level of the IP65 rating.

The cable entry position on the top and bottom of the enclosure is at the discretion of the installer and can be achieved with suitable tools. Knockouts/cutouts are provided for side entry.

Precautions must be taken to maintain the IP rating, e.g. correct use of cable glands and knockouts. The caps provided must be used to cover the mounting screws.

Note: IP65 rating only achieved with lid in the closed position. These enclosures will not accept the one module RCBOs.
Switch Disconnectors

Standards and approvals
Sentry switch disconnectors are designed to fully comply with the requirements of BS EN 60947-3.

They feature positive contact status indication in accordance with the 16th edition IEE Wiring Regulations 537-02-03 and 537-03-02. The Sentry switch disconnector may therefore be used as an isolating switch.

Technical specification

Electrical
- Category of duty: AC22A
- Load type capability: Both resistive and inductive
- Operating voltage: 240V a.c.
- Operating frequency: 50Hz

<table>
<thead>
<tr>
<th></th>
<th>S560s</th>
<th>S550s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operational current le</td>
<td>63A</td>
<td>100A</td>
</tr>
<tr>
<td>Rated duty</td>
<td>Uninterrupted</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td>Rated making capacity i</td>
<td>189A rms</td>
<td>3000 rms</td>
</tr>
<tr>
<td>Rated breaking capacity Ic</td>
<td>189A rms</td>
<td>3000 rms</td>
</tr>
<tr>
<td>Rated short time withstand current Icw</td>
<td>2kA rms for 1 sec</td>
<td>2kA rms for 1 sec</td>
</tr>
<tr>
<td>Rated short circuit making capacity Icm</td>
<td>3kA peak</td>
<td>3kA peak</td>
</tr>
<tr>
<td>Rated conditional short circuit prospective current Icm prospective</td>
<td>6kA rms</td>
<td>6kA rms</td>
</tr>
</tbody>
</table>

Physical
- Ambient operating temperature: -5°C to +40°C
- IP rating: Front face IP3X, screw IP2X
- Max installation altitude: 2000 metres

Features
- Meet BS EN and IEE Wiring Regulation requirements
- Choice of current ratings
- Tunnel design terminals for ease of wiring
- Generous cable capacity
- Lockable operating dolly
- Make first, break last on neutral

Dimensions (mm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

For a full range of corresponding products, see page 214 & 220 in the product selector.
Miniature Circuit Breakers (MCBs)

Standards and approvals
Sentry MCBs are designed to fully comply with the relevant requirements of BS EN 60898: 1991. The MCBs feature positive contact status indication in accordance with 16th edition IEE Wiring regulations (537-02-03 and 537-03-02).

Technical specification

Electrical
- Voltage rating: 230V/400V a.c.
- Operating frequency: 50Hz
- Rated short circuit capacity Icn: 6000A
- Service short circuit capacity Ics: 6000A
- When backed up by a BS 1361, 100A fuse, then the breaking capacity of the MCB is increased to 16,000A.
- Energy limiting class: B

Physical
- Ambient operating temperature: −5°C to +40°C
- Calibration temperature: +30°C
- IP rating: Front face IP4X, screw IP2X
- Terminal capacity: 35mm²
- Tightening torque: 3Nm
- Max. installation altitude: 2000 metres

Description

Sentry MCBs are of the thermo-magnetic, current limiting type and are available with either Type B or Type C operating characteristics.

The operating dolly may be locked in either the ON or OFF position without affecting the ability of the trip mechanism to operate. The contacts themselves are manufactured from carefully chosen materials, selected specifically for their low electrical resistance and low propensity to weld under fault conditions.

Positive contact status indication

When the green indicator is visible, then a contact gap of 4mm has been achieved. Sentry MCBs may therefore be used as single pole isolating switches where appropriate.

Terminals

The Sentry MCB features tunnel terminals of 35mm² capacity on all ratings. The terminal screws are touch proof to IP2X, captive and feature combination heads.

Retrofit kit 5567s

The Sentry MCB/RCBO retrofit kit is designed for use when installing MCBs/RCBOs into old Sentry Consumer Units with fork style busbar (non ‘s’ suffix or ‘K’ prefix). The kit contains a busbar extension terminal (5562s), a 100A rated cable and a 25mm² capacity spade connector terminal with clamp screw. It may be used to fit up to 3 Sentry MCBs/RCBOs. If more need to be installed, then use the 5511s busbar with kit.

Modes of operation

The mechanism of the Sentry MCB has been carefully designed and engineered using thermal and magnetic elements to detect overcurrents due to both overload and fault currents. The MCB will operate and interrupt the supply to prevent damage to the installation.

The thermal component is a carefully calibrated, thermally operated bi-metal element.

Larger overloads and fault current situations are dealt with using the magnetic tripping mode of the MCB. This acts very quickly, overriding the thermal operation.

BS EN 60898 requires the tripping to occur within 100 milliseconds and the design of the Sentry MCB allows fault currents of up to 6000A (M6) to be safely interrupted well within this time scale.

For a full range of corresponding products, see page 214 & 220–221 in the product selector.
Miniature Circuit Breakers (MCBs)

Description (continued)

Operating characteristics

TYPE B
The magnetic operating limits are between 3 and 5 times the current rating of the MCB. Under these conditions the mechanism of a 10A MCB will operate between 30A and 50A in an overcurrent situation.

TYPE C
In the case of Type C MCBs, the magnetic operating limits are between 5 and 10 times the current rating of the MCB. Under these conditions the mechanism of a 10A MCB will operate between 50A and 100A in an overcurrent situation.

Type C devices are capable of supplying the majority of inductive and capacitive loads such as motors, transformers and tungsten or fluorescent lighting.

Time/Current and Energy let through characteristics of Sentry MCBs are shown graphically on the Time current characteristics chart (See separate document).

