

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-37528 Rev. *A

www.infineon.com 2024-11-25

EZ-Serial firmware platform user guide for

AIROC™ CYW208xx-based modules

About this document

This document provides a complete guide to the EZ-Serial firmware platform for AIROC™ CYW208xx-based
Bluetooth® & Bluetooth® LE modules.

Scope and purpose

This document introduces the EZ-Serial firmware platform for AIROC™ CYW208xx-based Bluetooth® &
Bluetooth® LE modules. EZ-Serial is a firmware platform built on top of AIROC™ CYW208xx-based Bluetooth® &
Bluetooth® LE modules, provides an easy-to-use method for accessing the most common hardware and

communication features for dual-mode Bluetooth® applications.

This document covers the following concepts related to EZ-Serial and provides all information required to

interface to the EZ-Serial firmware platform on target of AIROC™ Bluetooth® & Bluetooth® LE module:

• System description and functional overview (Introduction and Getting started)

• Firmware configuration examples (Operational examples)

• Complete design examples (Application design examples)

• API protocol implementation examples for external MCU (Host API library)

• Troubleshooting guides (Troubleshooting)

• Reference material (API protocol reference through Configuration example reference)

• MAC address generation (EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module MAC

address)

• SPP service (Cable replacement examples with SPP)

Intended audience

This document is intended for application developers creating and testing designs based on the EZ-Serial
firmware platform of AIROC™ CYW208xx-based Bluetooth® & Bluetooth® LE modules.

http://www.infineon.com/

User guide 2 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

Table of contents

Table of contents .. 2

1 Introduction ... 10
1.1 How to use this guide .. 10
1.2 Block diagram .. 11
1.3 Functional overview .. 12
1.3.1 Bluetooth® communication features .. 12
1.3.2 Hardware and communication features ... 12
1.3.3 Firmware overwrite .. 12
1.4 Infineon AIROC™ Bluetooth® LE module support .. 13

2 Getting started ... 14
2.1 Prerequisites .. 14
2.2 Factory default behavior ... 14
2.3 Connecting a Host device ... 15
2.3.1 Connecting the Evaluation board .. 15
2.3.2 Connecting the Serial interface ... 16
2.3.2.1 Connecting GPIO pins ... 17
2.4 Communicating with a Host device .. 18
2.4.1 Using the API protocol in text mode .. 18
2.4.1.1 Text mode protocol characteristics ... 19
2.4.1.2 Text mode API command categories ... 19
2.4.1.3 Text mode API example .. 20
2.4.2 Using the API protocol in binary mode.. 22
2.4.2.1 Binary mode protocol characteristics .. 23
2.4.2.2 Binary Mode API Example ... 23
2.4.3 Key similarities and differences between text and binary command mode 26
2.4.4 API protocol format auto-detection .. 27
2.4.5 Using CYSPP mode ... 27
2.4.5.1 Starting CYSPP operation ... 27
2.4.5.2 Sending and receiving data in CYSPP data mode .. 28
2.4.5.3 Exiting CYSPP mode .. 28
2.4.5.4 Customizing CYSPP behavior for specific needs .. 29
2.4.5.5 Understanding CYSPP connection keys ... 29
2.4.5.6 Using the CYSPP peripheral connection key .. 29
2.4.5.7 Using the CYSPP Central Connection key and mask ... 30
2.4.5.8 CYSPP configuration and pin states ... 31
2.4.5.9 CYSPP state machine .. 33
2.4.6 Bluetooth® classic SPP ... 33
2.5 Configuration settings, storage, and protection .. 34
2.5.1 Factory, boot, and runtime settings .. 34
2.5.2 Saving runtime settings in flash .. 35
2.5.3 Protected configuration settings ... 36
2.6 Finding related material.. 37
2.6.1 Latest EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module image 37
2.6.2 Latest host API protocol library ... 37
2.6.3 Comprehensive API reference ... 37

3 Operational examples .. 38

User guide 3 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

3.1 System setup examples .. 38
3.1.1 Identifying the running firmware and Bluetooth® LE stack version ... 38
3.1.1.1 Getting version details from boot event .. 38
3.1.1.2 Getting version details on demand .. 39
3.1.2 Changing the serial communication parameters ... 39
3.1.3 Changing device name and appearance ... 41
3.1.4 Changing output power ... 42
3.1.5 Managing sleep states .. 43
3.1.5.1 Configuring the system-wide sleep level ... 44
3.1.5.2 Configuring the CYSPP data mode sleep level ... 45
3.1.5.3 Preventing sleep with the LP_MODE pin .. 45
3.1.5.4 Managing host and module sleep simultaneously .. 45
3.1.6 Performing a factory reset ... 46
3.2 Cable replacement examples with CYSPP .. 47
3.2.1 Getting started in CYSPP mode with zero custom configuration ... 47
3.2.1.1 Starting CYSPP out of the box in peripheral mode .. 48
3.2.1.2 How to start CYSPP out of the box in central mode .. 49
3.3 Cable replacement examples with SPP .. 51
3.3.1 Connecting SPP service with an Android smartphone ... 51
3.3.2 Connecting to SPP service using a computer (Window 7) .. 52
3.3.3 Connecting SPP service of a WICED module to another Bluetooth® device 52
3.3.4 Disconnecting SPP ... 54
3.4 GAP peripheral examples .. 54
3.4.1 Advertising as peripheral device ... 55
3.4.2 Stopping advertising as a peripheral device ... 56
3.4.3 Customizing advertisement and scanning response data ... 56
3.5 GAP central examples ... 59
3.5.1 How to scan peripherals .. 59
3.5.2 How to stop scanning for peripheral devices .. 61
3.5.3 How to connect to a peripheral device ... 61
3.5.4 How to cancel a pending connection to a peripheral device ... 62
3.5.5 How to disconnect from a peripheral device .. 62
3.6 GATT server examples ... 63
3.6.1 Defining custom local GATT services and characteristics .. 63
3.6.1.1 Understanding custom GATT limitations ... 64
3.6.1.2 Building custom services and characteristics .. 65
3.6.1.3 Choosing correct GATT permissions .. 66
3.6.2 Listing local GATT services, characteristics, and descriptors ... 67
3.6.2.1 Discovering local GATT services ... 67
3.6.2.2 Discovering local GATT characteristics .. 68
3.6.2.3 Discovering local GATT descriptors .. 69
3.6.3 Reading and writing local GATT attribute values ... 71
3.6.3.1 Reading local GATT data ... 71
3.6.3.2 Writing local GATT data .. 71
3.6.4 Notifying and indicating data to a remote client .. 72
3.6.4.1 Notifying data to a remote client ... 73
3.6.4.2 Indicating data to a remote client .. 74
3.6.5 Detecting and processing written data from a remote client .. 74
3.7 GATT client examples .. 75

User guide 4 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

3.7.1 How to discover a remote server’s GATT structure .. 75
3.7.1.1 Discovering remote GATT services ... 75
3.7.1.2 Discovering remote GATT characteristics .. 76
3.7.1.3 Discovering remote GATT descriptors.. 77
3.7.2 How to read and write remote GATT attribute values .. 78
3.7.3 How to detect notified or indicated values from a remote GATT server .. 78
3.8 Security and encryption examples ... 79
3.8.1 Bonding with or without MITM protection .. 79
3.8.1.1 Pairing in “Just Works” mode without MITM protection (Bluetooth® LE) 79
3.8.1.2 Pairing with a fixed passkey(Bluetooth® LE) (Obsolete, not supported).................................... 80
3.8.1.3 Pairing with a random passkey (Bluetooth® LE) .. 81
3.8.1.4 Pairing with a random passkey (Bluetooth® classic) ... 81
3.9 Performance testing examples ... 83
3.9.1 Maximizing throughput to a remote peer ... 83
3.9.1.1 Maximizing throughput to an iOS device ... 84
3.9.1.2 Maximizing throughput to an Android device.. 84
3.9.1.3 Minimizing power consumption ... 85
3.9.1.4 Minimizing power consumption while broadcasting .. 85
3.9.1.5 Minimizing power consumption while connected .. 86
3.10 Device firmware update examples ... 87
3.10.1 Updating firmware locally using UART .. 87
3.10.2 Updating firmware locally using Bluetooth® LE connection .. 87
3.11 GPIO operation examples ... 89
3.11.1 Get current GPIO status ... 89
3.11.2 GPIO configuration when entering or exiting Low-Power state ... 90
3.11.3 GPIO interrupt configuration ... 90
3.11.4 Remove GPIO operation .. 91
3.11.5 GPIO pin configuration .. 92
3.12 Init command examples ... 94
3.12.1 Add Init command .. 94
3.12.2 Display current Init commands ... 95
3.12.3 Check Init command is executed at system start up .. 95
3.12.4 Delete Init command.. 95
3.12.5 Enable/disable Init command ... 96

4 Application design examples .. 97
4.1 Smart MCU host with 4-Wire UART and full GPIO connections ... 97
4.1.1 Hardware design .. 97
4.1.2 Module configuration ... 97
4.1.3 Host configuration ... 97
4.2 Dumb terminal host with CYSPP and simple GPIO state indication ... 98
4.2.1 Hardware design .. 98
4.2.2 Module configuration ... 98
4.2.3 Host configuration ... 98
4.3 Module-Only application with Beacon functionality ... 99
4.3.1 Hardware design .. 99
4.3.2 Module configuration ... 99
4.3.3 Host configuration ... 99

5 Host API library ... 100

User guide 5 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

5.1 Host API library overview .. 100
5.1.1 High level architecture ... 100
5.1.2 Host library design ... 100
5.2 Implementing a project using the Host API library .. 101
5.2.1 Basic application architecture ... 101
5.2.2 Exposed API functions .. 102
5.2.3 Command macros .. 103
5.2.4 Convenience macros .. 103
5.3 Porting the Host API library to different platforms .. 104
5.4 Using the API definition JSON file to create a custom library ... 104

6 Troubleshooting ... 105
6.1 UART communication issues .. 105
6.2 Bluetooth® LE connection issues .. 106
6.3 GPIO signal issues .. 106

7 API protocol reference ... 107
7.1 Protocol structure and communication flow ... 107
7.1.1 API protocol formats .. 107
7.1.1.1 Text format overview .. 107
7.1.1.2 Binary format overview .. 107
7.1.2 API protocol data types .. 107
7.1.3 Binary format details ... 109
7.1.3.1 Byte ordering and structure packing ... 109
7.1.3.2 Binary packet header .. 110
7.2 API commands and responses .. 111
7.2.1 Protocol group (ID=1) ... 112
7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1) .. 113
7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2) ... 114
7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3) ... 115
7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4) .. 116
7.2.2 System group (ID=2) ... 117
7.2.2.1 system_ping (/PING, ID=2/1) .. 117
7.2.2.2 system_reboot (/RBT, ID=2/2) .. 118
7.2.2.3 system_dump (/DUMP, ID=2/3) .. 119
7.2.2.4 system_store_config (/SCFG, ID=2/4)... 120
7.2.2.5 system_factory_reset (/RFAC, ID=2/5) ... 121
7.2.2.6 system_query_firmware_version (/QFV, ID=2/6) ... 122
7.2.2.7 system_query_random_number (/QRND, ID=2/8) .. 123
7.2.2.8 system_write_user_data (/WUD, ID=2/11) ... 124
7.2.2.9 system_read_user_data (/RUD, ID=2/12) ... 126
7.2.2.10 system_set_bluetooth_address (SBA, ID=2/13) .. 128
7.2.2.11 system_get_bluetooth_address (GBA, ID=2/14) .. 129
7.2.2.12 system_set_sleep_parameters (SSLP, ID=2/19) .. 129
7.2.2.13 system_get_sleep_parameters (GSLP, ID=2/20) ... 130
7.2.2.14 system_set_tx_power (STXP, ID=2/21) .. 131
7.2.2.15 system_get_tx_power (GTXP, ID=2/22) .. 132
7.2.2.16 system_set_transport (ST, ID=2/23) ... 133
7.2.2.17 system_get_transport (GT, ID=2/24) .. 135
7.2.2.18 system_set_uart_parameters (STU, ID=2/25) .. 137

User guide 6 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

7.2.2.19 system_get_uart_parameters (GTU, ID=2/26) ... 139
7.2.3 GAP Group (ID=4) .. 140
7.2.3.1 gap_connect (/C, ID=4/1) .. 141
7.2.3.2 gap_cancel_connection (/CX, ID=4/2) .. 143
7.2.3.3 gap_update_conn_parameters (/UCP, ID=4/3) ... 144
7.2.3.4 gap_disconnect (/DIS, ID=4/5) .. 145
7.2.3.5 gap_add_whitelist_entry (/WLA, ID=4/6)(Not implemented) ... 146
7.2.3.6 gap_delete_whitelist_entry (/WLD, ID=4/7) (Not implemented) .. 147
7.2.3.7 gap_start_adv (/A, ID=4/8) .. 148
7.2.3.8 gap_stop_adv (/AX, ID=4/9) .. 150
7.2.3.9 gap_start_scan (/S, ID=4/10) .. 151
7.2.3.10 gap_stop_scan (/SX, ID=4/11) ... 152
7.2.3.11 gap_query_peer_address (/QPA, ID=4/12)... 153
7.2.3.12 gap_query_rssi (/QSS, ID=4/13) .. 154
7.2.3.13 gap_query_whitelist (/QWL, ID=4/14)(Not implemented) .. 155
7.2.3.14 gap_set_device_name (SDN, ID=4/15) ... 155
7.2.3.15 gap_get_device_name (GDN, ID=4/16) .. 156
7.2.3.16 gap_set_device_appearance (SDA, ID=4/17) ... 157
7.2.3.17 gap_get_device_appearance (GDA, ID=4/18) .. 158
7.2.3.18 gap_set_adv_data (SAD, ID=4/19) .. 158
7.2.3.19 gap_get_adv_data (GAD, ID=4/20) ... 159
7.2.3.20 gap_set_sr_data (SSRD, ID=4/21) ... 160
7.2.3.21 gap_get_sr_data (GSRD, ID=4/22) .. 161
7.2.3.22 gap_set_adv_parameters (SAP, ID=4/23) .. 162
7.2.3.23 gap_get_adv_parameters (GAP, ID=4/24) .. 164
7.2.3.24 gap_set_scan_parameters (SSP, ID=4/25) ... 165
7.2.3.25 gap_get_scan_parameters (GSP, ID=4/26) .. 167
7.2.3.26 gap_set_conn_parameters (SCP, ID=4/27) .. 168
7.2.3.27 gap_get_conn_parameters (GCP, ID=4/28) ... 169
7.2.4 GATT Server Group (ID=5) .. 171
7.2.4.1 gatts_create_attr (/CAC, ID=5/1) .. 171
7.2.4.2 gatts_delete_attr (/CAD, ID=5/2) .. 174
7.2.4.3 gatts_validate_db (/VGDB, ID=5/3)... 175
7.2.4.4 gatts_store_db (/SGDB, ID=5/4) – Not implemented .. 176
7.2.4.5 gatts_dump_db (/DGDB, ID=5/5) .. 177
7.2.4.6 gatts_discover_services (/DLS, ID=5/6) .. 178
7.2.4.7 gatts_discover_characteristics (/DLC, ID=5/7) ... 179
7.2.4.8 gatts_discover_descriptors (/DLD, ID=5/8) .. 180
7.2.4.9 gatts_read_handle (/RLH, ID=5/9) .. 181
7.2.4.10 gatts_write_handle (/WLH, ID=5/10) .. 182
7.2.4.11 gatts_notify_handle (/NH, ID=5/11) ... 183
7.2.4.12 gatts_indicate_handle (/IH, ID=5/12) ... 184
7.2.4.13 gatts_send_writereq_response (/WRR, ID=5/13) ---Not implemented 185
7.2.4.14 gatts_set_parameters (SGSP, ID=5/14) - Not implemented .. 186
7.2.4.15 gatts_get_parameters (GGSP, ID=5/15) - Not implemented ... 186
7.2.5 GATT Client Group (ID=6) ... 187
7.2.5.1 gattc_discover_services (/DRS, ID=6/1) ... 187
7.2.5.2 gattc_discover_characteristics (/DRC, ID=6/2) .. 188
7.2.5.3 gattc_discover_descriptors (/DRD, ID=6/3) ... 190