TYPE D
The Type D MCB is suitable for applications involving equipment generating very high inrush currents, e.g. x-ray equipment, transmitters and computer power supplies. The magnetic operating limits are between 10 and 20 times the current rating of the MCB. (For Modular Combi use only)

Installation

Selection of the most suitable MCB should take into account the following considerations:

1. **Operating voltage and frequencies**
 It is possible to use the Sentry MCB on other voltages than 230/400V a.c. 50Hz, but it should be noted that this takes the MCB outside the scope of BS EN 60898.

2. **Type of load**

 RESISTIVE
 No derating is required in the case of resistive loads.

 INDUCTIVE
 In the case of inductive loads from direct-on-line motors, the surge on energisation can produce up to 5 times full load current, which may be present for several seconds. It is therefore recommended that Type C MCBs are used for such circuits.

 When using assisted start motors, the usually quoted figures are 2.5 times the full load current, for periods generally longer than those for direct-on-line starters. It is thus important to establish the degree of inrush current in order to select a suitable MCB. In all instances, reference should be made to both the motor manufacturer's curves and MK's circuit breaker curves in order to select the compatible miniature circuit breaker.

 CAPACITIVE
 Surges on energisation, for example with discharge lighting, may well reach 25 times the rated current of the device, but only for very short duration. Type B devices will often be adequate, but for more specialised circuits, a Type C may be required. The lighting fitting manufacturer's recommendations should be observed.
Miniature Circuit Breakers (MCBs)

3. Fault breaking capacity
All Sentry MCBs have a short circuit breaking capacity of 6,000A (M6).

For applications where the prospective fault current is in excess of this, a BS 1361, 100A (maximum) fuse should be used upstream of the MCB to provide a system breaking capacity of 16,000A (in accordance with BS EN 60439-3).

4. Discrimination
A Sentry MCB consumer unit will normally be supplied via an HRC fuse. The HRC in such instances will be the major device and remain unaffected by any fault current which causes the MCB to operate.

The level of fault current up to which this can be assured is determined by comparing the I^2t characteristics of the two devices. Discrimination will theoretically occur up to the level at which the value of the total operating I^2t of the MCB is below the minimum pre-arcing I^2t of the fuse, although in practice, discrimination will be achieved at higher levels than this.

5. Cable protection
The current carrying capacity of the cable should always exceed the current rating of the MCB to prevent damage.

However, should this not be the case, a further calculation may show that the MCB can still interrupt the current in a sufficiently short time to prevent overheating of the cable insulation. Although this will prevent mechanical damage to the cables, further overload protection should be provided by a separate device, e.g. a motor overload relay.

In case of doubt please contact the MK Technical Sales and Service Department.

Dimensions (mm)
Miniature Circuit Breaker Time Current Characteristics

Sentry miniature circuit breaker
Type: B and C to BS EN 60898 Ref. calib. temp 30°C
(Type D shown for reference only)

Reference values for time current operating characteristics, BS EN 60898

<table>
<thead>
<tr>
<th>Steady Current Value Int</th>
<th>Steady Current Value Int</th>
<th>3 In</th>
<th>5 In</th>
<th>7 In</th>
<th>10 In</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,13 In : t > 1h</td>
<td>1,45 In : t < 1h</td>
<td>0,1 < t < 45s (ln ≤ 32A)</td>
<td>0,1 < t < 90s (ln > 32A)</td>
<td>0,1 < t < 15s (ln ≤ 32A)</td>
<td>0,1 < t < 30s (ln > 32A)</td>
</tr>
</tbody>
</table>
I^2t curves

B Curve

- $\leq 63A$
- $\leq 40A$
- $\leq 32A$
- $\leq 16A$
- $\leq 6A$

C Curve

- $\leq 63A$
- $\leq 40A$
- $\leq 32A$
- $\leq 16A$
- $\leq 6A$
Residual Current Breakers with Overcurrent Protection (RCBOs)

Standards and approvals

All Sentry RCBOs are designed to fully comply with the relevant requirements of BS EN 61009-1, BS IEC 61009-2-2, BS 61543 for EMC.

The RCBOs feature positive contact status indication in accordance with 16th edition IEE Wiring Regulations (537-02-03 and 537-03-02).

Technical specification

Electrical
- Operating voltage: 230V a.c.
- Operating frequency: 50Hz
- Rated Short circuit capacity Icn: 6,000A
- Service short circuit capacity Ics: 6,000A
- When backed up by a BS 1361, 100A fuse, then the breaking capacity of the RCBO is increased to 16,000A.
- Type A (a.c. as well as pulsating d.c.)

Physical
- Ambient operating temperature: -25°C to +40°C
- IP rating: Front face IP4X, screw IP2X
- Terminal capacity: Line in 25mm², Line and neutral out 16mm²
- Tightening torque: Load line and neutral 1.5Nm, Supply 2.5Nm
- Max. installation altitude: 2000 metres

Description

The Sentry range features solid neutral type single pole RCBOs in one module format.

The one module Sentry RCBOs are a combination of a Type B MCB and a Residual Current Device. This enables both overcurrent protection and earth fault current protection to be provided by a single unit.

This combination allows earth fault protection to be restricted to a single circuit, thus ensuring that only the circuit with the fault is interrupted. (When groups of circuits are protected by an RCD, all circuits would be interrupted under fault conditions, which may cause unnecessary inconvenience).

The operating dolly on all Sentry RCBOs may be locked in either the ON or OFF position without affecting the ability of the trip mechanism to operate.

The Sentry RCBO features tunnel terminals of generous capacity, with 25mm² for live supply and 10mm² for live and neutral load terminals. The neutral supply (blue) and earth supply (white/cream) are provided via flying leads.

Mode of operation

As the RCBO is a combination of an MCB and RCD, reference should be made to the relevant technical information regarding these devices.