User guide 7 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

7.2.5.4 gattc_read_handle (/RRH, ID=6/4) ... 191
7.2.5.5 gattc_write_handle (/WRH, ID=6/5) ... 192
7.2.5.6 gattc_confirm_indication (/CI, ID=6/6) .. 193
7.2.5.7 gattc_set_parameters (SGCP, ID=6/7).. 194
7.2.5.8 gattc_get_parameters (GGCP, ID=6/8) ... 195
7.2.6 SMP Group (ID=7) ... 195
7.2.6.1 smp_query_bonds (/QB, ID=7/1) .. 196
7.2.6.2 smp_delete_bond (/BD, ID=7/2) ... 197
7.2.6.3 smp_pair (/P, ID=7/3) .. 198
7.2.6.4 smp_send_passkeyreq_response (/PE, ID=7/6) .. 199
7.2.6.5 smp_set_privacy_mode (SPRV, ID=7/9) ... 199
7.2.6.6 smp_get_privacy_mode (GPRV, ID=7/10) .. 200
7.2.6.7 smp_set_security_parameters (SSBP, ID=7/11) .. 201
7.2.6.8 smp_get_security_parameters (GSBP, ID=7/12) ... 203
7.2.6.9 smp_set_fixed_passkey (SFPK, ID=7/13) ... 205
7.2.6.10 smp_get_fixed_passkey (GFPK, ID=7/14) .. 207
7.2.6.11 smp_set_pin_code (SBTPIN, ID=7/15) ... 207
7.2.6.12 smp_get_pin_code (GBTPIN, ID=7/16) ... 208
7.2.6.13 smp_send_pinreq_response (/BTPIN, ID=7/17) .. 209
7.2.7 GPIO Group (ID=9) .. 209
7.2.7.1 gpio_query_adc (/QADC, ID=9/2) ... 210
7.2.7.2 gpio_set_drive (SIOD, ID=9/5) .. 211
7.2.7.3 gpio_get_drive (GIOD, ID=9/6) .. 212
7.2.7.4 gpio_set_logic (SIOL, ID=9/7) ... 213
7.2.7.5 gpio_get_logic (GIOL, ID=9/8) ... 214
7.2.7.6 gpio_set_pwm_mode (SPWM, ID=9/11)(Not implmented) ... 215
7.2.7.7 gpio_get_pwm_mode (GPWM, ID=9/12) (Not implmented) ... 217
7.2.8 CYSPP Group (ID=10) .. 218
7.2.8.1 p_cyspp_start (.CYSPPSTART, ID=10/2) ... 218
7.2.8.2 p_cyspp_set_parameters (.CYSPPSP, ID=10/3) ... 219
7.2.8.3 p_cyspp_get_parameters (.CYSPPGP, ID=10/4) .. 221
7.2.8.4 p_cyspp_set_packetization (.CYSPPSK, ID=10/7).. 222
7.2.8.5 p_cyspp_get_packetization (.CYSPPGK, ID=10/8) ... 226
7.2.9 Bluetooth® group (ID=14) ... 227
7.2.9.1 bt_start_inquiry (/BTI, ID=14/1) ... 228
7.2.9.2 bt_cancel_inquiry (/BTIX, ID=14/2) .. 229
7.2.9.3 bt_query_name (/BTQN, ID=14/3) .. 229
7.2.9.4 bt_connect (/BTC, ID=14/4) .. 230
7.2.9.5 bt_cancel_connection (/BTCX, ID=14/5)(Not implemented) .. 231
7.2.9.6 bt_disconnect (/BTDIS, ID=14/6) .. 232
7.2.9.7 bt_query_connections (/BTQC, ID=14/7) ... 232
7.2.9.8 bt_query_peer_address (/BTQPA, ID=14/8) ... 233
7.2.9.9 bt_query_rssi (/BTQSS, ID=14/9) .. 234
7.2.9.10 bt_set_parameters (SBTP, ID=14/10) ... 235
7.2.9.11 bt_get_parameters (GBTP, ID=14/11) .. 236
7.2.9.12 bt_set_device_class (SBTDC, ID=14/12) ... 237
7.2.9.13 bt_get_device_class (GBTDC, ID=14/13) .. 238
7.2.10 Spp group (ID=19) .. 239
7.2.10.1 spp_send_command (.SPPS, ID=19/1) (Not implemented) .. 239

User guide 8 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

7.2.10.2 spp_set_config (.SPPSC, ID=19/2) (Not implemented) ... 240
7.2.10.3 spp_get_config (.SPPGC, ID=19/3) ... 240
7.3 API events .. 241
7.3.1 System Group (ID=2) .. 241
7.3.1.1 system_boot (BOOT, ID=2/1) .. 242
7.3.1.2 system_error (ERR, ID=2/2) ... 243
7.3.1.3 system_factory_reset_complete (RFAC, ID=2/3) ... 243
7.3.1.4 system_dump_blob (DBLOB, ID=2/5) .. 244
7.3.2 GAP Group (ID=4) .. 245
7.3.2.1 gap_whitelist_entry (WL, ID=4/1) ... 245
7.3.2.2 gap_adv_state_changed (ASC, ID=4/2) .. 246
7.3.2.3 gap_scan_state_changed (SSC, ID=4/3) .. 247
7.3.2.4 gap_scan_result (S, ID=4/4) .. 248
7.3.2.5 gap_connected (C, ID=4/5) ... 249
7.3.2.6 gap_disconnected (DIS, ID=4/6) ... 250
7.3.2.7 gap_connection_updated (CU, ID=4/8) ... 250
7.3.3 GATT Server Group (ID=5) .. 251
7.3.3.1 gatts_discover_result (DL, ID=5/1) ... 251
7.3.3.2 gatts_data_written (W, ID=5/2) .. 253
7.3.3.3 gatts_indication_confirmed (IC, ID=5/3) .. 254
7.3.3.4 gatts_db_entry_blob (DGATT, ID=5/4) ... 254
7.3.4 GATT Client Group (ID=6) ... 255
7.3.4.1 gattc_discover_result (DR, ID=6/1) ... 256
7.3.4.2 gattc_remote_procedure_complete (RPC, ID=6/2) ... 257
7.3.4.3 gattc_data_received (D, ID=6/3) ... 258
7.3.4.4 gattc_write_response (WRR, ID=6/4) ... 259
7.3.5 SMP Group (ID=7) ... 260
7.3.5.1 smp_bond_entry (B, ID=7/1) .. 260
7.3.5.2 smp_pairing_requested (P, ID=7/2) ... 261
7.3.5.3 smp_pairing_result (PR, ID=7/3) .. 262
7.3.5.4 smp_encryption_status (ENC, ID=7/4) ... 262
7.3.5.5 smp_passkey_display_requested (PKD, ID=7/5) ... 263
7.3.5.6 smp_passkey_entry_requested (PKE, ID=7/6)... 264
7.3.5.7 smp_pin_entry_requested (BTPIN, ID=7/7) ... 264
7.3.6 GPIO Group (ID=9) .. 265
7.3.6.1 gpio_interrupt (INT, ID=9/1) ... 265
7.3.7 CYSPP Group (ID=10) .. 265
7.3.7.1 p_cyspp_status (.CYSPP, ID=10/1) ... 266
7.3.8 Bluetooth® Classic Group (ID=14) .. 267
7.3.8.1 bt_inquiry_result (BTIR, ID=14/1) ... 267
7.3.8.2 bt_name_result (BTINR, ID=14/2)... 268
7.3.8.3 bt_inquiry_complete (BTIC, ID=14/3)... 268
7.3.8.4 bt_connected (BTCON, ID=14/4) .. 269
7.3.8.5 bt_connection_status (BTCS, ID=14/5) .. 270
7.3.8.6 bt_connection_failed (BTCF, ID=14/6) ... 271
7.3.8.7 bt_disconnected (BTDIS, ID=14/7) ... 271
7.3.9 Spp group (ID=19) .. 272
7.3.9.1 SPP_data_received (.SPPD, ID=19/1) ... 272
7.4 Error codes... 273

User guide 9 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Table of contents

7.4.1 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module system error codes
 .. 273

7.4.2 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module GATT database

validation error codes .. 279
7.5 Macro definitions ... 280

8 GPIO reference .. 281
8.1 GPIO pin map for supported modules .. 281
8.2 GPIO pin functionality ... 283
8.2.1 Digital special-function pins .. 283
8.2.2 PWM output pins (Not implemented) ... 285
8.2.3 Analog input pins (ADC) ... 285

9 GATT profile.. 286
9.1 CYSPP Profile ... 286

10 Configuration example reference .. 287
10.1 Factory default settings .. 287
10.2 Adopted bluetooth SIG GATT profile structure snippets ... 288
10.2.1 Generic access service (0x1800)... 288
10.2.2 Generic Attribute Service (0x1801) .. 289
10.2.3 Immediate alert service (0x1802) .. 289
10.2.4 Link loss service (0x1803) ... 289
10.2.5 TX power service (0x1804) ... 289

11 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module MAC address 290

References .. 291

Glossary ... 292

Revision history... 294

Disclaimer... 296

User guide 10 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Introduction

1 Introduction

This guide explains the EZ-Serial firmware platform for AIROC™ CYW208xx-based Bluetooth® & Bluetooth® LE

modules and covers the following:

• Cypress(An Infineon Technologies company) Serial Port Profile (CYSPP) UART-to-BLE bridge functionality

• GPIO status and control connections

• GAP Central and Peripheral operation

• GATT Server and Client data transfer

• Customizable GATT structure

• Security features such as encryption, pairing, and bonding

• API protocol allowing full control over all of these behaviors from an external host

• MAC address generation

• Serial Port Profile (SPP) using Bluetooth® for RS232 serial cable emulation functionality

1.1 How to use this guide

The high-level concepts covered in this document are organized into the following categories:

• System description and functional overview (Introduction and Getting started)

• Firmware configuration examples (Operational examples)

• Complete design examples (Application design examples)

• API protocol implementation examples for external MCU (Host API library)

• Troubleshooting guides (Troubleshooting)

• Reference material (API protocol reference through Configuration example reference)

• MAC address generation (EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module MAC

address)

• SPP service (Cable replacement examples with SPP)

The following approach provides an effective way to gain familiarity with the EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module quickly:

Read through the Introduction and Getting started for a functional overview.

Find at least one example from Operational examples that is interesting or relevant to your intended design.

Follow with the described configuration on a development kit for a true hands-on experience. These examples
provide excellent out-of-the-box feature demonstration:

• Getting started in CYSPP mode with zero custom configuration

• Defining custom local GATT services and characteristics

• Detecting and processing written data from a remote client

• Bonding with or without MITM protection

Find at least one design example from Application design examples that is similar to the type of system you
intend to use an AIROC™ Bluetooth® & Bluetooth® LE module with, especially noting the functional capabilities
provided by the configuration and GPIO connections.

User guide 11 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Introduction

If you are combining the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE with an external
host microcontroller, read through the Host API library to understand how the external MCU will need to
communicate with the module.

Spend a few minutes reading through the guides in Troubleshooting to avoid unnecessary frustration later on
in the event that something does not behave in the way you expect.

Note the reference material available in this document allows fast access to additional information and

resources available from Infineon. When in doubt, always consult the API reference for helpful information and
related content concerning any API command, response, or event.

Throughout the guide, you will find API methods referenced in the following format:

gap_set_adv_parameters (SAP, ID=4/23)

These links contain three important sections:

• Proper descriptive name (for example, gap_set_parameters), unique among all other methods.

• Text-mode name (for example, SAP), applicable when using the API protocol in text mode (see Section

Using the API protocol in text mode).

• Group/method ID values (for example, “4/23”), present in the 4-byte header when using the binary API
protocol (see section Using the API protocol in binary mode).

Click any linked API method for detailed reference material in API protocol reference.

1.2 Block diagram

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE modules is built on top of AIROC™
Bluetooth® LE module from Infineon. Depending on the specific application, this platform may utilize an
external host device, such as a microcontroller (MCU), connected to the module via UART, GPIO pins, or both.

AIROC™ Bluetooth® LE module communicates with a remote device using Bluetooth® Low Energy (Bluetooth®

LE) and Basic Rate/Enhanced Data Rate (BR/EDR) protocol, or both. Throughout this document, Bluetooth® is
used instead of BR/EDR to indicate the support of the BR/EDR protocol.

Note that all GPIO pins are pre-defined with EZ-Serial firmware for AIROC™ Bluetooth® & Bluetooth® LE module.
See section GPIO pin map for supported modules for details.

AIROC Bluetooth® LE Module

AIROC Bluetooth® LE Firmware

UART
API Protocol

Parser/Generator

AIROC Bluetooth® Platform Manager

Host Remote
Peer

GPIO

Bluetooth® Stack
Bluetooth®

Radio

Figure 1 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module system block

diagram

User guide 12 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Introduction

1.3 Functional overview

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides an easy way to access the
most commonly needed hardware and communication features in Bluetooth®/ Bluetooth® LE-based

applications. To accomplish this, the firmware implements an intuitive API protocol over the UART interface

and exposes a number of status and control signals through the module’s GPIO pins.

1.3.1 Bluetooth® communication features

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE modules have the following
Bluetooth®/ Bluetooth® LE-related features:

• Bluetooth® 5.0 support on compatible modules

• Master and slave connection roles

• Central, Peripheral, Broadcaster, and Observer GAP roles

• Client and Server GATT roles

• Customizable GATT database definition

• Encryption, bonding, and protection from man-in-the-middle (MITM) threats

• CYSPP (Cypress - A Infineon Technologies company Serial Port Profile) mode for bidirectional serial data

transmission

• UART and over-the-air (OTA) bootloader for firmware updates

• Efficient low-power operation

• Serial Port Profile (SPP)

1.3.2 Hardware and communication features

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module also implements a number of
features that rely on internal CYW208xx chipset features and local interfaces:

• Flexible text-mode and binary-mode API protocols

• GPIO reading, writing, and interrupt detection

• On-demand ADC conversion

• Configurable PWM output

• UART wake-on-RX support

• Initialization commands

Note: An external 32 kHz LPO is mandatory if CYW208XX works in low-power mode.

1.3.3 Firmware overwrite

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module is a ready-to-use platform
intended to satisfy a wide variety of application design requirements with minimal effort. If you have use cases

that cannot be handled easily with the AIROC™ Bluetooth® & Bluetooth® LE module, use the ModusToolbox™
software to build your application firmware image. You can flash a custom firmware image onto any module via

the HCI UART interface and completely replace the existing EZ-Serial image at any time. To return to EZ-Serial
later, simply download the latest image from the Infineon website and flash it using the same mechanism.

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/

User guide 13 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Introduction

For details on where to find these images, see section Latest EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module image.

1.4 Infineon AIROC™ Bluetooth® LE module support

The current EZ-Serial firmware platform images support the AIROC™ Bluetooth® & Bluetooth® LE modules listed

in Table 1.

Table 1 Supported devices

Devices

CYBT-213043-02

CYBT-243053-02

CYBT-223058-02

CYBT-253059-02

CYBT-273063-02/ CYBT-263064-02/CYBT-263065-02

CYBT-243068-02/ CYBT-213066-02

CTBLE-333074-02/CYBLE-343072-02/CYBLE-333073-02

For details on which pins support which functions, see section GPIO pin map for supported modules for pin
definition on AIROC™ Bluetooth® LE modules.

User guide 14 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2 Getting started

2.1 Prerequisites

For a streamlined experience, it is recommended that you have the following parts available:

• AIROC™ Bluetooth® & Bluetooth® LE module Arduino Evaluation Board, such as CYBT-213043-EVAL/CYBT-
243053-EVAL

• Computer with serial terminal software such as Tera Term, Realterm, or PuTTY

• Optional: CY5677 CySmart Bluetooth® Low Energy 4.2 USB Dongle - Bluetooth® LE

• Optional: Bluetooth® 4.0 USB Dongle Adapter with CYW20702 Chipset – Bluetooth® Classic/EDR

• Optional: Bluetooth® LE/ Bluetooth®-capable mobile device such as an iPad, iPhone, or Android
phone/tablet

The AIROC™ Bluetooth® & Bluetooth® LE module Arduino Evaluation Board (CYBT-213043-EVAL/CYBT-243053-
EVAL) includes two USB-to-UART serial bridges onboard. The optional CySmart Bluetooth® LE dongle used with

the matching AIROC™ Bluetooth® Connect App - Bluetooth® LE Test and Debug Tool supports various client-
side functions such as connection establishment and GATT exploration without a Bluetooth® LE-capable

smartphone or tablet. The optional CYW20702 Bluetooth® dongle supports various Bluetooth® classic functions
such as SPP connection without a Bluetooth®-capable smartphone or tablet.