Features

- Single module
- Meet BS EN and IEE Wiring Regulation requirements
- Allows both overcurrent and earth fault protection and detection
- Available in a range of current ratings
- Tunnel type terminals
- Generous terminal capacity
- Positive contact status indication
Residual Current Breakers with Overcurrent Protection (RCBOs)

Rating Specification

<table>
<thead>
<tr>
<th>Rating RCBO</th>
<th>Tripping Current</th>
<th>List No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A, 230V</td>
<td>30mA</td>
<td>6932s</td>
</tr>
<tr>
<td>10A, 230V</td>
<td>30mA</td>
<td>6933s</td>
</tr>
<tr>
<td>16A, 230V</td>
<td>30mA</td>
<td>6934s</td>
</tr>
<tr>
<td>20A, 230V</td>
<td>30mA</td>
<td>6935s</td>
</tr>
<tr>
<td>32A, 230V</td>
<td>30mA</td>
<td>6936s</td>
</tr>
<tr>
<td>40A, 230V</td>
<td>30mA</td>
<td>6937s</td>
</tr>
<tr>
<td>45A, 230V</td>
<td>30mA</td>
<td>6938s</td>
</tr>
<tr>
<td>50A, 230V</td>
<td>30mA</td>
<td>6939s*</td>
</tr>
</tbody>
</table>

* Available early 2004

Dimensions (mm)

- Height: 112 mm
- Width: 68 mm
- Depth: 51 mm

Installation

The Sentry RCBOs may be installed anywhere along the length of the busbar and will occupy one outgoing way.

Selection of the most suitable RCBO should take into account the following considerations:

1. **Operating voltage and frequencies**
2. **Fault breaking capacity**
3. **Cable protection**

For applications where the prospective fault current is in excess of this, a BS 1361, 100A (maximum) fuse should be used upstream of the RCBO to provide a system breaking capacity of 16,000A.

The current carrying capacity of the cable should always exceed the current rating of the RCBO, to prevent damage. However, should this not be the case, a further calculation may show that the RCBO can still interrupt the current in a sufficiently short time to prevent overheating of the cable insulation. Although this will prevent mechanical damage to the cables, further overload protection should be provided by a separate device, e.g. a motor overload relay.

In case of doubt please contact the Technical Sales and Service Department.
Residual Current Devices (RCDs)

Standards and approvals
All Sentry RCDs are designed to fully comply with the requirements of BS EN 61008:1995, IEC 1008:1990. They all feature positive contact status indication in accordance with 16th edition IEE Wiring Regulations (537-02-03 and 537-03-02).

Technical specification

Electrical
- Rated making and breaking capacity (Im):
 - 16 - 40A = 500A
 - 63 - 80A = 800A
 - 100A = 1000A
- Rated short-circuit current (I(nC)):
 - 16 - 80A = 10,000A (100A fuse)
 - 100A = 6,000A (125A fuse)
- Rated residual short-circuit current (I(∆m)):
 - 16 - 80A = 10,000A
 - 100A = 6,000A
- Rated voltages:
 - 2 pole devices, 110V and 230V
 - 4 pole devices, 230V to 440V
- Operating voltages:
 - 2 pole devices, 110V - 100V to 250V
 - 230V - 100V to 250V
 - 4 pole devices, 185V - 440V
- Tripping Time:
 - 1 x I(∆n) ≤ 300ms
 - 5 x I(∆n) ≤ 40ms
 - Time delay version:
 - 1 x I(∆n) ≤ 350 - 500ms

Physical
- Ambient operating temperature:
 - -25°C to +40°C
- IP rating:
 - Front face after installation of enclosure IP40
- Terminal capacity:
 - Solid standard - 1 x 1.5 - 50mm²
 - Flexible with female - 1 x 1.5 - 35mm²
- Tightening torque:
 - 3Nm
- Max. installation altitude:
 - 2000 metres

Features
- Meet BS EN and IEE Wiring Regulation requirements
- Extensive range to suit all specifications
- Protect against unwanted tripping
- Positive contact status indication
- Suitable for most residential, commercial and light industrial applications
- Offer a high degree of protection against electrocution in accidental shock hazard situations
- Two module, double pole units available up to 100A
- Indication of earth fault, via central dolly position

For a full range of corresponding products, see pages 214–215 & 222–224 in the product selector.
Residual Current Devices (RCDs)

Installation

Sentry RCDs must never be used as the sole method of direct contact protection, but are invaluable in providing supplementary protection in high risk environments where damage may occur.

Application

The choice of the most suitable RCD for a particular application should take into account the following considerations:

1. Sensitivity

10mA RCDs offer a high degree of protection against electrocution in an accidental shock hazard situation. They are of particular value in a high risk area where resistances external to the body are likely to restrict the earth fault current flowing through the body to less than 30mA and where 110V supply is being used.

30mA RCDs offer a high degree of protection in an accidental shock hazard situation and are by far the most popular sensitivity used in the United Kingdom. In a shock situation, the current flowing through the human body at 240V 50Hz could be between 80 and 240mA, depending on the resistance of the body in question. To ensure that there are no harmful physiological effects in such a situation, it is necessary for the RCD to operate within 300mS at 30mA and 40mS at 150mA. As the Sentry RCD typically operates well below these times, it clearly more than satisfies this requirement.

100mA RCDs may, in some circumstances, provide protection against electrocution in an accidental shock hazard situation. However, it is important to note that there is a likelihood that the earth fault current may be below the sensitivity of the RCD. This becomes increasingly likely if additional resistances to that of the human body are in the current path.

300mA RCDs provide protection against the risk of fire only. They do not provide protection against electrocution in an accidental shock hazard situation. A typical application would be lighting circuits where it is deemed that the risk of electric shock is small.

It is important to note that a current of less than 500mA flowing in a high resistance path is sufficient to bring metallic parts to incandescence and, potentially, initiate a fire.

2. Requirements of the IEE Wiring Regulations BS 7671

RCDs may be used to provide additional protection against both Indirect and Direct Contact.

Indirect Contact

Defined as the “contact of persons or livestock with exposed conductive parts made live by a fault and which may result in electric shock”.

Effective earthing in conjunction with automatic disconnection should always be employed to protect against the effects of indirect contact. The provision of a low resistance path back to the supply from the fault should ensure that the overcurrent device operates before damage occurs. This is the earth fault loop impedance.

In circumstances where the earth fault loop impedance in the circuit is too high to ensure operation of the overcurrent device, then the IEE Wiring Regulations allow the installation of an RCD. To comply with the Regulations, the earth loop impedance of the circuit (in ohms), multiplied by the rated tripping current of the RCD (in amperes) must not produce a value greater than 50. With this in mind, the maximum values of earth loop impedance permissible when installing an MK Sentry RCD are as follows:

\[
Z_e (\text{max}) = \frac{50}{I_{\text{n}}} = \frac{50}{0.03} = 1666 \text{ ohms}
\]

<table>
<thead>
<tr>
<th>Rated Tripping Current of RCD</th>
<th>Maximum Permissible Earth Fault Loop Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mA</td>
<td>5000 ohms</td>
</tr>
<tr>
<td>30mA</td>
<td>1666 ohms</td>
</tr>
<tr>
<td>100mA</td>
<td>500 ohms</td>
</tr>
<tr>
<td>300mA</td>
<td>166 ohms</td>
</tr>
</tbody>
</table>

(Regulations 413-02-15 and 16 apply). RCDs are further specified for protection against indirect contact on TT systems. (Regulations 413-02-19 and 20 apply.)
Residual Current Devices (RCDs)

Application (continued)

Direct Contact
Defined as "contact of persons or livestock with live parts which may result in electric shock".

The Regulations recognise four main means of providing protection against direct contact which include enclosures and the use of extra low voltage systems.

However, the use of RCDs is specified by the Regulations in the following instances:

- A socket outlet rated at 32A or less which may reasonably be expected to supply portable equipment for use outdoors shall be protected by an RCD having the characteristics specified in Regulation 412-06-02. (Regulation 471-16-01 applies.)
- Where socket outlets are used to supply caravans on caravan sites, then they must be protected by an RCD having the characteristics specified in Regulation 412-06-02.

Regulation 412-06-02 stipulates among other things that where supplementary protection is provided by residual current devices, their rated residual operating current must not exceed 30mA and that they must trip within 40ms at 5 times rated operating current.

Although RCDs must never be used as the sole method of direct contact protection, they are invaluable in providing supplementary protection in high risk environments where damage may occur. Typical applications include situations where equipment may be used outside or fed by trailing sockets, equipment accessible to children or equipment used in wet areas. For these reasons RCDs are commonly found in schools, hospitals and residential installations.

3. Types of fault current

In an installation different types of fault current can occur. MK offer RCDs to suit these conditions.

Sentry Type AC RCDs are suitable for situations where there are residual sinusoidal alternating currents, whether applied suddenly or rising slowly. This is the most commonly used type of RCD in the UK.

Sentry Type A RCDs (i.e. pulsating d.c. fault current sensitive) are suitable for situations where there are residual sinusoidal alternating currents, whether suddenly applied or slowly rising. These situations can occur with the use of semiconductor devices in modern electrical and electronic equipment, such as computers, printers, plotters, televisions, video cassette recorders and hi-fi equipment, is growing.

Such devices may result in the normal sinusoidal a.c. waveform generated by the mains electrical supply being 'modified'. for example, the waveform may be rectified or, as in asymmetric phase control devices, the waveform may be chopped. The resulting waveforms are said to contain a pulsating d.c. component as illustrated below.

Normal a.c. waveform

Pulsating d.c. waveform
- Half wave rectified
- Typical asymmetrical phase control
Residual Current Devices (RCDs)

Application (continued)

Pulsating d.c. fault current sensitive RCDs

Should a waveform containing a pulsating d.c. component develop an earth fault, then it is possible that it may not be detected by an "a.c. only" sensitive RCD. For this reason, the Sentry range contains RCDs designed to be sensitive to pulsating d.c. fault currents thus maintaining the intended degree of protection.

Type B RCDs are suitable for situations where there are residual sinusoidal alternating currents, residual pulsating direct currents and smooth d.c. and a.c. residual current of various frequencies, which would not trip Type AC or A RCDs.

These situations can occur in 50Hz a.c. installations with electronic equipment, e.g. frequency converters, UPS installations, power supply unit or high-frequency power converters.

The following symbols are used on the front plate of the device to indicate the type of RCD.

- type AC RCD.
- type A RCD.
- type B RCD.

4. Temperature

All Sentry RCDs are suitable for use in the temperature range –25°C to +40°C. This is indicated on the RCD by the symbol .

5. Time Delayed RCDs Type S (or selective)

When two or more Sentry RCDs are installed in series with one another, measures must be taken to ensure that they discriminate properly. In event of an earth fault, only the RCD immediately upstream from the fault should operate.

RCDs do not discriminate on rated tripping current alone, i.e. a 100mA rated RCD situated upstream from a 30mA rated RCD, will not offer inherent discrimination.

In order to ensure that discrimination is achieved, a Sentry Time Delayed RCD should be used. The in-built time delay period ensures that the downstream RCD opens the circuit before the upstream RCD starts to operate.

The maximum tripping time of a Sentry Time Delayed RCD is 500ms. Typical applications are:

i) as main incomers on TT systems where all sockets are already protected by a 30mA instantaneous RCD, but where unwanted tripping may become a problem.

ii) as the main incomer of split load consumer unit arrangement where all circuits are protected by a 10 or 30mA instantaneous RCD or otherwise comply with the direct and indirect contact protection requirements of the Wiring Regulations.

The Sentry Time Delay RCDs are clearly identified with the internationally agreed representative symbol .