You can control EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module over a UART

interface without additional GPIOs; see Application design examples for details. However, it is recommended

that you use the CYBT-213043-EVAL/CYBT-243053-EVAL board for the best experience learning and prototyping
due to its more comprehensive design and peripheral support.

2.2 Factory default behavior

The following is the default configuration of EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®
LE module:

• UART interface configured for 115200 baud, 8 data bits, no parity, 1 stop bit

• UART flow control disabled (signals from the module are not generated, signals from the host are ignored)

• CYSPP serial data transfer profile enabled in auto-start mode

When the module is powered on or reset, it will generate the system_boot (BOOT, ID=2/1) API event. This is only
an example of one API method used by the platform; see API protocol reference for details on the structure and

behavior of the API protocol.

The boot event will appear as shown below. The EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module version shown in the below example is 1.4.16 build 16. This information may differ from

the final firmware version for your product.

80 4B 02 01 10 10 04 01 00 00 01 03 04 01 23 00 BC 32 0E 92 07 C9 38 45

5A 2D 53 65 72 69 61 6C 2D 43 59 42 54 5F 32 34 33 30 35 33 5F 30 32 20

56 31 2E 34 2E 31 36 2E 31 36 20 4D 61 72 20 32 38 20 32 30 32 34 20 30

36 3A 35 35 3A 35 37 DF

In text mode, the same boot event would look like this:

@E,0076,BOOT,E=01041010,S=03010000,P=0104,H=23,C=00,A=C907920E32BC,F=EZ-

Serial-CYBT_243053_02 V1.4.16.16 Mar 28 2024 06:55:57

https://www.infineon.com/cms/en/product/evaluation-boards/cybt-243053-eval/
https://www.infineon.com/dgdl/Infineon-Quick_Start_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0efc004c11f6
https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/cysmart-bluetooth-le-test-and-debug-tool/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software&redirId=SD1348

User guide 15 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

This text-mode string of data indicates:

• @E – An event has occurred.

• 0076 – There are 118 bytes (0x76) of content to follow.

• BOOT – The event which occurred is the BOOT event.

• E=01041010 – The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module application

version is 1.4.16 build 16 (0x10).

• S=03010000 – The Bluetooth® LE stack component version is 3.1.0 build 0.

• P=0104 – The protocol version is 1.4.

• H=23 – The hardware platform is CYBT-243053-02.

• C=00 – Cause (this is always zero as AIROC™ Bluetooth® LE module do not support this feature).

• A= C907920E32BC – The Static Random Bluetooth® MAC address of this module is C9:07:92:0E:32:BC .

• F=EZ-Serial-CYBT_243053_02 V1.4.16.16 Mar 28 2024 06:55:57- FW info(Boot event)

Note: The version data and MAC address shown here are examples only. Actual values may differ.

Once the system boots, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will start

Bluetooth® classic SPP service and at the same time will start the CYSPP connection process by advertising as
peripheral device. When this occurs, the gap_adv_state_changed (ASC, ID=4/2) API event will follow the boot

event:

80 02 04 02 03 03 27

In text mode, the same advertisement state change event would look like:

@E,000E,ASC,S=03,R=03

2.3 Connecting a Host device

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module communicates with an external

host device, such as a microcontroller, using serial data (UART), simple GPIO signals, or both for status and
control. Depending on your application, you may need to use one, both, or neither of these in your final design.

Application design examples describes each of these use cases.

2.3.1 Connecting the Evaluation board

When using the recommended evaluation kit for prototyping, simply connect the micro-USB cable between
your PC and the evaluation board. This provides power to the module and a communication interface (UART)
via the onboard USB-to-UART bridge. Once you have connected the cable and allowed any necessary drivers to
install, two new virtual COM port will become available, as shown in Figure 2 usually the lower one (#1 COM54)

is for HCI UART and higher one (#2 COM86) is for PUART.

User guide 16 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Figure 2 Virtual serial port from evaluation board

Note: COM54 and COM86 are shown in Figure 2, but your port numbers may differ.

You can then use the serial port of PUART with any compatible serial terminal software on your PC such as Tera
Term, Realterm, or PuTTY.

2.3.2 Connecting the Serial interface

You can also connect your own host or USB adapter for UART communication. The module’s UART interface
uses standard true-type logic (TTL) signals, with logic LOW at the GND (0 V) level and logic HIGH at the VDD level

(typically 3.3 V).

Attention: Do not connect the module directly to RS-232 signals which have VDD level range between ±3

~ ±15. To prevent damage to the device, you must add voltage convertors before connecting
to RS-232 signals.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE modules UART interface is implemented on

the AIROC™ Bluetooth® & Bluetooth® LE module PUART interface, which has two required signals for data and
two optional signals for flow control, if enabled:

• Required: RXD – Receive data (input), connect to host TXD (output)

• Required: TXD – Transmit data (output), connect to host RXD (input)

• Optional: RTS – Module-side flow control (output), connect to host CTS (input)

• Optional: CTS – Host-side flow control (input), connect to host RTS (output)

See section GPIO pin map for supported modules for pin-to-function correlations.

Note: If you connect an external UART device or adapter to the CYBLE-243053-EVAL J7 header, ensure
that you disconnect the onboard USB-to-UART bridge device by setting positions 1-4 of SW5 to the

OFF position. Otherwise, the built-in USB-to-UART bridge interface may compete with the external
interface as both devices attempt to drive the module’s UART_RX pin.

User guide 17 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

The default port settings are 115200 baud, 8 data bits, no parity, and one stop bit. Flow control is supported,
but must be specifically enabled if desired.

You can change these settings using the system_set_uart_parameters (STU, ID=2/25) API command. UART
transport settings are protected, which means these settings cannot be written to flash until they have first
been applied to RAM. This prevents unintentional communication lockouts. See section Protected

configuration settings for details concerning protected settings.

If you experience any problems communicating over the serial interface, see Troubleshooting for solutions to
common issues.

2.3.2.1 Connecting GPIO pins

For CYBT-243053-02 and CYBT-213043-02 modules, the firmware provides three GPIO pins for status and
control, aside from the two (or four if flow control is used) pins used for UART communication, eight ADC pins,
and four PWM output pins.

Table 2 summarizes the functions provided by these pins. For additional information, including module-
specific pin assignments, operational side effects, and default logic states, see GPIO reference. Note that some

pins are active-HIGH, while some are active-LOW.

Table 2 GPIO function summary

Pin name Direction Functional description

LP_MODE Input Low-power mode control.

For CYBT-243053-02, assert (LOW) to allow sleep, de-assert (HIGH) to disable

sleep or exit sleep mode.

Note: Set LP_MODE pin to pull up or down to avoid float state.

LP_MODE pin in float state may cause firmware to exhibit

unexpected behavior.

CYSPP Input/output CYSPP mode control. Assert (LOW) for CYSPP data mode, de-assert (HIGH) for

command mode.

Note: Asserting this pin will begin CYSPP operation in the configured

role even if the CYSPP profile is disabled in the platform

configuration. See section Using CYSPP mode for details. CYSPP

is also used in SPP connection: When SPP is established, CYSPP
pin is set to LOW by EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module. When host sets CYSPP pin to
HIGH, SPP connection will be closed.

CONNECTION Output Connection indicator. Asserted (LOW) when a Bluetooth® LE/SPP connection

is established, de-asserted (HIGH) upon disconnection.

Note: When CYSPP data mode is active with the CYSPP pin in the
asserted (LOW) state, the CONNECTION pin is asserted only when

a remote device has connected and completed the CYSPP GATT

data characteristic subscription, indicating that the bidirectional

User guide 18 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Pin name Direction Functional description

data pipe is ready. The CONNECTION pin is de-asserted when

data can no longer flow, either due to disconnection or because
the data characteristic subscription is ended.

CP_ROLE Input CYSPP role control. Assert (LOW) for central mode, de-assert (HIGH) for

peripheral mode.

For more details on GPIO functionality, see GPIO reference.

2.4 Communicating with a Host device

Once you have connected a host to the module via the serial interface, you can send and receive data. EZ-Serial
firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports two different modes of

communication: command mode (API protocol communication and control) and SPP/CYSPP mode

(transparent wireless cable replacement to remote device with Bluetooth® classic or Bluetooth® LE). The
following sections describe these modes.

The active communication mode depends on the state of the CYSPP pin, which can be one of the following

options:

• CYSPP pin externally de-asserted (HIGH): Command mode

• CYSPP pin externally asserted (LOW): CYSPP mode

• CYSPP pin left floating: Command mode until activating CYSPP data pipe, then CYSPP mode

Ensure that the CYSPP pin is in the intended state during boot to achieve the desired behavior. If you assert this

pin, the API parser and generator become inactive, because all serial data is piped through the Bluetooth® LE
connection (once established). You will experience a lack of communication if you attempt to send API
commands to the module while in the CYSPP mode.

SPP service is also initially active. You can establish SPP connection using Bluetooth® classic. The CYSPP pin is
also used for the SPP active communication mode. When a SPP connection is established, CYSPP will be
asserted to LOW. When CYSPP pin externally de-asserted to HIGH, the SPP connection is terminated and the

system will return to command mode.

2.4.1 Using the API protocol in text mode

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a text-mode API
protocol which allows full control of the platform using human-readable commands, responses, and events.

This mode is the default setting from the factory to provide the fastest possible path to rapid prototyping.
Commands are typed using short codes, and responses and events come back with predictable timing and
formats.

User guide 19 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.4.1.1 Text mode protocol characteristics

The text mode protocol has the following general behavior:

• Commands sent from the host must be terminated with a carriage return (0x0D), line feed (0x0A) byte, or
both.

• Commands begin with ‘/’ (forward slash), ‘S’, ‘G’, or ‘.’ to indicate ACTION, SET, GET, or PROFILE commands,
respectively.

• Commands are always immediately followed by a corresponding response, if they are parsed correctly.

• Commands with multiple arguments allow the arguments to be supplied in any order.

• Commands with multiple arguments do not require all arguments to be present in most cases; SET

commands with some arguments omitted will leave non-set values unchanged, and ACTION commands
with some arguments omitted will fall back to the default platform settings relevant for those arguments.

• Commands with syntax errors are followed by the system_error (ERR, ID=2/2) API event with an error code
indicating the nature of the problem, rather than a response packet (see section 0).

• All numeric data must be entered in hexadecimal notation, without prefixes (“0x”) or signs (“+” or “-”);
negative numbers should be entered in two’s complement form (for example, -1 = FF, -16 = F0, -128 = 80).

• All multi-byte numeric data is entered and expressed in big-endian byte order (for example, 0x12345678 is
“12345678”).

• Text command codes and hexadecimal data are not case sensitive.

• New command entry in text mode must start with a printable ASCII character (0x20 – 0x7E), or the byte will

be ignored.

• Responses always begin with “@R,” followed by a 16-bit “length” value describing the number of bytes that

come after the four length characters (including the comma), followed by the response text code.

• Responses always include a “result” value as the first parameter after the text code, indicating success or

failure.

• Events always begin with “@E,” followed by a 16-bit “length” value similar to responses described above.

• Responses and events are terminated with carriage return (0x0D) and line feed (0x0A) bytes.

• Lines beginning with a “#” symbol are treated as comments and discarded by the parser.

2.4.1.2 Text mode API command categories

There are four main categories of commands in text mode: ACTION, SET, GET, and PROFILE. All these categories

use the same basic syntax, but execute different types of behavior.

Table 3 Text mode command categories

Category Features

ACTION ACTION commands trigger operations that cannot persist across resets or power-cycles,
with very few exceptions. These commands establish connection, enter into

advertisement mode, discover local GATT, and transfer data.

The following are the exceptions to the “current session only” rule:

• system_store_config (/SCFG, ID=2/4): Writes all modified settings to flash immediately

• system_factory_reset (/RFAC, ID=2/5): Clears all modified settings and reset the module

• system_write_user_data (/WUD, ID=2/11): Writes arbitrary user data to a dedicated
section of flash

User guide 20 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Category Features

• gatts_create_attr (/CAC, ID=5/1): Adds custom GATT database attributes

• gatts_delete_attr (/CAD, ID=5/2): Removes custom GATT database attributes

• smp_pair (/P, ID=7/3): Initiates pairing, resulting in new bonding data stored in flash

SET SET commands affect configuration settings that control many types of behavior, but do
not typically trigger immediate changes to the operational state like ACTION commands

do.

Every argument in a SET command may be stored in non-volatile (flash) memory so that it
persists across power-cycles. Modified settings are stored in RAM only by default, and you

must use the /SCFG command to write the modified settings to flash. In text mode, you
can also invoke a SET command with a ‘$’ after the text code (for example,

“SDN$,N=...”) to cause the change to be written to both RAM and flash immediately.

A small number of SET commands also manage protected settings, which are the settings
that can affect core chipset operation and communication. For these settings, you cannot

write changed values directly to flash without first performing a separate write to RAM

only. This prevents accidental changes that are difficult to undo. See section Protected

configuration settings has more details on this behavior.

GET GET commands provide the ability to read all settings that can be changed with SET

commands. There is a corresponding GET command for every SET command found in the

protocol with matching parameters returned in the response.

Like SET commands, GET commands return data from the RAM-stored configuration

structure by default. However, using the ‘$’ after the text code will cause the flash-stored

data to be returned instead.

Keep in mind that GET/SET commands concern user-defined settings, while ACTION

commands concern immediate behavior changes. Always see the API reference material

when in doubt about the intended use and behavior of any API method.

PROFILE PROFILE commands configure the behavior of special built-in behaviors, such as CYSPP
data mode. Depending on the profile, these commands may perform actions or get or set

configuration values as described for the previous three command types.

For more information on these command categories and behaviors, see the configuration hierarchy in section
Factory, boot, and runtime settings and the material in API protocol reference.

2.4.1.3 Text mode API example

The easiest way to use text command mode is with a serial terminal application. You can use any serial terminal

application, if it works with standard serial ports and can be configured to open the port with the proper baud
rate, flow control, and other settings. Figure 3 shows an example session using factory default firmware and the

Real Term terminal application, starting with the system_boot (BOOT, ID=2/1) API event and demonstrating a
few commands, responses, and other events.

User guide 21 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Figure 3 Text command mode session with real term

Table 4 describes the various protocol methods shown in Figure 3.

Table 4 Text mode communication example

Direction Content Detail

←RX @E,0076,BOOT,E=01041010,S=030

10000,P=0104,H=23,C=00,A=E77F

4EFFEAB7,F=EZ-Serial-

CYBT_243053_02 V1.4.16.16 Mar

28 2024 06:55:57

system_boot (BOOT, ID=2/1) API event received:

 app = 1.4.16 build 16
 stack = 3.1.0 build 0

 protocol = 1.4

 hardware = CYBT-243053-02 module

 boot cause = (Not support in WICED platform)

 MAC address = E7:7F:4E:FF:EA:B7

←RX @E,000E,ASC,S=03,R=03 gap_adv_state_changed (ASC, ID=4/2) API event

received:

 state = 3 (Undirected advertisement (high duty

cycle))

 reason = 3 (CYSPP operation)

TX→ /ping system_ping (/PING, ID=2/1) API command sent to ping

the local module to verify proper communication

←RX @R,001D,/PING,0000,R=00000007

,F=1D98
system_ping (/PING, ID=2/1) API response received:

 result = 0 (success)
 runtime = 7 seconds

 fraction = 7576/32768 seconds

TX→ gdn gap_get_device_name (GDN, ID=4/16) API command

sent to get the configured device name

←RX @R,001E,GDN,0000,N= EZ-Serial
FF:EA:B7

gap_get_device_name (GDN, ID=4/16) API response

received:

 result = 0 (success)

 name = “EZ-Serial FF:EA:B7”

←RX @E,0035,C,C=01,A=E017402EA2E6

,T=01,I=0006,L=0000,O=0064,B=

00

gap_connected (C, ID=4/5) API event received:

 conn_handle = 1
 peer = E0:17:40:2E:A2:E6
 addr_type = .1 (random)

User guide 22 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Direction Content Detail

 interval = 6 (7.5ms)

 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)

 bond = 0 (not bonded)

←RX @E,001A,W,C=01,H=0015,T=00,D=

4000
gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 1
 attr_handle = 0x15 (21)
 type = 0 (simple write)

 data = 2 bytes [40 00]

TX→ badcmd Invalid API command sent to demonstrate text mode

error event

←RX @E,000B,ERR,0203 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

See the reference material in API protocol reference for details on each of these API methods and text-mode
syntax rules.

2.4.2 Using the API protocol in binary mode

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a binary-format API

protocol that allows complete control of the platform using compact binary commands, responses, and events.