6. 3 phase, 3 wire systems

Sentry 4 pole RCDs may be used to provide earth fault protection on 3 phase, 3 wire systems, as the current balance mechanism does not require a neutral to be connected in order to operate effectively.
Residual Current Devices (RCDs)

Operation

The RCD provides an indication of an earth fault and contact status as detailed below.

The operating dolly provides the following indication:

- I = Switched ON
- + = Switched OFF due to Earth Fault or test button operation
- 0 = Switched OFF

The contact status is shown through the window.

- Red = contact closed
- Green = contact open (RCD is switched off)

In the event of an Earth Fault in the installation or the operation of the test button, the dolly will move to the central position (+) and the contact status indicator shows green. To re-connect the supply the dolly must be reset by moving to the off position before switching on.

Testing

If an RCD is installed for additional protection against indirect contact, it is a requirement of the IEE Regulations that the effectiveness of the RCD be verified. This must be achieved by a test simulating an appropriate fault condition and be independent of any test facility incorporated in the RCD. The test currents to be applied are as follows:

<table>
<thead>
<tr>
<th>Test current</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 x IΔn</td>
<td>RCD must not trip</td>
</tr>
<tr>
<td>1.0 x IΔn</td>
<td>RCD must trip within 300mS</td>
</tr>
<tr>
<td>5.0 x IΔn</td>
<td>RCD must trip within 40mS</td>
</tr>
</tbody>
</table>

Where IΔn is the RCD's rated tripping current in accordance with wiring regulations and product standard BS EN 61008.

For time delay RCD 1.0 x IΔn RCD must trip between 350-500mS.
Residual Current Devices (RCDs)

Dimensions (mm)

- TD272
- 35.6 mm
- 69 Max mm
- 85 mm
- 72 mm
- 60 mm
- 45 mm
- 6 mm
- 44 mm
- 16 mm
Contactors

Standards and approvals
All Sentry contactors in the range are designed to fully comply with BS EN 61095

<table>
<thead>
<tr>
<th>Type</th>
<th>Width</th>
<th>List No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A, double pole</td>
<td>1 module</td>
<td>6220s</td>
</tr>
<tr>
<td>20A, double pole, with manual override</td>
<td>1 module</td>
<td>6720s</td>
</tr>
<tr>
<td>20A, four pole</td>
<td>2 module</td>
<td>6420s</td>
</tr>
<tr>
<td>40A, double pole</td>
<td>2 module</td>
<td>7240s</td>
</tr>
<tr>
<td>63A, double pole</td>
<td>2 module</td>
<td>7263s</td>
</tr>
<tr>
<td>40A, four pole</td>
<td>3 module</td>
<td>7440s</td>
</tr>
<tr>
<td>63A, four pole</td>
<td>3 module</td>
<td>7463s</td>
</tr>
<tr>
<td>Auxiliary Contact</td>
<td>1 module (including 1⁄2 module blank)</td>
<td>7301s</td>
</tr>
<tr>
<td>Suppression block</td>
<td>1 module</td>
<td>7302s</td>
</tr>
</tbody>
</table>

Description
Sentry contactors provide a method of remotely switching single and three phase loads. In this regard, they are particularly useful for switching heating, lighting and ventilation circuits, in particular when used in conjunction with REC supply off-peak tariffs.

The Auxiliary Contact is suitable for fitting to all Sentry Contactors and allows remote indication of contactor status, one normally open and one normally closed contact is provided. The Auxiliary Contact is a half module width, a half module blank is supplied to complete installation.

The suppression block is suitable where contractor controls are not bounce free and connects across the coil terminals. It can be used in conjunction with one or two contactors.

They are suitable for mounting on a standard DIN rail and are therefore fully compatible with all Sentry Consumer Units and small enclosures. (5504s, 5604s, 5704s, 5702s.)

Functions

CONTROL
Achieved by energising and de-energising the contactor coil, via an MK Time Switch or REC meter during ‘off peak’ hours as set by supply authorities. A coil status indicator is visible through the small window on the front of the contactor.

MANUAL OVERRIDE (6720s only)
An extra function is offered by the Sentry Contactor with manual override. This performs in the same way, but has a switch on the front face to give the following extra facilities:

1. AUTO START MODE
This gives the same performance as above.

2. ‘STOP’ (0)
In this position the user is able to switch the load off when required, eg during periods of absence. The load remains off until manually reset.

3. MANUAL START MODE (1)
A manual override which allows the load to be energised outside the normal timed period when required. When the contactor is used via an MK Time Switch or by an REC supply meter, the override switch can either be reset manually or allowed to return to the ‘auto’ position at the commencement of the next timed period. During the ‘manual’ period, electricity will be used at the standard rate.

4. ‘PERMANENTLY ON’ MODE
The manual override switch features a locking mechanism which allows the contactor to be fixed in a ‘permanently on’ state. Note: this will not now reset at the commencement of the next timed period.

Standards and approvals
All Sentry contactors in the range are designed to fully comply with BS EN 61095

<table>
<thead>
<tr>
<th>Type</th>
<th>Width</th>
<th>List No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A, double pole</td>
<td>1 module</td>
<td>6220s</td>
</tr>
<tr>
<td>20A, double pole, with manual override</td>
<td>1 module</td>
<td>6720s</td>
</tr>
<tr>
<td>20A, four pole</td>
<td>2 module</td>
<td>6420s</td>
</tr>
<tr>
<td>40A, double pole</td>
<td>2 module</td>
<td>7240s</td>
</tr>
<tr>
<td>63A, double pole</td>
<td>2 module</td>
<td>7263s</td>
</tr>
<tr>
<td>40A, four pole</td>
<td>3 module</td>
<td>7440s</td>
</tr>
<tr>
<td>63A, four pole</td>
<td>3 module</td>
<td>7463s</td>
</tr>
<tr>
<td>Auxiliary Contact</td>
<td>1 module (including 1⁄2 module blank)</td>
<td>7301s</td>
</tr>
<tr>
<td>Suppression block</td>
<td>1 module</td>
<td>7302s</td>
</tr>
</tbody>
</table>

For a full range of corresponding products, see page 225 in the product selector.
Contactors

Features
- Compatible with all Sentry Consumer Units (single phase only) and the following Sentry enclosures: 5504s, 5604s, 5704s, 5702s (for single and three phase).
- Suitable for heating, lighting and ventilation circuits.
- Choice of functions.
- Ideal for use with REC supply off-peak tariffs.

Installation

a) When a contactor is mounted alongside an MCB of greater than 10 amp current rating, or two contactors are mounted alongside an MCB of any current rating, it is advisable to insert a module blank between them. (List No. 5544s.)

b) When mounting more than two contactors side by side, it is necessary to insert a module blank between every two contactors, to give ventilation.

c) When using dual rail consumer units, it is advisable to mount electronic products on the lower rail and contactors on the upper rail. If mounting in a single rail consumer unit, it is advisable to mount electronic products as far away as possible from contactors. As a minimum they should be spaced by a single module width blank.

d) Ensure the load to be controlled is protected against short circuit and overload conditions by a suitable rated Sentry MCB.

e) Contactors and Suppression Module are mounted into Sentry Consumer Units and enclosures, by clipping onto the DIN rail mounted in the base by means of the spring clip. If the contactor is required to be removed for any reason, unclip the contactor from the DIN rail by means of the spring clip on the contactor.

f) When using a single Auxiliary Contact, the half module blank supplied must be fitted to the DIN rail, to provide protection against access to the internal parts.

g) The suppression module can be used in conjunction with one or two contactors and should be fitted, in parallel with the contactor controls, when they are not bounce free. The module is suitable for 220/240A operation.

Technical specification

<table>
<thead>
<tr>
<th>List No.</th>
<th>6220s</th>
<th>6420s</th>
<th>6720s</th>
<th>7240s</th>
<th>7263s</th>
<th>7440s</th>
<th>7463s</th>
<th>7301s</th>
<th>7302s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Contactor</td>
<td>Contactor</td>
<td>Auxiliary Contact</td>
<td>Suppression Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contactor rating (A)</td>
<td>20A</td>
<td>20A</td>
<td>20A</td>
<td>40A</td>
<td>63A</td>
<td>40A</td>
<td>63A</td>
<td>5A</td>
<td>n/a</td>
</tr>
<tr>
<td>Includes manual override?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>No. of poles (normally open only)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Width in 18mm modules</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1 (inc 1 mod blank)</td>
</tr>
<tr>
<td>Rated Voltage (V)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Insulation (Ul)</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>415</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Max. operating (Ue)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Average consumption of control circuit coil (VA)</td>
<td>15</td>
<td>34</td>
<td>15</td>
<td>34</td>
<td>15</td>
<td>34</td>
<td>15</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>– inrush</td>
<td>3.8</td>
<td>4.6</td>
<td>3.8</td>
<td>4.6</td>
<td>3.8</td>
<td>4.6</td>
<td>3.8</td>
<td>4.6</td>
<td>3.8</td>
</tr>
<tr>
<td>– closed</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Terminal cable capacity (max.) Controls</td>
<td>2 x 2.5mm² flexible</td>
<td>2 x 1.5mm² rigid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5mm² flexible rigid</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2 x 2.5mm² flexible</td>
<td>2 x 6mm² rigid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 x 2.5mm² flexible</td>
<td>2 x 2.5mm² rigid</td>
</tr>
<tr>
<td>Power</td>
<td>2 x 2.5mm² flexible</td>
<td>2 x 6mm² rigid</td>
<td>2 x 4mm² flexible</td>
<td>2 x 4mm² rigid</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque for terminals</td>
<td>1.4Nm</td>
<td>3.5Nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4Nm</td>
<td></td>
</tr>
</tbody>
</table>
Contactors

Terminal Layout

i) Contactor

a) The coil connections to control energisation should be made between terminals A1 and A2.

b) One normally open main contact is between terminals 1 and 2.

c) A second normally open main contact is between terminals 3 and 4.

d) In the case of four pole contactors, the other main contacts are between terminals 5 and 6, and 7 and 8 respectively.

Typical schematic layouts of modular contactors.

With Manual Override

Without Manual Override

ii) Suppression module

The suppression module should be connected with suitable cable (1.5mm²) across the coil terminals A1 and A2 or A11 and A21.

iii) Auxiliary contact

Connection of cables should be made between terminals of auxiliary contact.

a) Normally closed contact between terminals 21 and 22.

b) Normally open contact between terminals 13 and 14.
Applications and Maximum Ratings

LIGHTING – Maximum number of lamps

Presentation of installations according to type of supply.

The maximum number of lamps which can be operated per phase is equal to the total number of lamps in the “Single-Phase 230V” table.