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure

comprises a 4-byte header followed by an optional payload, terminating with a checksum byte. The payload

carries information related to the command, response, or event. If present, this payload always comes
immediately after the header and before the checksum byte.

Table 5 Binary packet structure

Header Payload (optional) Checksum

[0] Type [1] Length [2] Group [3] ID [4...N-1] Parameter(s) [N] Summation

The checksum byte is calculated by starting from 0x99 and adding the value of each header and payload byte,

rolling over back to 0 (instead of 256) to stay within the 8-bit boundary. The checksum byte itself is not included

in the summation process. For the example 4-byte binary packet for the system_ping (/PING, ID=2/1) API
command:

 C0 00 02 01

Calculate the checksum as follows:

 0x99 + 0xC0 + 0x00 + 0x02 + 0x01 = 0x15C

Retain only the final lower 8 bits (0x5C) for the 1-byte checksum value. The final 5-byte packet (including
checksum) is:

 C0 00 02 01 5C

User guide 23 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

The structure above allows a packet parser implementation to know exactly how much data to expect in
advance any time a new packet begins to arrive, and to calculate the checksum as new bytes arrive.

The “Type” byte in the header contains information not only about the packet type (highest two bits), but also
the memory scope (where applicable), and the highest three bits of the 11-bit “Length” value. For details on the
binary packet format and flow, see the API structural definition in section Protocol structure and

communication flow.

2.4.2.1 Binary mode protocol characteristics

The binary mode protocol has the following general behavior:

• Commands sent from the host must begin with a properly formatted 4-byte header.

• Commands must contain the number of payload bytes specified in the Length field from the header.

• Commands must end with a valid checksum byte, but no additional termination such as NULL or carriage
return.

• Commands are always immediately followed by a response, if they are parsed correctly.

• Commands require all arguments to be supplied in the binary payload according to the protocol structural
definition, in the right order (no arguments are optional).

• Commands with syntax errors are followed by a system_error (ERR, ID=2/2) API event with an error code
indicating the nature of the problem, rather than a response packet.

• Commands must be fully transmitted within one second of the first byte, or the parser will time out and

return to an idle state after triggering the system_error (ERR, ID=2/2) API event with a timeout error code.

• All multi-byte integer data is entered and expressed in little-endian byte order (for example, 0x12345678 is
[78 56 34 12]). Note that this applies only to API method arguments and parameters with a fixed width – 1, 2,
or 4 – byte integers, and 6-byte MAC addresses.

• All multi-byte data passed inside a variable-length byte array (uint8a or longuint8a) remains in the original
order provided by the source. This includes UUID data found during GATT discovery. If unsure, consult the

API reference manual to verify the argument data type.

• Response payloads always begin with a 16-bit “result” value as the first parameter, indicating success or

failure of the command triggering the response.

• The binary command header includes a single bit in the first byte, which performs the same duty as the ‘$’

character in text mode, to cause changed settings to be written to flash immediately instead of just RAM.

2.4.2.2 Binary Mode API Example

The easiest way to use binary command mode is with a host MCU or other application that has a complete
parser and generator implementation available, such as the host API library example provided by Infineon and

discussed in Host API Library.

However, it is also possible to test individual commands manually with a serial terminal application capable of

entering and displaying binary data. Table 4 shows an example of testing individual commands manually using
Realterm, including hexadecimal representation of data. There is no local echo when binary mode is used, so
Table 4 does not show the command packets sent to the module. To assist in identifying the packet types and
boundaries, responses are colored cyan, events are yellow , and the final checksum byte of each packet is red

.

User guide 24 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

.

Figure 4 Binary command mode session with realterm

Note: This is helpful for testing, but not the most efficient way to communicate in binary mode.

Each binary packet (including the checksum byte) is described in Table 6. For better comparison between text
mode and binary mode, the API transactions demonstrated here are the same as those used in the text mode

example. Note that multi-byte integer data such as the 6-byte MAC address and the 16-bit advertisement
interval are transmitted in little-endian byte order.

Table 6 Binary mode communication example

Direction Content Detail

←RX 80 4B 02 01 10 10 04 01 00 00

01 03 04 01 23 00 B7 EA FF 4E

7F E7 38 45 5A 2D 53 65 72 69

61 6C 2D 43 59 42 54 5F 32 34

33 30 35 33 5F 30 32 20 56 31

2E 34 2E 31 36 2E 31 36 20 4D

61 72 20 32 38 20 32 30 32 34

20 30 36 3A 35 35 3A 35 37 D5

system_boot (BOOT, ID=2/1) API event received:

 app = 1.4.16 build 16
 stack = 3.1.0 build 0

 protocol = 1.4

 hardware = CYBT-243053-02 module

 boot cause = N/A

 MAC address = E7:7F:4E:FF:EA:B7

←RX 80 02 04 02 03 03 27

gap_adv_state_changed (ASC, ID=4/2) API event

received:

 state = 3 (Undirected advertisement (high duty

cycle))

 reason = 3 (CYSPP operation)

TX→ C0 00 02 01 5C (not visible) system_ping (/PING, ID=2/1) API command sent to

ping the local module to verify proper communication

←RX C0 08 02 01 00 00 06 00 00

00 71 17 F2
system_ping (/PING, ID=2/1) API response received:

User guide 25 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Direction Content Detail

 result = 0 (success)
 runtime = 6 seconds

 fraction = 6001/32768

TX→ C0 01 04 10 00 6E (not visible) gap_get_device_name (GDN, ID=4/16) API command

sent to get the configured Device Name

←RX C0 15 04 10 00 00 12 45 5A

2D 53 65 72 69 61 6C 20 35

30 3A 35 36 3A 34 35 8D

gap_get_device_name (GDN, ID=4/16) API response

received:

 result = 0 (success)

 name = “EZ-Serial FF:EA:B7”

←RX 80 0F 04 05 01 E6 A2 2E 40

17 E0 01 06 00 00 00 64 00

00 8A

gap_connected (C, ID=4/5) API event received:

 handle = 1
 peer = E0:17:40:2E:A2:E6
 addr_type = 1 (random)

 interval = 6 (7.5 ms)

 slave_latency = 0
 supervision_timeout = 0x64 (100 = 1 second)

 bond = 0 (not bonded)

←RX 8A 80 02 04 02 00 03 24 gap_adv_state_changed (ASC, ID=4/2) API event

received:

 state = 0 (stop advertising)

 reason = 3 (CYSPP operation)

←RX 80 08 05 02 01 15 00 00 02

00 11 22 73
gatts_data_written (W, ID=5/2) API event received:

 conn_handle = 1
 attr_handle = 0x15 (21)

 type = 0 (simple write)

 data = 2 bytes [11 22]

TX→ C0 00 EE EE 35 (not visible) Invalid API command (group and ID bytes set to 0xEE)

sent to demonstrate binary mode error event

←RX 80 02 02 02 03 02 24 system_error (ERR, ID=2/2) API event received:

 reason = 0x0203 (Unrecognized Command)

See the reference material in API protocol reference for details concerning each of these API methods and the

binary packet format, including information on all header fields and supported data types.

User guide 26 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.4.3 Key similarities and differences between text and binary command

mode

The text-mode and binary-mode protocol formats provided by EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module have their own advantages. As a general guideline, text mode is better for
initial development or one-time configuration, while binary mode is a better choice for production-stage

control from an external host device due to the significantly less complex parser/generator implementation on

an external host. The following lists contain key factors to consider when choosing which mode to use:

Similarities:

• Both modes access the same internal API functionality. They are not different protocols, only different
formats.

• Both follow the same command, response, and event flow.

• EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports both modes
simultaneously. There is no need to switch between firmware images.

• Your choice of protocol format only affects local communication with an external host over the wired serial
interface. It does not have any impact on data sent over a wireless Bluetooth® LE connection, or on the type

of host communication used on a remote device (for example, another Infineon module running EZ-Serial
firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module).

Differences:

• Binary multi-byte integer data is transmitted in little-endian byte order for more efficient direct memory

structure mapping on most common platforms, while text mode uses big-endian for easier left-to-right

readability.

• Binary commands have a one-second timeout, while text mode commands have no timeout.

• Binary commands are semantically organized by functional group (system, protocol, GAP, GATT Server, and

so on) rather than the four categories used in text mode (ACTION, SET, GET, and PROFILE).

• Binary commands require all arguments in every case, while text mode commands often have optional

arguments which fall back to default/preset values if omitted.

• Binary packets include basic checksum validation, while text mode packets do not.

• Binary is more efficient for MCU-based communication, while text mode is easier for manual entry in a
terminal.

• Binary commands are never echoed back to the host, while text mode commands are (by default).

User guide 27 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.4.4 API protocol format auto-detection

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses text mode for API protocol
communication by default, but you can change this setting with the protocol_set_parse_mode (SPPM, ID=1/1)

API command. If “binary” mode is specified and written to flash, the module will use binary mode automatically

on subsequent resets or power-cycles.

The parser also automatically detects whether the external host is using binary or text mode, and temporarily
switches to the detected mode for the active session. The detection logic behaves in the following way:

• If the parser is in text mode, a byte received at any time with the two most significant bits (MSbs) set (0xC0-

0xFF) will switch the parser to binary mode immediately. The “trigger” byte will not be discarded, but will be
processed as the first byte in the command packet. This mechanism is considered safe because no valid

text-mode command begins with a byte that has the highest two bits set.

• If the parser is in binary mode, a byte received when the parser is idle (not mid-command) that is one of the

initial category characters for any of the four types of commands (‘/’, ‘S’, ‘G’, and ‘.’) will switch the parser to
text mode immediately. The “trigger” byte will not be discarded, but will be processed as the first byte in the
text command string. This mechanism is considered safe because no binary command begins with one of

these characters. Note that this requires the parser to be idle, not in the middle of a packet, because a
binary command packet could easily have one of these characters in its header or payload.

The automatically detected parse mode is not retained across power-cycles, nor is it stored in the same
configuration setting area as a value explicitly set by the protocol_set_parse_mode (SPPM, ID=1/1) API

command. For more detail on this type of temporary configuration, see section Factory, boot, and runtime

settings.

2.4.5 Using CYSPP mode

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a special CYSPP profile

that provides a simple method to send and receive serial data over a Bluetooth® LE connection. This
operational mode is separate from the normal command mode where the API protocol may be used. When

CYSPP data mode is active, any data received from an external host will be transmitted to the remote peer, and
any data received from the remote peer will be sent out through the hardware serial interface to the external

host.

2.4.5.1 Starting CYSPP operation

You can start CYSPP mode using any of these three methods:

1. Assert (LOW) the CYSPP pin externally. You may connect this pin to ground in hardware designs that require
CYSPP operation only and never need API communication. You can also use this pin to enter CYSPP mode
even if the CYSPP profile is disabled in the platform configuration.

2. Use the p_cyspp_start (.CYSPPSTART, ID=10/2) API command. You can use this command to enter CYSPP
mode even if the CYSPP profile is disabled in the platform configuration.

3. Have a remote GATT Client connect and subscribe to the CYSPP acknowledged data characteristic (enabling
indications) or unacknowledged data characteristic (enabling notifications). This method will enter CYSPP
mode only if the CYSPP profile is enabled in the platform configuration.

When starting CYSPP mode locally using either the CYSPP pin or the p_cyspp_start (.CYSPPSTART, ID=10/2) API

command, the data pipe will not be immediately available because the remote device must still connect and
set up proper GATT data subscriptions. If 100% data delivery is required in this context, the Host should

User guide 28 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

monitor the CONNECTION pin to determine when it is safe to begin sending data from the Host for Bluetooth®
LE transmission. Once the CONNECTION pin is asserted while the CYSPP pin is also asserted, the Host may send
and receive data over CYSPP.

Note: Externally asserting (LOW) the CYSPP pin will always begin CYSPP operation, even if the profile has
been disabled in the platform configuration via the p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
API command. If you do not require CYSPP operation, you should ensure that this pin remains
electrically floating or externally de-asserted (HIGH).

2.4.5.2 Sending and receiving data in CYSPP data mode

Once you have started CYSPP mode, the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module will take care of the rest of the connection process and data pipe construction on the module side. If
you are using modules running EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module on

both ends of the connection, then simply start CYSPP mode with complementary roles (Peripheral on one end,

Central on the other), and the modules will automatically connect and prepare the data pipe using the
processes described below.

A non-Infineon device such as a Bluetooth® LE-enabled smartphone will frequently be used for one end of the

connection; you must configure the device to follow the same procedure.

For configuration examples in each mode, see section Cable replacement examples with CYSPP.

Follow these steps for other (Non Infineon EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module such as smartphone) devices to communicate with Infineon EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module in CYSPP mode:

1. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module begins advertising with

configured advertisement settings.

2. Upon connection, a remote peer must subscribe to one of the two “Data” characteristics:

a. Acknowledged Data, enable indications (guaranteed reliability)

b. Unacknowledged Data, enable notifications (faster potential throughput)

3. Remote peer may optionally subscribe to the “RX Flow Control” characteristic to allow the Server to

communicate whether it is safe to write new data.

4. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will assert the CONNECTION
pin, indicating that CYSPP is ready to send and receive data.

5. The data pipe remains open until the central device disconnects or unsubscribes from the data

characteristic, or the CYSPP pin is de-asserted locally.

2.4.5.3 Exiting CYSPP mode

Once in CYSPP mode, the API parser is logically disconnected from incoming serial data, so you will not be able
to send any commands to the module. However, you can still exit CYSPP mode in two ways:

1. De-assert (HIGH) the CYSPP pin externally.

2. Have the remote GATT Client unsubscribe from the relevant CYSPP data characteristic (applies only when
the CYSPP pin is not externally asserted).

When the CYSPP operation ends, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module
returns to command mode.

User guide 29 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Attention: It is not possible to use an API command to exit the CYSPP data mode, because the API parser
is not available while in this mode. If your design needs to switch between modes on demand,
include external access to the CYSPP pin so you can control the operational mode.

2.4.5.4 Customizing CYSPP behavior for specific needs

While the default behavior is suitable in many cases, there are configuration settings that allow a great deal of
control over this behavior. The following list describes the options that can be changed and how to change the
options:

• CYSPP mode uses the system’s configured UART host transport settings for sending and receiving serial

data. To change these settings, use the system_set_uart_parameters (STU, ID=2/25) API command.

• CYSPP mode uses the system’s configured radio transmit power setting for all Bluetooth® LE
communication. To change this setting, use the system_set_tx_power (STXP, ID=2/21) API command.

• CYSPP mode supports special incoming data packetization modes. This helps make radio transmissions and
data delivery more efficient in a variety of use cases. To change these settings, use the

p_cyspp_set_packetization (.CYSPPSK, ID=10/7) API command.

• When operating in Peripheral mode, CYSPP uses the system’s configured advertisement parameters,

including the advertisement and scan response packet content (which may be based on the device name).
To change these settings, use one or more of the following API commands:

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_device_name (SDN, ID=4/15)

2.4.5.5 Understanding CYSPP connection keys

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module also supports CYSPP connection
keys, which improve usability in environments where multiple CYSPP-capable devices are operating in an

automated configuration. This feature allows an advertising peripheral device to broadcast an arbitrary 4-byte
value that a scanning device can filter against, searching either for a masked range of devices or a single

specific device.

CYSPP connection keys are not set in the factory default configuration; CYSPP Peripheral advertisements

contain a “0” key. To change this, use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command, and
specifically the “local_key”, “remote_key”, and “remote_mask” arguments of this command as described in

the following sections.

2.4.5.6 Using the CYSPP peripheral connection key

The CYSPP Peripheral connection key affects only the content of the advertisement packet while the module is
in an advertising state. The CYSPP Peripheral role does not include any filtering behavior; filtering is left to the
scanning device that is operating in the CYSPP Central role.

When the CYSPP profile is enabled, the platform-managed advertising packet contains a special Manufacturer
Data field to hold the local connection key value. It is not stored elsewhere, such as in a GATT characteristic.

This advertisement packet field has the structure shown in Table 7.

User guide 30 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Table 7 CYSPP peripheral connection key manufacturer data field structure

Length Type Company ID Connection key

07 FF b0 b1 b0 b1 b2 b3

The Company ID value is a 16-bit value that the Bluetooth®SIG assigns to member companies that have
requested them (see resources on www.bluetooth.com). The factory default value is the Cypress company
identifier, 0x0131(Cypress is an Infineon Technologies Company now), but you can change this with the same
command used to change other CYSPP parameters. Note that both the Company ID and the Connection Key
values are broadcast in little-endian byte order.