SINGLE-PHASE 230V TABLE

<table>
<thead>
<tr>
<th>Type of lighting application (AC5a and AC5b categories)</th>
<th>6220s/6420s/6720s Maximum No. of lamps</th>
<th>7240s/7440s Maximum No. of lamps</th>
<th>7263s/7463s Maximum No. of lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent and halogen lamps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 W</td>
<td>57</td>
<td>115</td>
<td>172</td>
</tr>
<tr>
<td>60 W</td>
<td>45</td>
<td>85</td>
<td>125</td>
</tr>
<tr>
<td>100W</td>
<td>28</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Halogen lamps used with transformer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 W</td>
<td>14</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>80 W</td>
<td>12</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>Fluorescent lamp with starter (single fitting with parallel correction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 W</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>20 W</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>40 W</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Fluorescent lamp with starter (single fitting non-corrected)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 W</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>20 W</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>40 W</td>
<td>28</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Electronic ballast (fluorescent lamp single setting)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 W</td>
<td>111</td>
<td>222</td>
<td>333</td>
</tr>
<tr>
<td>36 W</td>
<td>58</td>
<td>117</td>
<td>176</td>
</tr>
<tr>
<td>Electronic compact lamp (low consumption)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 W</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>11 W</td>
<td>120</td>
<td>240</td>
<td>360</td>
</tr>
<tr>
<td>15 W</td>
<td>88</td>
<td>176</td>
<td>264</td>
</tr>
<tr>
<td>20 W</td>
<td>66</td>
<td>132</td>
<td>200</td>
</tr>
<tr>
<td>MOTORS – Maximum Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of small motor application (AC1 – AC7a categories)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220/240V single phase with capacitor 400V three phase motor</td>
<td>1.1kW</td>
<td>2.2kW</td>
<td>4kW</td>
</tr>
<tr>
<td>4kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING – Maximum Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of small heating application (AC7b category)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of operating cycles</td>
<td>230V Single Ph 3 Ph</td>
<td>230V Single Ph 3 Ph</td>
<td>230V Single Ph 3 Ph</td>
</tr>
<tr>
<td>100,000</td>
<td>5.4kW</td>
<td>8.6kW</td>
<td>13.6kW</td>
</tr>
<tr>
<td>150,000</td>
<td>4.6kW</td>
<td>7.4kW</td>
<td>11.6kW</td>
</tr>
<tr>
<td>200,000</td>
<td>3.5kW</td>
<td>5.6kW</td>
<td>8.8kW</td>
</tr>
<tr>
<td>500,000</td>
<td>1.6kW</td>
<td>2.6kW</td>
<td>4kW</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1.2kW</td>
<td>1.9kW</td>
<td>3kW</td>
</tr>
<tr>
<td>ELECTRICAL ENDURANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC1 and AC7a categories</td>
<td>250,000 operations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contactors

Dimensions (mm)

For a full range of corresponding products, see page 226 in the product selector.
Bell Transformer

Standards and approvals
The Sentry Bell Transformer is designed to comply fully with the requirements of EN 60558-2-8.

<table>
<thead>
<tr>
<th>Technical specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>Primary voltage:</td>
</tr>
<tr>
<td>Secondary voltage:</td>
</tr>
<tr>
<td>Rated output current:</td>
</tr>
<tr>
<td>Physical</td>
</tr>
<tr>
<td>Width:</td>
</tr>
<tr>
<td>Terminal capacity:</td>
</tr>
<tr>
<td>Ambient operating temp:</td>
</tr>
<tr>
<td>IP rating:</td>
</tr>
<tr>
<td>Max installation altitude:</td>
</tr>
</tbody>
</table>

Description
The Bell Transformer is of the safety isolating, fail safe type. The construction is all insulated, Class II. It may be mounted within a Sentry Consumer Unit within 2 or 4 module enclosures alongside MCBs, RCDs and RCBOs or surface mounted.

Installation
The Sentry Bell Transformer should always be connected in series with an MCB or other type of protective device of rating not exceeding 6A.

When installed in a 230V environment, i.e. inside a consumer unit, the cables used to connect the bell or chime to the transformer must have a 230V rated voltage. If bell wire is used, suitable sleeving must be provided to increase its insulation rating to 230V.

Dimensions (mm)
Electromechanical & Digital Timeswitches & Time Delay Switch

Description

Sentry electromechanical and digital timeswitches enable pre-programmed commands to be executed on a given circuit. The Sentry time delay switches can be installed on circuits to energise suitable equipment for between 1 to 7 minutes.

Note: Inductive loads, particularly fluorescent lamps or energy saving lamps, place a heavy stress on the switching contacts. If in doubt about the ability of the timeswitches to directly switch a particular load it is advisable to install the timeswitch in conjunction with a suitable relay or contactor. If in doubt please consult the Technical Sales and Service Department for assistance.

Electromechanical

All Sentry electromechanical timeswitches are suitable for DIN rail mounting in Sentry Consumer Units and appropriate Sentry enclosures.

Quartz controlled units (5807s, 5824s) contain a power reserve of 150 hrs for accurate time keeping in the event of a mains failure.

3 module timeswitches have an additional insulated ‘parking’ terminal for earth or other connections.

24 hr units have a minimum switching time of 30 mins and 7 day units 3 hrs.

Digital

All Sentry digital timeswitches are suitable for DIN rail mounting in Sentry Consumer Units and 2 and 4 module Sentry enclosures.

Sentry digital timeswitches are available in both 1 and 2 module widths.

The 1 channel 1 module digital timeswitch (5733s) provides 42 programming selections, with random and holiday options. A simple summer to winter time (and vice versa) adjustment facility is provided. The timeswitch contains a power reserve of 150 hrs for accurate time keeping in the event of mains failure.

The two module digital timeswitches are available in both one channel (5731s) and 2 channel (5732s) versions. The units are supplied pre-programmed to UK time, and will automatically change from winter to summer time. The integral battery (with a 3 year power reserve) maintains the settings until the mains supply is connected. This feature will allow programming of switching commands prior to installation, if required.

The 1 channel 2 module digital timeswitch (5731s) provides for 20 programming selections.

The 2 channel 2 module digital timeswitch (5732s) provides a facility for independent control of two circuits. A maximum of 30 switching commands can be programmed for each channel.

All digital timeswitches have a minimum programming time of 1 minute and a manual override. Commands can be programmed for individual days or for groups of days.

Time delay

The Sentry time delay switch (5650s) is suitable for mounting in Sentry Consumer units and 2 and 4 module Sentry enclosures. The unit offers time delay control of complete circuits within the range of 1 to 7 minutes in increments of 15 seconds.

Note: The time delay switch is not applicable for control of low energy lamps.