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit value for the

“local_key” argument to apply a new Peripheral connection key. Changes take effect immediately, even if the
module is already advertising in the CYSPP peripheral role.

Attention: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module incorporates

only the CYSPP Peripheral connection key into the advertising packet if you have not enabled
user-defined advertisement content. If you have configured user-defined advertisement

content instead as described in section Customizing advertisement and scanning response
data, then changing this value will have no effect. You must ensure that your user-defined

advertisement packet contains an equivalent field to allow scanning devices to filter
properly.

Table 8 Example 1: Update CYSPP peripheral key to 0x11223344

Direction Text Content Binary Content Effect

TX→ .CYSPPSP,E=2,G=0,C=0131,L=11223344,

R=0,M=0,P=1,S=0,F=2

C0 13 0A 03 02 00 31 01 44 33 22

11 00 00 00 00 00 00 00 00 01 00 02

5A

Apply new

CYSPP

configuration

←RX @R,000E,.CYSPPSP,0000 C0 02 0A 03 00 00 68 Response

indicates

success

2.4.5.7 Using the CYSPP Central Connection key and mask

The CYSPP central connection key affects the scanning operation that occurs when CYSPP is active in the
central role and has not yet connected to a remote peer. The central connection key has two parts:

• remote_key: The value used for comparison with the peripheral key from the advertisement packet.

• remote_mask – The bitmask used to strip away any irrelevant bits from the peripheral key before

comparison.

For EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module to initiate a connection to a
CYSPP peripheral device, the “remote_key” value must match with advertised peripheral connection key after
a logical AND operation with the “remote_mask” value. A mask with all bits set (“FFFFFFFF”) will require an
exact match between the two keys, while a mask with no bits set (“00000000”) will match any device. The

factory default configuration is the all-zero mask, so any CYSPP-capable peer will match. The mask values
between these two extremes provide the option to connect only to devices within specific segments of the

connection key space, much like an IP-based network. Table 9 provides examples of each case.

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

User guide 31 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Table 9 Connection key and mask examples

Remote key Remote mask Key and mask Result

11223344 FFFFFFFF 11223344 Connect to a device whose key is exactly “11223344”

55667788 FFFFFF00 55667700 Connect to any device whose key begins with “556677”

12345789 FFFF0000 12340000 Connect to any device whose key begins with “1234”

18F7A9CC FFFF00FF 18F700CC Connect to any device whose key begins with “18F7”

and ends with “CC”

Any 00000000 00000000 Connect to any device

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command and enter the desired 32-bit values for
the “remote_key” and “remote_mask” arguments to apply a new central connection key and mask. Changes

to these values will take effect immediately, even if the module is already scanning in the CYSPP central role.

Note: If an advertising peripheral device is broadcasting the CYSPP service UUID but does not have a
Manufacturer Data field containing a connection key in the same advertisement packet, the value

“0” will be substituted for an actual key for the purpose of filtering on the scanning device.

Table 10 Example 1: Update CYSPP central key to 0x11223344 and require exact matching

Direction Content Effect

TX→ .CYSPPSP,R=11223344,M=FFFFFFFF Apply new CYSPP configuration

←RX @R,000E,.CYSPPSP,0000 Response indicates success

2.4.5.8 CYSPP configuration and pin states

Table 11 describes the relationship between the state of the CYSPP pin and the CYSPP firmware configuration
managed with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. Note the following two key

behaviors concerning hardware control versus software control:

• Asserting the CYSPP pin externally always triggers automatic CYSPP. This occurs even if you have disabled
the profile in software.

• CYSPP data mode (where the API is suppressed, and all serial data is channeled to the remote peer)

ultimately depends on the state of the CYSPP pin. EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module pulls this pin to the appropriate logic level based on internal CYSPP state changes

when CYSPP is enabled, but you can override the pulled state with an external host or hardware design
feature.

Table 11 CYSPP configuration and pin relationship

CYSPP pin state CYSPP “enable” value in configuration CYSPP operation

Floating

(assumed default)

Disabled Inactive. All advertising, scanning,

connections, GATT subscriptions, GATT
transfers, and so on, occur via API commands
and events. CYSPP GATT structure is not

visible to a remote Client.

Enabled Idle until start. When started via the

p_cyspp_start (.CYSPPSTART, ID=10/2) API

User guide 32 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

CYSPP pin state CYSPP “enable” value in configuration CYSPP operation

command, the module begins advertising.

API events (boot, stage changes,
connections, etc.) are visible over UART until
the CYSPP data connection is opened

between the local device and remote peer.

The CYSPP pin is pulled LOW when this
occurs, at which point the API is suppressed
and the serial interface may be used only for

CYSPP data pipe. This mode continues until

the remote host disconnects or

unsubscribes.

 Autostart

(factory default)

Automatic. Same behavior as in the
“Enabled” case, except that CYSPP operation

begins automatically at boot time and

restarts upon disconnection.

Externally driven
HIGH (de-

asserted)

Disabled Inactive. All advertising, connections, GATT
subscriptions, GATT transfers, and so on

occur via API commands and events. CYSPP
GATT structure is not visible to a remote

Client.

Enabled Idle until start, command mode retained.

When started via the p_cyspp_start

(.CYSPPSTART, ID=10/2) API command,
module begins advertising. API events
(BOOT, stage changes, connections, etc.) are

visible over UART. API communication

continues throughout the process; CYSPP
data from the remote host is never
raw/transparent unless the host asserts the

CYSPP pin.

Autostart Automatic. The same behavior as in the
“Enabled” case, except that CYSPP operation
begins automatically at boot time and

restarts upon disconnection. API events

continues to be visible while CYSPP pin is de-

asserted (HIGH).

Externally driven

LOW (asserted)

Doesn’t matter Active regardless of firmware configuration.
Automatic advertising begins at boot time.
API events (boot, state changes, connections,

etc.) are not be visible over UART, because
API communication is always suppressed

when CYSPP pin is asserted.

User guide 33 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.4.5.9 CYSPP state machine

Figure 5 shows the way EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module manages
CYSPP operation, depending on firmware configuration and the logic states of the CYSPP and CP_ROLE pins.

Peripheral Process

CYSPP pin
asserted (LOW)

CYSPP start
command sent

CYSPP autostart
enabled

CYSPP ready in
peripheral mode

Pull CP_ROLE pin to
state configured by

CYSPP role setting

CP_ROLE
pin LOW?

NO YES

Central Process

Scan for CYSPP
peripherals

Advertise

Connect to peer

Preset CYSPP
handles?

Peer connected

Client subscribed to
CYSPP data

NO

Discover services

Client subscribed to RX
flow (optional)

Discover descriptors
within CYSPP service

Disconnect

YES

Subscribe to RX flow (if
supported)

Subscribe to data
characteristic

Remote peer may start
process here if CYSPP is
enabled and module is
generally connectable

Autostart
enabled?

CYSPP ready in
central mode

YESNOCYSPP idle

Figure 5 CYSPP state machine

Note that EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module pulls the CP_ROLE pin

to the state configured by the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command, but if the host or
hardware design drives it to a different state, CYSPP will operate in the pin-defined state and not the firmware-

defined state.

2.4.6 Bluetooth® classic SPP

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module also supports Bluetooth® SPP
service profile. See section Cable replacement examples with SPP for details.

User guide 34 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.5 Configuration settings, storage, and protection

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides methods to
customize its many built-in functions. It is important to understand how these settings are stored and changed

in different contexts to avoid unexpected behavior.

2.5.1 Factory, boot, and runtime settings

AIROC™ Bluetooth® & Bluetooth® LE module implements three different “layers” of configuration data, each of
which serves a unique purpose Table 12 describes each type of configuration storage in detail.

Table 12 Configuration setting storage layers

Layer Details

Factory

(FLASH)

Description:

Factory-level settings are hard-coded into the firmware image and stored in flash, and cannot
be changed independently by the user. They are used for runtime-level settings until/unless
customized boot-level values exist. Using the system_factory_reset (/RFAC, ID=2/5) API

command reverts to these values.

Content:

These values contain only platform configuration settings, but not custom GATT structure

definitions or value data.

Data retention during chipset reset: YES

These values are retained upon power cycles and chipset reset conditions.

Boot

(FLASH)

Description:

Boot-level settings are set by the user and stored in flash, and applied to the runtime-level
area for active use when the module boots. (If no customized boot-level settings have been

set by the user, the factory-level settings are applied instead upon first boot.) These values

can be modified using API commands, and they are erased when performing a factory reset.

Content:

These values contain both platform configuration settings and any custom GATT structure

definitions. Actual GATT characteristic values such as those written by a remote Client are not

included in this data.

Data retention during chipset reset: YES

These values are retained during power cycles and chipset reset conditions.

Runtime

(RAM)
Description:

Runtime-level settings are used as the active configuration set that controls EZ-Serial
firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s behavior at all times,

with a few exceptions as noted in the “Automatic” section below. API commands that set or
get configuration values access this layer of configuration data unless explicitly noted

otherwise.

User guide 35 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Layer Details

Content:

These values contain platform configuration settings, custom GATT structure definitions, and

GATT characteristic values written from a remote Client.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions. Any runtime
settings or GATT database structure definitions should be written to flash with the relevant

API command(s) before performing a reset.

Automatic

(RAM)
Description:

Automatic settings are set by the firmware based on detected external behavior, and EZ-
Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses these values to

augment the settings in the runtime configuration block. Currently, only one setting falls into

this category:

API parse mode (binary or text mode depending on initial packet byte)

Content:

These values contain a very limited subset of auto-detected configuration settings, and do

not include most configuration data or any GATT structure or value data.

Data retention during chipset reset: NO

These values are not retained during power cycles and chipset reset conditions.

Data retention during DFU: NO

These values are not retained during the OTA process, which involves a chipset reset prior to

image transfer.

2.5.2 Saving runtime settings in flash

Storing settings in flash memory is critical to allow predictable, long-term customized behavior without
needing to reconfigure each time. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module

provides two ways to accomplish this:

1. Use the system_store_config (/SCFG, ID=2/4) API command to write all current runtime-level settings to the

boot-level configuration. This applies a snapshot of the current configuration to flash in one step. This
method should be used if you are unsure which settings have changed between boot-level and runtime-

level values, or if you want to test out a new set of options before making them permanent.

2. Set the “flash” memory scope bit in the binary command packet header when writing new configuration

values with relevant commands, or append the ‘$’ character to command names in text mode. This is
simpler than the alternative if you know exactly which settings need to be changed, since it does not require

the final use of the system_store_config (/SCFG, ID=2/4) API command afterward.

User guide 36 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

Note that while the flash memory scope bit may be used with any command; doing so is relevant only for
commands that either read or write configuration values directly. For other commands, these flags will be
silently ignored. See the API reference material in API protocol reference for details.

To ensure the longest flash memory life, writes to flash should be as infrequent as possible in production-ready
designs. Settings that must be changed frequently should be modified in RAM and only written to flash when

required. Note that the internal chipsets used in the AIROC™ Bluetooth® & Bluetooth® LE modules that run EZ-

Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module have a minimum flash endurance
rating of 100,000 cycles.

2.5.3 Protected configuration settings

A small number of configuration values have the potential to put the module into a state where it is no longer
possible to communicate over the serial interface as intended. To help avoid this potential problem, a few
settings are classified as protected. This means that the values of the settings must be changed at the runtime
level only (RAM) before they may be applied to the boot-level (flash) area. Currently, only one command affects

protected settings: system_set_uart_parameters (STU, ID=2/25).

The changes that are most likely to cause an unintended communication lockout are serial transport

reconfigurations, such as selecting a baud rate that is not supported by the host. To store new values in flash
for protected configuration settings, you must either send the same command twice with the flash memory
scope bit/character used only the second time, or else use the system_store_config (/SCFG, ID=2/4) API

command to write all runtime-level settings to the boot level after first setting the new value in RAM only. This

forces the flash write to occur using the new configuration, which can only occur if communication is still

possible.

User guide 37 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Getting started

2.6 Finding related material

This guide refers to firmware images and example source code files that must be accessed separately from this
document.

2.6.1 Latest EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®

LE module image

You can find the latest available EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module
image files on Infineon’ website: AIROC™ Wi-Fi & Bluetooth® EZ-Serial Module Firmware Platform

These images are suitable for HCI UART-based re-flashing through WICED SDK chip loading tools. See section
Device firmware update examples for details about how to flash these firmware images onto target modules.

2.6.2 Latest host API protocol library

You can find the latest host API protocol library source code examples on Infineon’ website:

https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-
serial-module-firmware-platform/

The host library provided is for reference and is based on the EZ-Serial firmware platform for AIROC™

Bluetooth® & Bluetooth® LE module.

2.6.3 Comprehensive API reference

While this guide contains many specific functional examples, these are not intended to provide a full reference
to all possible functionality provided by the API. See API protocol reference of this document for detailed

material concerning the API structure and protocol.

https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/?redirId=VL1275&utm_medium=referral&utm_source=cypress&utm_campaign=202110_globe_en_all_integration-software
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/

User guide 38 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3 Operational examples

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides a great platform on which

you can build a wide variety of Bluetooth® LE applications. This section describes many common operations
that you can experiment with or combine to create the behavior needed for your application.

3.1 System setup examples

These examples demonstrate basic platform behavior and configuration of the system.

Note: The first example (see Identifying the running firmware and Bluetooth® LE stack version) provides

low-level detail and explanation of some API protocol formatting features, while all other
examples assume a basic understanding of the mechanics of the protocol and will only show

example snippets in text format. For details on the API methods used in each case and the binary
equivalents of each command, response, and event, see API protocol reference.

3.1.1 Identifying the running firmware and Bluetooth® LE stack version

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module firmware, Bluetooth® LE stack,

and protocol version details can be obtained from the API event generated at boot time, or on demand using an
API command.

3.1.1.1 Getting version details from boot event

Capture and process the system_boot (BOOT, ID=2/1) API event that occurs when the module is powered on or

reset. This event includes the application version, stack version, protocol version, boot cause, and unique
Bluetooth®MAC address.

If the protocol parser/generator is in text mode (factory default), the system_boot (BOOT, ID=2/1) API event
looks like this:

@E,0076,BOOT,E=01041010,S=03010000,P=0104,H=23,C=00,A=DC193932EA74,F=EZ-

Serial-CYBT_243053_02 V1.4.16.16 Mar 28 2024 06:55:57

If the protocol parser is in binary mode, this event will be similar to that shown below, expressed in
hexadecimal notation:

Header Payload Checksum

80 4B 02 01 10 10 04 01 00 00 01 03 04 01 23 00 74 EA 32 39 19 DC

38 45 5A 2D 53 65 72 69 61 6C 2D 43 59 42 54 5F 32 34

33 30 35 33 5F 30 32 20 56 31 2E 34 2E 31 36 2E 31 36

20 4D 61 72 20 32 38 20 32 30 32 34 20 30 36 3A 35 35

3A 35 37 3F 80 02 04 02 03 03

27

To simplify manual interpretation in this guide, individual parameters within the payload are separately
underlined.

Note: In text mode, multi-byte integer data is expressed in big-endian notation, while in binary mode,
multi-byte integer data is transmitted in little-endian order.

The payload data in the event text/binary examples shown above is described in Table 13.

User guide 39 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Table 13 Payload detail for boot event

Text code Text data Binary data Details Interpretation

E “01041010” 10 10 04 01 EZ-Serial
firmware
platform for

AIROC™

Bluetooth® &
Bluetooth® LE

module version

Version 1.4.16 build 16

(0x10)

S “03010000” 00 00 01 03 Bluetooth® LE

stack version

Version 3.1.0 build 0

(0x00)

P “0104” 04 01 API protocol

version

Version 1.4

H “23” 23 Hardware ID CYBT-243053-02

module

C “00” 00 Cause for boot

event

Power-cycle/XRES

A “DC193932EA74” 74 EA 32 39 19 DC MAC address DC:19:39:32:EA:74

3.1.1.2 Getting version details on demand

Use the system_query_firmware_version (/QFV, ID=2/6) API command to request version details at any time.

The response to this command contains the same initial information in the system_boot (BOOT, ID=2/1) API

event, but it does not include the boot cause or the module’s Bluetooth®MAC address.

The text-mode response to this API command is as shown below:

 @R,002C,/QFV,0000,E=01041010,S=03010000,P=0104,H=23

The binary-mode response packet is as shown below:

Header Payload Checksum

C0 0D 02 06 00 00 10 10 04 01 00 00 01 03 04 01 23 BF

To simplify manual interpretation in this guide, individual parameters within the payload are separately
underlined.