Override of the time delay function is only possible by the use of the switch provided on the device and should not be achieved by remote ‘switches’.

The use of PIR is not a recommended method of activating the time delay switch.

The time delay switch may be used to switch on an extractor fan if the fan does not have an over-run facility.
Technical Specification

Electromechanical

<table>
<thead>
<tr>
<th>Model</th>
<th>5707s</th>
<th>5724s</th>
<th>5833s</th>
<th>5807s</th>
<th>5824s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>220-240V a.c. 50Hz</td>
<td>220-240V a.c. 50Hz</td>
<td>220-240V a.c. 50Hz</td>
<td>220-240V a.c. 50-60Hz</td>
<td>220-240V a.c. 50-60Hz</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>1VA</td>
<td>1VA</td>
<td>1VA</td>
<td>1VA</td>
<td>1VA</td>
</tr>
<tr>
<td>Switching capacity per channel</td>
<td>16A</td>
<td>16A</td>
<td>16A</td>
<td>16A</td>
<td>16A</td>
</tr>
<tr>
<td>– Resistive</td>
<td>4A (Cos.Ø 0.6) 1350W</td>
</tr>
<tr>
<td>– Inductive</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– Fluorescent</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Switching arrangement</td>
<td>1 x c/o</td>
<td>1 x c/o</td>
<td>1 x n/o</td>
<td>1 x c/o</td>
<td>1 x c/o</td>
</tr>
<tr>
<td>No. of switching commands</td>
<td>56</td>
<td>48</td>
<td>48</td>
<td>56</td>
<td>48</td>
</tr>
<tr>
<td>Minimum programme time</td>
<td>3hrs</td>
<td>30mins</td>
<td>30mins</td>
<td>3hrs</td>
<td>30mins</td>
</tr>
<tr>
<td>Running reserve</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>*150hrs</td>
<td>*150hrs</td>
</tr>
<tr>
<td>Width of unit</td>
<td>54mm (3 mods)</td>
<td>54mm (3 mods)</td>
<td>18mm (1 mod)</td>
<td>54mm (3 mods)</td>
<td>54mm (3 mods)</td>
</tr>
<tr>
<td>Terminal capacity</td>
<td>2 x 2.5mm²</td>
<td>2 x 2.5mm²</td>
<td>2 x 4mm²</td>
<td>2 x 2.5mm²</td>
<td>2 x 2.5mm²</td>
</tr>
</tbody>
</table>

Digital and Time Delay

<table>
<thead>
<tr>
<th>Model</th>
<th>5731s</th>
<th>5732s</th>
<th>5733s</th>
<th>5650s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>220-240V a.c. 50-60Hz</td>
<td>220-240V a.c. 50-60Hz</td>
<td>220-240V a.c. 50-60Hz</td>
<td>220-240V a.c. 50Hz</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>1VA</td>
<td>1VA</td>
<td>5VA</td>
<td>–</td>
</tr>
<tr>
<td>Switching capacity per channel</td>
<td>16A</td>
<td>16A</td>
<td>16A</td>
<td>16A</td>
</tr>
<tr>
<td>– Resistive</td>
<td>2.5A (Cos.Ø 0.6) 1000W</td>
<td>2.5A (Cos.Ø 0.6) 1000W</td>
<td>2.5A (Cos.Ø 0.6) 1000W</td>
<td>2A (Cos.Ø 0.6)</td>
</tr>
<tr>
<td>– Inductive</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– Fluorescent</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Switching arrangement</td>
<td>1 x c/o</td>
<td>2 x c/o</td>
<td>1 x c/o</td>
<td>1 x c/o</td>
</tr>
<tr>
<td>No. of switching commands</td>
<td>20</td>
<td>30</td>
<td>42</td>
<td>–</td>
</tr>
<tr>
<td>Programme options</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>R/H</td>
</tr>
<tr>
<td>Minimum programme time</td>
<td>1min</td>
<td>1min</td>
<td>1min</td>
<td>15sec</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>–25°C to +55°C</td>
<td>–25°C to +55°C</td>
<td>–10°C to +55°C</td>
<td>–10°C to +55°C</td>
</tr>
<tr>
<td>Operating accuracy @ 20°C</td>
<td>2.5sec/day</td>
<td>2.5sec/day</td>
<td>2.5sec/day</td>
<td>–</td>
</tr>
<tr>
<td>Running reserve</td>
<td>3 years from factory</td>
<td>3 years from factory</td>
<td>*150hrs</td>
<td>–</td>
</tr>
<tr>
<td>Width of unit</td>
<td>36mm (2 mods)</td>
<td>36mm (2 mods)</td>
<td>18mm (1 mod)</td>
<td>18mm (1 mod)</td>
</tr>
<tr>
<td>Terminal capacity</td>
<td>2 x 2.5mm²</td>
<td>2 x 2.5mm²</td>
<td>2 x 4mm²</td>
<td>1 x 4mm²</td>
</tr>
<tr>
<td>Summer/winter changeover</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Neon indicator lamp load</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50mA max</td>
</tr>
</tbody>
</table>

Dimensions (mm)

5707/5724/5807/5824s

<table>
<thead>
<tr>
<th>Model</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5707s</td>
<td>53.8</td>
<td>68</td>
<td>45</td>
</tr>
<tr>
<td>5724s</td>
<td>53.8</td>
<td>68</td>
<td>45</td>
</tr>
<tr>
<td>5807s</td>
<td>53.8</td>
<td>68</td>
<td>45</td>
</tr>
<tr>
<td>5824s</td>
<td>53.8</td>
<td>68</td>
<td>45</td>
</tr>
</tbody>
</table>

5833s

<table>
<thead>
<tr>
<th>Model</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5833s</td>
<td>55.5</td>
<td>44</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:
- **R/H** = Random/holiday
- **C/O** = Changeover switch
- **N/O** = Normally open contact
- * = after 140hr charging time