3.1.2 Changing the serial communication parameters

Use the system_set_uart_parameters (STU, ID=2/25) API command to reconfigure the serial interface used for
host communication. This command affects protected settings, and therefore the protected setting must be
applied in RAM first before it can be written to flash.

All data entered via text mode must be expressed in hexadecimal notation. Table 14 lists common baud rates
and their hexadecimal equivalents:

Table 14 Common UART baud rates and hex equivalents

Baud rate Hex equivalent

9,600 2580

User guide 40 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Baud rate Hex equivalent

14,400 3840

19,200 4B00

28,800 7080

38,400 9600

57,600 E100

115,200 (default) 1C200

230,400 38400

460,800 70800

921,600 E1000

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports non-

standard baud rates not listed in Table 14, and should remain below 3% clock error due to the use
of an internal fractional clock divider. While this is within the tolerance level required by many

UART interfaces, you should measure the actual bit timing with an oscilloscope or logic analyzer to
verify that the baud rate is operating within required tolerance for your host device.

Table 15 Example 1. Set UART to 38400 baud, even parity, flow control enabled, and store in flash

Direction Text content Binary content Effect

TX→ STU,B=9600,A=0,C=0,F=1,D=8,P=0,S=1,T=0 C0 0B 02 19 00 96 00 00 00 00 01

08 00 01 00 1F

Set new UART

parameters (RAM

only) – “38400”
decimal is

“9600” hex

←RX @R,0009,STU,0000 C0 02 02 19 00 00 76 Response
indicates

success

Change host UART parameters to match new settings here before sending additional data

TX→ STU$,B=9600,A=0,C=0,F=1,D=8,P=0,S=1,T=0 D0 0B 02 19 00 96 00 00 00 00 01

08 00 01 00 2F

Write UART

settings to flash

←RX @R,000A,STU$,0000 D0 02 02 19 00 00 86 Response
indicates

success

Table 16 Example 2. Set UART to 115200 baud, no parity, flow control disabled, and store in RAM

only

Direction Text content Binary content Effect

TX→ STU,B=1C200,A=0,C=0,F=0,D=8,P=0,S=1,T=0 C0 0B 02 19 00 C2 01 00 00 00

00 08 00 01 00 4B

Apply new UART

parameters

←RX @R,0009,STU,0000 C0 02 02 19 00 00 76 Response

indicates success

User guide 41 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.1.3 Changing device name and appearance

Use the gap_set_device_name (SDN, ID=4/15) API command to set a new friendly device name at any time, and
the gap_set_device_appearance (SDA, ID=4/17) API command to set a new appearance value.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports different device names

for Bluetooth® LE and Bluetooth® Classic communication. By default, the Bluetooth® Classic Device Name starts
with “Bluetooth®” as a suffix.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses the device name and
appearance to populate the GAP service’s name and appearance characteristic values in the GATT database. If

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module is allowed to automatically
manage the advertisement and scan response data content (default behavior), then it also includes up to 29

bytes of the device name in the scan response packet. (The limit of 29 bytes is due to a Bluetooth® LE
specification limit on the maximum scan response payload, which is 31 bytes; the other two bytes are needed

for the field length and field type values that are part of the device name field.)

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module limits the device name
length to 64 bytes to minimize internal SRAM requirements.

Using EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s special macro codes,
described in section Macro Definitions you can enter a single text string which is expanded internally to include
module-specific values—in this case, the Bluetooth® MAC address. This is shown in Table 17.

The device appearance value is a 16-bit field made up of a 10-bit and 6-bit subfield. Allowed values are defined
by the Bluetooth® SIG and can be found at developer.bluetooth.org.

Changes made to the device name and appearance values take effect immediately. They are written to the local

GATT characteristics for these two values (always present), and the device name is updated in the scan

response packet if user-defined advertisement content has not been enabled with the
gap_set_adv_parameters (SAP, ID=4/23) API command.

Table 17 Example 3. Set device name with partial MAC address incorporation

Direction Text content Binary content Effect

TX→ SDN$,N=EZ-Serial %M4:%M5:%M6 D0 17 04 0F 00 15 45 5A 2D 53 65
72 69 61 6C 20 25 4D 34 3A 25 4D

35 3A 25 4D 36 5D

Set new device
name in flash using
4th, 5th, and 6th

MAC bytes

(module-specific)

←RX @R,000A,SDN$,0000 D0 02 04 0F 00 00 7E Response indicates

success

This configured name results in an actual name of “EZ-Serial 1A:21:D3” assuming that the module in use has a
MAC address of 20:73:7A:1A:21:D3).

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

User guide 42 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Table 18 Example 4. Set device appearance to “Generic Computer” (0x0080)

Direction Text content Binary content Effect

TX→ SDA$,A=0080 D0 02 04 11 80 00 00 Set new
appearance value

in flash

←RX @R,000A,SDA$,0000 D0 02 04 11 00 00 80 Response indicates

success

3.1.4 Changing output power

Use the system_set_tx_power (STXP, ID=2/21) API command to set a new radio transmit power level. The
argument to this command is not the dBm value directly, but rather a set of predefined values representing a

fixed range. STXP can set the max power of BR/EDR/Bluetooth® LE individually. The power array is 3*8 bytes for
power level. User can use STXP,P=0,D=xx to change power level array. But it does not suggest change it. User

can use STXP,P=1~8 to set power level . The default is 7.

Current power level array of 20820 chip in default is:

BR:{-2,0,2,4,6,8,10,12},

EDR:{-2,0,2,4,6,8,10,12},

Bluetooth® LE:{-2,0,2,4,6,8,10,10},

Table 19 Supported TX power output options

Argument value Power level BR Power level EBR Power level

Bluetooth® LE

Comments

1 –2 dBm –2 dBm –2 dBm

2 0 dBm 0 dBm 0 dBm

3 2 dBm 2 dBm 2 dBm

4 4 dBm 4 dBm 4 dBm

5 6 dBm 6 dBm 6 dBm

6 8 dBm 8 dBm 8 dBm

7 10 dBm 10 dBm 10 dBm Default Value

8 12 dBm 12 dBm 10 dBm

Note: This table is just for example. The predefined table can be changed as BR, EBR and Bluetooth® LE.

Note: Changes to the configured output power will take effect immediately.

Table 20 Example 5. Set output power to -8 dBm

Direction Text content Binary content Effect

TX→ STXP,P=3 C0 02 02 15 03 00 75 Set new TX power

(RAM only)

←RX @R,000A,STXP,0000 C0 02 02 15 00 00 72 Response indicates

success

User guide 43 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.1.5 Managing sleep states

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module manages transitions between
active and sleep states according to the LP_Mode pin logic level and the system sleep level configurations. It

chooses the mode requiring the lowest safe power consumption according to the current operational state and

configuration, including transitioning into sleep mode between Bluetooth® Classic and Bluetooth® LE radio
events.

Table 21 provides a high-level summary of the four power states used by the platform.

Table 21 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module power states

Power mode Current range (typical), Vdd = 3.3 V Description

Active
 1.17 to 3.3 mA

CPU and all peripherals are active. All functionality is

possible with no delay.

Sleep
13.7 µA

In PDS Mode, UART may have missed communication.

However, it can still receive data from Bluetooth® LE

or Bluetooth® link.

Deep Sleep
2.1 µA

In HID-Off Mode, no active resources are available until

the FW restarts.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses the maximum allowed sleep

level based on combined data from the system-wide sleep setting, CYSPP data mode sleep setting (if CYSPP
data mode is active), PWM output state, and LP_MODE pin state.

Figure 6 describes the sleep level determination logic.

LP_MODE

Deasserted

(High)?

YES

Sleep Disabled

Firmware Configuration

Max = DEEP SLEEP

If System < Max,

then Max = System

If CYSPP < Max and

CYSPP Data Pipe Open,

then Max = CYSPP

NO

If Max = NORMAL SLEEP

and

High-res PWM Active,

then Max = NO SLEEP

Use Final Max Sleep Level

Begin Sleep Process

Configure with

system_set_sleep_parameters

Configure with

system_set_sleep_parameters

Configure with

p_cyspp_set_parameters

Configure with

p_cyspp_set_parameters

Control with

gpio_set_pwm_mode

Control with

gpio_set_pwm_mode

Figure 6 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module sleep state

behavior

User guide 44 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

In outline form, the sleep state logic follows this process:

1. If the LP_MODE pin is de-asserted to high, the module will remain in Active mode, otherwise select the
lowest value (0 = no sleep, 1 = normal sleep, 2 = deep sleep) from the following methods to configure the
system-wide sleep setting:

a. The system sleep level configured with system_set_sleep_parameters (SSLP, ID=2/19) API

command.

b. The CYSPP-specific sleep level configured with the p_cyspp_set_parameters (.CYSPPSP,
ID=10/3) API command, if the CYSPP data pipe is open (connected and in CYSPP data mode).

c. No sleep if high-resolution PWM output is enabled with the gpio_set_pwm_mode (SPWM,

ID=9/11) API command.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module does not allow
changes to the sleep level hierarchical order. For example, if CYSPP sleep level is “1” (sleep) but
system-wide sleep is level “0” (no sleep), then the system-wide setting will override the CYSPP

setting because it is a lower value. EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module will always select the lowest applicable value for the current operational
state.

3.1.5.1 Configuring the system-wide sleep level

Configure the system-wide sleep level using the system_set_sleep_parameters (SSLP, ID=2/19) API command.
When sleep is not prevented by de-asserting the LP_MODE pin, this value is the first “default” sleep level limit

applied when calculating which sleep mode to use.

Active PWM output limits the effective sleep level in any state to no sleep (value = 0). If the CYSPP data pipe is
open (connected and in CYSPP data mode), then the CYSPP-specific sleep level may further limit the effective

maximum sleep level. Figure 6 shows how EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module determines the sleep level to use.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module for WICED Bluetooth® modules

allows normal sleep (value = 1) as the factory default system-wide sleep level and sets LP_MODE to high by
default to provide a simpler out-of-the-box UART communication experience. However, you can change this to

allow Deep Sleep to improve average current consumption.

Table 22 Example 6. Change system-wide sleep level to Deep Sleep

Direction Text content Binary content Effect

TX→ SSLP,L=2 C0 03 02 13 02 00 00

73

Set new system sleep level to “Deep Sleep”

←RX @R,000A,SSLP,0000 C0 02 02 13 00 00 70 Response indicates success

In normal sleep mode the module cannot receive commands; the host needs proper use of the LP_MODE pin

as described in section Preventing sleep with the LP_MODE pin before transmitting the command.

User guide 45 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.1.5.2 Configuring the CYSPP data mode sleep level

Use the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command to set the CYSPP data mode sleep level.
When sleep is enabled by the LP_MODE pin, the CYSPP data mode sleep level value is the second limit to

determine which sleep mode to use. The system-wide sleep level takes precedence over the CYSPP sleep level.

Furthermore, PWM output limits the sleep level in any state to no sleep (value = 0), regardless of other settings.
Table 23 shows how EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module determines
the sleep level to use.

Table 23 Example 7. Limit CYSPP-specific sleep level to normal sleep

Direction Text content Binary content Effect

TX→ .CYSPPSP,E=2,G=0,C=0131,L=0,R=0,

M=0,P=1,S=1,F=2

C0 13 0A 03 02 00 31 01 00 00 00
00 00 00 00 00 00 00 00 00 01 01

02 B1

Set new CYSPP sleep

level to “normal sleep”

←RX @R,000E,.CYSPPSP,0000 C0 02 0A 03 00 00 68 Response indicates

success

3.1.5.3 Preventing sleep with the LP_MODE pin

De-assert the LP_MODE control pin (HIGH for CYBT-243053-02) to prevent the module from sleeping under any
circumstances. Properly asserting and de-asserting this pin surrounding host-to-module UART transmissions

provides efficient power consumption while still allowing normal sleep at all other times.

3.1.5.4 Managing host and module sleep simultaneously

In applications that include both an external host MCU and a Bluetooth® module, typically both components

need to sleep to save as much power as possible. The DATA_READY pin is asserted (LOW) whenever there is

UART data in the output buffer and not yet fully clocked out of the module. Using this pin as the wakeup signal

for the MCU is the recommended way to allow the module to alert the host whenever some interaction needs to
occur.

In certain situations, an external MCU takes may take so long to wake that it loses the first few bits or bytes of

the incoming UART data from the module. If the host needs extra time to wake and RTS/CTS flow control is
unavailable on the host MCU, you can still enable UART flow control in EZ-Serial firmware platform for AIROC™

Bluetooth® & Bluetooth® LE module with the system_set_uart_parameters (STU, ID=2/25) API command and

then control the module's CTS pin from a host GPIO. When CTS is held in the de-asserted (HIGH) state, the

module waits to send any outgoing UART data. The host can complete its wakeup process and then assert

(LOW) the module's CTS pin to allow serial data transmission when ready.

True flow control support on the host MCU is not necessary in this case, and you can leave the module’s RTS pin
disconnected. However, you must still enable flow control within EZ-Serial firmware platform for AIROC™

Bluetooth® & Bluetooth® LE module to accomplish this. Flow control with EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module is not enabled by default.

To summarize the complete cycle:

1. Host sets the module CTS pin HIGH to prevent UART transmission.

2. Host enables the DATA_READY pin falling-edge interrupt.

3. Host puts the CPU to sleep.

4. Module asserts (LOW) its DATA_READY pin when relevant activity occurs.

User guide 46 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

5. Host CPU wakes up.

6. Host sets the module CTS pin LOW to allow UART transmission.

7. Module transmits data to the host for processing.

3.1.6 Performing a factory reset

You can perform a factory reset using system_factory_reset (/RFAC, ID=2/5) API command.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module generates the
system_factory_reset_complete (RFAC, ID=2/3) API event immediately after erasing all settings, and before

performing the final module reset to boot to the factory default state. The platform generates this event using

the previously configured parser and transport mode. While this event is typically not processed by an external
host during a hardware-triggered factory reset, it helps to verify the intended flow when controlling the module
via software.

After the reset completes, the system_boot (BOOT, ID=2/1) API event occurs.

To trigger a factory reset over the serial interface, use the system_factory_reset (/RFAC, ID=2/5) API command.

Table 24 Example 8. Perform a factory reset

Direction Text content Binary content Effect

TX→ /RFAC C0 00 02 05 60 Trigger factory reset

←RX @R,000B,/RFAC,0000 C0 02 02 05 00 00 62 Response indicates

success

←RX @E,0005,RFAC 80 00 02 03 1E Event indicates
factory reset

completed

Short delay while chipset reset and boot process occurs, ~150 ms

←RX @E,0076,BOOT,E=01041010,S=0301000
0,P=0104,H=23,C=00,A=F959F2B3804E,
F=EZ-Serial-CYBT_243053_02

V1.4.16.16 Mar 28 2024 06:55:57

80 4B 02 01 10 10 04 01 00 00 01
03 04 01 23 00 4E 80 B3 F2 59 F9
38 45 5A 2D 53 65 72 69 61 6C 2D

43 59 42 54 5F 32 34 33 30 35 33
5F 30 32 20 56 31 2E 34 2E 31 36

2E 31 36 20 4D 61 72 20 32 38 20
32 30 32 34 20 30 36 3A 35 35 3A

35 37 46

User guide 47 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.2 Cable replacement examples with CYSPP

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s CYSPP implementation provides
a simple way to use a Bluetooth® LE connection to manage a bidirectional stream of serial data. Both ends of

the connection must support CYSPP, including the ability to either provide or make use of the CYSPP GATT

structure for data flow. The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module can
operate as either a GAP peripheral and CYSPP server device (typical when communicating with a smartphone)
or as a GAP central and CYSPP client device (typical when communicating with a second module running EZ-

Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module).

See section Using CYSPP mode for a description of how CYSPP mode behaves generally and how it affects API

communication.

3.2.1 Getting started in CYSPP mode with zero custom configuration

The factory default configuration enables the CYSPP profile in “auto-start” mode. With this configuration, the

module begins advertising or scanning as soon as it has power, depending on the state of the CP_ROLE pin.

1. Connect the CP_ROLE pin to either logic LOW (central) or logic HIGH (peripheral) to define the role used. If
left floating, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will use the role

configured in firmware using the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command. EZ-Serial
firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses the peripheral role with factory

default settings.

2. Connect the module’s UART_RX pin to the external host’s UART_TX pin.

3. Connect the module’s UART_TX pin to the external host’s UART_RX pin.

4. OPTIONAL: Assert (LOW) the CYSPP pin to force CYSPP data mode in hardware, preventing API usage or
output.

5. Apply power to the module, or reset it with the hardware reset pin.

6. If you have asserted (LOW) the CYSPP pin externally:

a. Monitor the CONNECTION pin to detect when the remote peer has connected and GATT data
subscription is complete.

b. Once the CONNECTION pin goes low, you can send and receive data from the host to the
remote peer over the module’s serial connection.

7. If the CYSPP pin is left floating:

a. Wait for the p_cyspp_status (.CYSPP, ID=10/1) API event to appear with the LSB set indicating
the data channel is ready. The final status event should appear as one of the following:

@E,000C,.CYSPP,S=05 (running in peripheral role)

@E,000C,.CYSPP,S=35 (running in central role)

b. Send and receive data as desired.

Note: If you externally de-assert (HIGH) the CYSPP pin, then EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module will never enter CYSPP data The remote peer may use CYSPP
on its end normally, but all data transfers and status updates will appear on the local EZ-Serial

firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module end as API events to be
processed normally.mode even if a remote peer has connected and all CYSPP mode data pipe

preparations have completed.

User guide 48 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.2.1.1 Starting CYSPP out of the box in peripheral mode

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s factory default configuration
automatically starts CYSPP operation in the Peripheral role after booting. To establish a CYSPP data pipe,

simply scan and connect from a remote device, then subscribe to RX flow control (optional) and the desired

acknowledged or unacknowledged data characteristic as described in section Sending and receiving data in
CYSPP data mode.

A second EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module running in CYSPP

Central/Client mode will perform all required client-side steps automatically. EZ-Serial firmware platform for
AIROC™ Bluetooth® & Bluetooth® LE module shows all GATT events relating to CYSPP setup until the CYSPP

data pipe is fully opened.

Table 25 Example 9. Complete boot and CYSPP connection process in peripheral mode

Direction Text content Binary content Effect

←RX @E,003B,BOOT,E=0101021C,S=0202

0355,P=0103,H=B1,C=00,A=20737A

1A21D3

80 12 02 01 1C 02 01 01 55 03 02
02 03 01 B1 00 D3 21 1A 7A 73 20

7A

Boot event

←RX @E,000E,ASC,S=01,R=03 80 02 04 02 01 03 25 CYSPP-triggered

advertisement

started

←RX @E,0035,C,C=40,A=

00A050422A0F,T=00,

I=0006,L=0000,O=0064,B=00

80 0F 04 05 40 0F 2A 42 50 A0 00

00 06 00 00 00 64 00 00 46

Connection

established with

remote device

←RX @E,001A,W,C=40,H=0015,T=00,D=0

200
80 08 05 02 40 15 00 00 02 00 02

00 81

Remote client writes
[02 00] to Client

Characteristic

Configuration

Descriptor (CCCD)
for RX flow control
to enable

indications from

that characteristic.

←RX @E,000C,.CYSPP,S=04 80 01 0A 01 04 29 CYSPP status

update (0x04):

• 0x04: Subscribed

to RX flow control

←RX @E,001A,W,C=40,H=0012,T=00,D=0

100
80 08 05 02 40 12 00 00 02 00 01

00 7D

Remote client writes

[01 00] to CCCD for
unacknowledged
data to enable

notifications from

that characteristic.

←RX @E,000C,.CYSPP,S=05 80 01 0A 01 05 2A CYSPP status

update (0x05):

User guide 49 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

• 0x04: Subscribed
to RX flow control

• 0x01: Subscribed
to
unacknowledged
data

Host may now send data to the module for delivery to the remote peer, received data comes from peer.

3.2.1.2 How to start CYSPP out of the box in central mode

Starting CYSPP client mode with factory default settings also requires no reconfiguration, since CYSPP mode
will start automatically. However, you must assert (LOW) the CP_ROLE pin at boot time or set G=1 using the

p_cyspp_set_parameters (.CYSPPSP, ID=10/3).

Table 26 Example 1: Complete boot and CYSPP connection process in central mode

Direction Content Effect

TX→ .CYSPPGP

←RX @R,004F,.CYSPPGP,0000,E=02,G=00,C=0131,L=

00000000,R=00000000,M=00000000,P=01,S=00,

F=02

In default, GAP role is peripheral

TX→ .CYSPPSP$,G=1 Set GAP role is central, and save it,

you also can pull CP_ROLE pin to

low to set GAP role as central.

←RX @R,000E,.CYSPPSP,0000

Now you can use reboot to trigger CYSPP scan start automaticaly or just

using /S to scan and /c to connect the CYSPP enabled peripheral manually.

The following is use reboot to trigger CYSPP scan.

TX→ /RBT Reboot to trigger scan

←RX @R,000A,/RBT,0000

←RX @E,003B,BOOT,E=0101011A,S=03030035,P=0103

,

H=05,C=01,A=00A050E3835F

Boot event

←RX @E,000E,SSC,S=02,R=03 CYSPP-triggered scan started

←RX @E,0062,S,R=00,A=00A050421650,T=00,S=D1,B

=00,D=

020106

110700A10C2000089A9EE21115A13333336507

FF310100000000

Scan result (advertisement fields

separated for easier interpretation)

←RX @E,000E,SSC,S=00,R=03 CYSPP-triggered scan stopped

←RX @E,0035,C,C=04,A=00A050421650,T=00,

I=0006,L=0000,O=0064,B=00
Connection established with

remote device

←RX @E,0029,DR,C=04,H=0001,R=0007,T=2800,P=00

,U=0018
GATT discovery result (0x1800)

User guide 50 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @E,0029,DR,C=04,H=0008,R=000B,T=2800,P=00

,U=0118
GATT discovery result (0x1801)

←RX @E,0045,DR,C=04,H=000C,R=0015,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP

service)

←RX @E,0010,RPC,C=04,R=060A Remote procedure complete

←RX @E,0029,DR,C=04,H=000C,R=0000,T=2800,P=00,U=00

28
GATT discovery result (service

declaration)

←RX @E,0029,DR,C=04,H=000D,R=0000,T=2803,P=00,U=03

28
GATT discovery result

(characteristic declaration)

←RX @E,0045,DR,C=04,H=000E,R=0000,T=0000,P=00,

U=01A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP ack’d

data)

←RX @E,0029,DR,C=04,H=000F,R=0000,T=2902,P=00,U=02

29
GATT discovery result

(configuration descriptor)

←RX @E,0029,DR,C=04,H=0010,R=0000,T=2803,P=00,U=03

28
GATT discovery result

(characteristic declaration)

←RX @E,0045,DR,C=04,H=0011,R=0000,T=0000,P=00,

U=02A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP

unack’d data)

←RX @E,0029,DR,C=04,H=0012,R=0000,T=2902,P=00,U=02

29
GATT discovery result

(configuration descriptor)

←RX @E,0029,DR,C=04,H=0013,R=0000,T=2803,P=00,U=03

28
GATT discovery result

(characteristic declaration)

←RX @E,0045,DR,C=04,H=0014,R=0000,T=0000,P=00,

U=03A10C2000089A9EE21115A133333365

GATT discovery result (CYSPP RX

flow control)

←RX @E,0029,DR,C=04,H=0015,R=0000,T=2902,P=00,U=02

29
GATT discovery result

(configuration descriptor)

←RX @E,0010,RPC,C=04,R=0000 Remote descriptor discovery

complete

←RX @E,000C,.CYSPP,S=10 CYSPP status update (0x10):

0x10: CYSPP peer support verified

←RX @E,0017,WRR,C=04,H=0015,R=0000 Remote server acknowledged the

write operation that enabled

indications on RX flow control

characteristic.

←RX @E,000C,.CYSPP,S=14 CYSPP status update (0x14):

• 0x10: CYSPP peer support

verified

• 0x04: Subscribed to RX flow

control

←RX @E,0018,D,C=04,H=0014,S=02,D=00 Remote server pushes a “flow
allowed” value via an indication
from the RX flow control

characteristic.

User guide 51 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @E,0017,WRR,C=04,H=0012,R=0000 Remote server acknowledged write
operation which enabled

notifications on unacknowledged

data characteristic

←RX @E,000C,.CYSPP,S=15 CYSPP status update (0x15):

• 0x10: CYSPP peer support
verified

• 0x04: Subscribed to RX flow

control

• 0x01: Subscribed to

unacknowledged data

Host may now send data to the module for delivery to the remote peer, received data comes from peer

3.3 Cable replacement examples with SPP

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports Bluetooth® Classic SPP

service as a simple method to send and receive serial data over a Bluetooth® connection. This operational
mode is separated from the normal command mode where the API protocol may be used. When SPP data

mode is active, any data received from an external host will be transmitted to the remote peer, and any data

received from the remote peer will be sent out through the hardware serial interface to the external host.

3.3.1 Connecting SPP service with an Android smartphone

1. Connect to CYBT-343026-01 module using serial terminal software such as RealTerm from your computer.

2. Enable Bluetooth® on your mobile phone.

3. Pair with a device named “EZ-Serial XX:XX:XX_BT”.

4. Download an Android application with Bluetooth® SPP support, such as SENA BTerm Bluetooth® Terminal,

from Google Play Store, and install it.

5. Connect with “EZ-Serial XX:XX:XX_BT”. You will see “@E,0024,BTCON,C=02,A=582AF78DF70E,T=01,B=00” in

RealTerm.

Now you can transfer data between a terminal application on a smartphone and RealTerm. The data
transmitted in this example is “123456789” as shown in Figure 7.

When the Android application is closed, you will see “@E,0012,BTDIS,C=02,R=0000” in RealTerm indicating

that the connection has been closed.

User guide 52 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Figure 7 Connecting SPP service of a module on Android smartphone with RealTerm

3.3.2 Connecting to SPP service using a computer (Window 7)

1. Click the Bluetooth® icon on your Windows Taskbar, or access the Bluetooth® menu from Control Panel >
All Control Panel Items > Devices and Printers. Select Add a device.

2. Select device named “EZ-Serial XX:XX:XX_BT” and connect. Windows will install drivers for this device. You

will find two ports associated with this device in Device Manager.

3. Open a terminal application and connect to the COM port (typically the lower numbered COM port is the
port to select).

Now you can transfer data between the terminal application in Windows and the terminal of the CYBT-
343026-01 module.

3.3.3 Connecting SPP service of a WICED module to another Bluetooth®

device

Suppose another Bluetooth® device is an Android smartphone, perform these steps:

1. Launch a SPP application, such as SENA BTerm Bluetooth® Terminal, on the Android smart phone.

2. Click “open detection" on Android SPP application.

3. Start inquiry:
/BTI,D=3,F=1

Where,

D: Duration ranging from 3 to 30 seconds

User guide 53 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

F: 0 – Inquiry all (name and address)

 1 – Inquiry name

Figure 8 Starting inquiry in RealTerm

4. Connect to a device which supports the SPP service:
/BTC, A=582AF78DF70E,T =1

User guide 54 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Figure 9 Connecting to SPP service of Android smartphone from a module with RealTerm

You will see “@E,0024,BTCON,C=03,A=582AF78DF70E,T=01,B=00” indicating that SPP is now connected.

3.3.4 Disconnecting SPP

SPP can be controlled through the hardware GPIO on the EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module. Cyspp pin which is also used for CYSPP, can be used to control the SPP connection

state:

• By default, CYSPP pin is set in HIGH state.

• Once SPP connection is active, CYSPP pin will be set to LOW state.

• If CYSPP pin is set to HIGH by an ex ternal MCU while a SPP connection is active, the SPP connection will be

terminated.

3.4 GAP peripheral examples

GAP Peripheral operation is one of the most common use cases for Bluetooth® LE designs because it is usually
the simplest way to communicate with a smartphone operating as a Central device.

The Bluetooth® specification defines different types of roles for the devices on each end of a Bluetooth® LE link:

• Link layer

− Master – Device that initiates a connection (always GAP Central)

− Slave – Device that accepts a connection (always GAP Peripheral)

User guide 55 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

• GAP layer

− Central – Device that initiated a connection (always LL master)

− Peripheral – Device that accepted a connection (always LL slave)

− Broadcaster – Device that is advertising in a non-connectable state

− Observer – Device that is scanning without initiating a connection

• GATT layer

− Client – device which accesses data from a remote GATT Server

− Server – device which provides Attribute data to be accessed remotely

Link layer roles are defined when a connection is initiated based on which side initiates the connection.

The GAP layer provides four different roles, two of which involve connections (Central and Peripheral) and two

of which are connectionless (Broadcaster and Observer). The link layer and GAP layer roles are closely related,
particularly when a connection is involved.

The GATT layer role is independent of other behavior. A single device may even perform GATT duties in both the
client and server roles. A common example of this is an iOS device providing the Apple Notification Center
Service as a GATT Server, even though it is connected to a Peripheral device and acting as a GATT Client to that

device.

EZ-Serial firmware platform for AIROC™ CYW208xx-based Bluetooth® & Bluetooth® LE module only supports

slave link layer role, Peripheral or Broadcaster GAP roles, and GATT Server functionality.

3.4.1 Advertising as peripheral device

Advertising is the Bluetooth® LE activity which allows scanning devices to observe and connect to Peripherals.

It is required for a connection to be initiated, but it may also be done in a non-connectable way (called

“broadcasting”). EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports non-
connectable broadcasting even while connected.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module gives you full control over when
and how to advertise by using the gap_start_adv (/A, ID=4/8) API command and the gap_set_adv_parameters

(SAP, ID=4/23) API command.

When the advertising state changes, the gap_adv_state_changed (ASC, ID=4/2) API event occurs. This event
includes the new state as well as a code showing the reason why the state changed.

Note: If you do not have any automatic advertisement timeout set, then advertisements continue until
you explicitly stop them or a remote device initiates a connection.

Table 27 Example 10. Start advertising with custom parameters

Direction Text content Binary content Effect

TX→ /A,M=02,T=03,C=07,H=0030,

D=001E,L=0800,O=003C,F=00,

A=000000000000,Y=0

C0 13 04 08 02 03 07 30 00 1E 00
00 08 3C 00 00 00 00 00 00 00 00

00 16

Begin advertising with

custom arguments

←RX @R,0008,/A,0000 C0 02 04 08 00 00 67 Response indicates success

User guide 56 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @E,000E,ASC,S=03,R=00 80 02 04 02 03 00 24 Event indicates advertising

state changed to “active”

3.4.2 Stopping advertising as a peripheral device

To explicitly stop advertising, use the gap_stop_adv (/AX, ID=4/9) API command, or open a connection to the
module from a remote Bluetooth® LE Central device.

Table 28 Example 1. Stop advertising

Direction Text content Binary content Effect

TX→ /AX C0 00 04 09 66 Stop advertising

←RX @R,0009,/AX,0000 C0 02 04 09 00 00 68 Response indicates success

←RX @E,000E,ASC,S=00,R=00 80 02 04 02 00 00 21 Event indicates advertising state changed to

“inactive” due to user request

3.4.3 Customizing advertisement and scanning response data

You can customize the content of the main advertisement payload and scan response payload with the
gap_set_adv_data (SAD, ID=4/19) and gap_set_sr_data (SSRD, ID=4/21) API commands, respectively.

Note: If you intend to use user-defined advertisement content, you must explicitly enable this in the

advertisement parameters. Normally, the EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module manages the content in the advertisement and scans response packets
automatically based on the platform configuration, including the device name and the profiles
that are enabled. If you set custom content but do not configure EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module to use that content, advertisement and scan response

payloads remain automatically managed.

Key features and requirements for customizing data:

• Each advertisement and scan response packet payloads may have a maximum of 31 bytes. This is a
Bluetooth® LE specification limit.

• Advertisement data in both packets should follow the correct [Length, Type, Value...] format required by the
Bluetooth® specification. Malformed data within advertisements can prevent proper scanning by remote

devices. The Length value does not include itself, but does include the Type byte and all bytes in the

remaining Value data.

• Each packet may contain as many fields as will fit in 31 bytes. Place multiple fields one right after the other

with no special separator. Since each field begins with a “length” value, a scanning device is always able to
properly identify the end of each field.

• Advertisement packets include the Bluetooth® connection address (public or random) outside of the
payload data. This does not count towards the 31-byte limit.

• The main advertisement packet is always transmitted while advertising. It typically includes things like
connectable flags, important supported service UUIDs, and a custom manufacturer data field. Place any
data that is critical for the remote device to see inside the main advertisement packet.

• The scan response packet is transmitted only when a remote device is performing an active scan. During an

active scan, the scanning device send a scan request to any discovered advertising device immediately after

User guide 57 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

receiving the main advertisement packet. The scan response packet typically includes the friendly name of
the advertising device, and occasionally also includes transmit power, more manufacturer data, or other
useful but less critical data that a remote scanning device may not need to see.

Detailed information on approved field types and their intended contents can be found the Bluetooth®
specification.

Table 29 lists the most commonly used fields;

Table 29 Common advertisement field types

Type Description Value

0x01 Flags field – 1 byte of data 1 byte (bitfield)

0x02 Partial list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x03 Complete list of 16-bit UUIDs for supported GATT services 2*N bytes (UUIDs)

0x04 Partial list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x05 Complete list of 32-bit UUIDs for supported GATT services 4*N bytes (UUIDs)

0x06 Partial list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x07 Complete list of 128-bit UUIDs for supported GATT services 16*N bytes (UUIDs)

0x08 Shortened local name 0-29 bytes (Text string)

0x09 Complete local name 0-29 bytes (Text string)

0x0A TX power level 1 byte (dBm as signed integer)

0xFF Manufacturer data 3-29 bytes (company ID + data)

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module does not validate advertisement or

scan response payload content, and the underlying Bluetooth® LE stack has only limited validation on the Flags
field. You must ensure that any customized data within either of these packets is correctly formatted. While the
module will transmit whatever payload data is configured, scanning devices may not correctly identify your

device if the data is malformed or missing (especially the Flags field).

The stack requires that the Flags field, if present, must have the final two bits set so that they match the
Discovery Mode setting used when starting advertisements. For Bluetooth® LE-only devices that do not support

“classic” BR/EDR Bluetooth® behavior, this means that the flags byte will almost always be one of these three

values:

• 0x04: Non-discoverable/broadcast-only (common for beacon-only devices)

• 0x05: Limited discoverable

• 0x06: General discoverable (most common for connectable devices)

See gap_start_adv (/A, ID=4/8) API command for additional reference on discoverable modes.

Table 30 provides examples for reference.

Table 30 Examples of well formed advertisement fields

Byte content Field description

02 01 06 Length: 2 bytes

Type: Flags (0x01)

Value: LE General Discoverable Mode, Bluetooth® Classic Not Supported

User guide 58 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Byte content Field description

05 02 09 18 0D 18 Length: 5 bytes

Type: Complete list of 16-bit UUIDs for supported GATT services (0x02)

Value: 0x1809 (Health Thermometer), 0x180D (Heart Rate)

07 08 57 69 64 67 65 74 Length: 7 bytes

Type: Shortened local name (0x08)

Value: “Widget”

09 FF 31 01 AA BB CC DD

EE FF
Length: 9 bytes

Type: Manufacturer data (0xFF)

Value: Company ID = 0x0131 (Cypress Semiconductor, an Infineon

Technologies company)

 Data = [AA BB CC DD EE FF]

These four example fields require 25 bytes when combined, including each of the four Length values. The

bytes can be placed in a single advertisement packet if desired:

 02 01 06 05 02 09 18 0D 18 07 08 57 69 64 67 65 74 09 FF 31 01 AA BB CC DD EE

FF

Here, the shortened name is included in the same packet as the more critical information. This is uncommon,
but not prohibited. The name typically goes in the scan response packet because it cannot fit into the
advertisement packet, but any field may be in any location if the scanning device knows what to expect.

Table 31 Example 2. Set custom advertisement and scan response data

Direction Text content Binary content Effect

TX→ SAP,M=02,T=03,C=07,

H=0030,D=001E,L=0800,

O=003C,F=02,A=000000000000,Y=0

C0 13 04 17 02 03 07 30

00 1E 00 00 08 3C 00 02

00 00 00 00 00 00 00 27

Enable user-defined

advertisement and scan

response content

←RX @R,0009,SAP,0000 C0 02 04 17 00 00 76 Response indicates success

TX→ SAD,D=020106060209180D18 C0 0A 04 13 09 02 01 06

06 02 09 18 0D 18 DA

Set new advertisement

content (RAM only), Flags

and 16-bit UUID fields

←RX @R,0009,SAD,0000 C0 02 04 13 00 00 72 Response indicates success

TX→ SSRD,D=0708576964676574 C0 09 04 15 08 07 08 57

69 64 67 65 74 F6

Set new scan response

content (RAM only),

Complete local name field

←RX @R,000A,SSRD,0000 C0 02 04 15 00 00 74 Response indicates success

Table 32 Example 3. Set advertisement and scan response data to value similar to factory defaults

Direction Text content Binary content Effect

TX→ SAP,M=02,T=03,C=07,

H=0030,D=001E,L=0800,

O=003C,F=02,A=000000000000,Y=0

C0 13 04 17 02 03 07 30
00 1E 00 00 08 3C 00 02

00 00 00 00 00 00 00 27

Enable user-defined
advertisement and scan

response content

←RX @R,0009,SAP,0000 C0 02 04 17 00 00 76 Response indicates success

User guide 59 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

TX→ SAD,D=020106110700a10c2000089a9e

e21115a133333365

C0 16 04 13 15 02 01 06
11 07 00 A1 0C 20 00 08

9A 9E E2 11 15 A1 33 33

33 65 70

Set new advertisement

content (RAM only)

←RX @R,0009,SAD,0000 C0 02 04 13 00 00 72 Response indicates success

TX→ SSRD,D=1309455a2d53657269616c204

5333a38333a3546

C0 15 04 15 14 13 09 45
5A 2D 53 65 72 69 61 6C
20 45 33 3A 38 33 3A 35

46 D5

Set new scan response

content (RAM only)

←RX @R,000A,SSRD,0000 C0 02 04 15 00 00 74 Response indicates success

3.5 GAP central examples

Running as a GAP Central allows you to scan for and connect to remote Peripheral devices. You can also
operate as a GAP Observer by scanning without any subsequent connection attempts. For further discussion of

various link-layer, GAP, and GATT roles, see the material at the beginning of Section GAP peripheral examples.

3.5.1 How to scan peripherals

Use the gap_start_scan (/S, ID=4/10) API command to begin scanning for devices. Scanning is not required

before initiating a connection, but doing so helps to identify potential connection targets or ensure that known

or compatible Peripherals are nearby and connectable

Note: If you do not have any automatic scan timeout set, scanning will continue until you explicitly stop
it. Scanning will not automatically resume when a connection is terminated unless CYSPP is

enabled in the central role. Otherwise, you must implement this behavior in your application logic
as needed.

Note: You must stop scanning before you can initiate an outgoing connection to a remote peer.
Requesting a connection with gap_connect (/C, ID=4/1) while scanning will result in an error.

In text mode, all arguments to the gap_start_scan (/S, ID=4/10) API command are optional. Any supplied
arguments will be used only for the immediate scan started as a result of the command, while any omitted

arguments will fall back to the values configured by the gap_set_scan_parameters (SSP, ID=4/25) API

command. You can see these values at any time by using the gap_get_scan_parameters (GSP, ID=4/26) API

command.

After you start scanning, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will begin

generating gap_scan_result (S, ID=4/4) API events each time a new advertisement packet is seen from a remote
device. The same advertising device will generate multiple scan results until duplicate filtering is enabled in the
scan parameters.

User guide 60 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Passive vs. Active Scanning:

• During a passive scan, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will not
send scan requests to devices to ask for the “follow-up” scan response packet. In this mode, each device
generates only one event for each detected advertisement packet. Passive scans use less power on average
because the transmitter remains inactive and the receiver is not intentionally re-activated for a second time

for the same device.

• During an active scan, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module sends a
scan request to obtain additional information from the remote Peripheral. In this mode, the Bluetooth®
stack may generate two events for each device detected during a scan. However, the remote device may not

send the scan response packet, or the local device may not receive it due to adverse RF conditions, so a
second scan result event is not guaranteed. Active scans use more power than passive scans, and result in
brief transmission bursts in between receive operations.

Attention: Due to the precise timing required by the Bluetooth® LE protocol and the way active scans

behave, a large number of actively scanning devices in the same vicinity can result in none of

the scanning devices successfully obtaining a scan response from an advertising device. If
two or more scanning devices transmit a scan request on the same channel within the same

~150 µs window immediately after the main advertisement packet, the advertising device
will not be able to parse the request and will not send a response to either device. This

unlikely but possible issue does not occur while performing a passive scan.

Table 33 Example 1: Start passive scanning with preconfigured default parameters

Direction Content Effect

TX→ /S Begin scanning with preconfigured

defaults

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=02,R=00 Event indicates scanning state has
changed to “active” due to user

request

←RX @E,0052,S,R=00,A=00A050E3835E,T=00,S=D1,B=00,

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F
Event indicates scan result from
00:A0:50:E3:83:5E, normal adv
packet, RSSI -47 dBm (0xB1), Flags

field and 128-bit UUID

Table 34 Example 2: Start 5-second active scan with duplicate filtering enabled

Direction Content Effect

TX→ /S,M=2,A=1,D=1,O=5 Begin “observation” scanning, active
mode, 5-second timeout, duplicate

filter enabled

←RX @R,0008,/S,0000 Response indicates success

←RX @E,000E,SSC,S=02,R=00 Event indicates scanning state has
changed to “active” due to user

request

←RX @E,0052,S,R=00,A=00A050E3835E,T=00,S=D1,B=00

D=0201061107CA366D7D5BCC0288B14DE541D9FF652F
Event indicates scan result from
00:A0:50:E3:83:5E, ad packet, RSSI -47

User guide 61 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

dBm (0xB1), Flags field and 128-bit

UUID

←RX @E,004E,S,R=04,A=00A050E3835E,T=00,S=D1,B=00

D=1209426C7565666C6F772037383A46353A4236
Event indicates scan result from
00:A0:50:E3:83:5E, scan response

packet, RSSI -47 dBm, Local name

field

←RX @E,000E,SSC,S=00,R=00 Event indicates scanning state has
changed to “stopped” due to

configured timeout (5 seconds)

3.5.2 How to stop scanning for peripheral devices

To explicitly stop scanning, use the gap_stop_scan (/SX, ID=4/11) API command, or initiate a connection
request to a remote device using the gap_connect (/C, ID=4/1) API command.

Attention: It is possible for additional gap_scan_result (S, ID=4/4) API events to occur between a
successful response to the gap_stop_scan command and the gap_scan_state_changed event

(SSC in text mode), due to the brief amount of time that it takes the stack to process the
request and change states. Ensure that your application logic will not fail in this case.

Table 35 Example 1: Stop scanning

Direction Content Effect

TX→ /SX Stop scanning

←RX @R,0009,/SX,0000 Response indicates success

←RX @E,000E,SSC,S=00,R=00 Event indicates scanning state has changed to “inactive” due to user

request

3.5.3 How to connect to a peripheral device

Use the gap_connect (/C, ID=4/1) API command to initiate a connection to a remote device based on its

Bluetooth® connection address. The Bluetooth® connection address (also commonly referred to as a MAC
address) is made up of the 6-byte device address and a 1-byte value indicating the address type. To initiate a

connection, the module must be in a disconnected state (not advertising, scanning, connecting, or

connected).

Note: At this time, the Infineon Bluetooth® stack supports one active connection at a time. To transfer
data to and from multiple devices quickly, you must establish and tear down connections in rapid
succession. With a fast advertisement interval on peripheral devices and a fast connection interval
while connected, it is possible to perform many connect-transfer-disconnect cycles per second.

Addresses may be either public or random. Public addresses do not change, while random addresses change

on some period determined by the device employing privacy measures (typically at least every few minutes).
The use of random addresses, also called private addresses, reduces the possibility of passive profiling by a
remote device. For example, iOS devices always use random addressing for Bluetooth® LE operations. EZ-
Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports both types, and uses public

address by default.

User guide 62 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

When a Bluetooth® LE device initiates a connection request, it does not immediately transmit anything. Rather,
it must first scan until it receives a connectable advertisement packet from the target device. This is why a
Peripheral device must be in an advertising state to accept a connection. The full connection process includes

the following steps:

1. Target Peripheral device is advertising in a connectable state.

2. Central device begins scanning for advertisements packets from target Peripheral device.

3. Central device detects advertisement and initiates a connection request to a target Peripheral device.

4. Targer Peripheral device receives connection request and responds with connection response.

5. Connection is sucessfully established at this point.

The API command used to initiate a connection includes arguments for scan parameters, as scanning is the first

operation that the stack must perform on the GAP Central device during a connection process.

Table 36 Example 1: Connect to a remote device using default connection parameters

Direction Content Effect

TX→ /C,A=00A050E3835E,T=0 Initiate connection

←RX @R,000D,/C,0000,C=00 Response indicates success

←RX @E,0030,C,C=01,A=00A050E3835E,

T=00,I=0006,L=0000,O=0064,B=0

Event indicates connection opened

3.5.4 How to cancel a pending connection to a peripheral device

Use the gap_cancel_connection (/CX, ID=4/2) API command to cancel a pending outgoing connection request.

This applies only when the connection is not yet open and you have not received the gap_connected (C, ID=4/5)
API event. If you need to close an open connection, use the gap_disconnect (/DIS, ID=4/5) API command.

Table 37 Example 1: Cancel a pending connection to a remote device

Direction Content Effect

TX→ /CX Cancel pending connection

←RX @R,0009,/CX,0000 Response indicates success

←RX @E,0010,DIS,C=00,R=0900 Event indicates connection canceled

3.5.5 How to disconnect from a peripheral device

Use the gap_disconnect (/DIS, ID=4/5) API command to close an active connection to a remote device. This

applies only when the connection is already fully established; this should not be used to cancel a pending
outgoing connection. In that case, use the gap_cancel_connection (/CX, ID=4/2) API command.

Table 38 Example 1: Disconnect from a remote device

Direction Content Effect

TX→ /DIS Disconnect from peer

←RX @R,000A,/DIS,0000 Response indicates success

←RX @E,0010,DIS,C=01,R=0900 Event indicates connection closed, reason=0x0900

(unknown reason)

User guide 63 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6 GATT server examples

Bluetooth® LE data transfer operations between two connected devices most often occur through the GATT
layer, with a server on one side and a client on the other side. The GATT Server makes use of a pre-defined

attribute structure, which the client may remotely discover and use as needed. The GATT Server defines what

data is available and how it may be accessed, and has limited ability to push data to the client if the client has
subscribed to receive these types of updates.

3.6.1 Defining custom local GATT services and characteristics

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a dynamic GATT

structure that can be modified at runtime and stored in flash. Note that the structure itself and values stored
within data characteristics (other than default values defined when creating new entries) are stored in RAM
only, and is stored to flash until explicitly calling command gatts_store_db (/SGDB, ID=5/4) or

system_store_config (/SCFG, ID=2/4).

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a dynamic GATT

structure that can be modified at runtime. The structure and its values are stored in RAM only when be created
or modified. The structure and its values will not be stored to flash until you call the command explicitly,

gatts_store_db (/SGDB, ID=5/4) or system_store_config (/SCFG, ID=2/4).

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module contains a few pre-defined
GATT elements in the factory default configuration. EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module requires these GATT elements for correct operation, and the elements cannot be

removed or modified. However, additional structural elements are entirely customizable.

A GATT structure is fundamentally made up of individual attributes, each of which has a unique numeric

handle, a UUID that is 16 bits, 32 bits, or 128 bits wide, and a value container. Attribute handles start at 1 and
may go up to 0xFFFF (65535). No two attributes may have the same handle. AIROC™ Bluetooth® & Bluetooth® LE

module internally use three structures to store individual attribute:

• gatts_db[]: An array of GATT entry structures containing the fixed-length portion of each entry (type,
permissions, length, and the 16-bit length prefix value from the data array).

• gatts_db_const_data[]: An array of UINT8 bytes containing the variable-length portion of each entry (the
payload from the data array).

• gatts_external_data[]: An array of UINT8 bytes containing the writable values of each entry.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides the gatts_create_attr

(/CAC, ID=5/1) API command to create a new custom attribute, which in the EZ-Serial firmware platform for
AIROC™ Bluetooth® & Bluetooth® LE module takes the following arguments:

• uint8 type

• uint8 permissions

• uint16 length

• longuint8a data

The first six bytes of this packed structure (through the 16-bit length prefix on data) is a match for the GATT
entry structure. Any payload data in the data structure goes in the constant data pool instead.

To use the custom Local GATT Services and Characteristics correctly, you must have some prior knowledge of
correct GATT structures, especially in the case of a characteristic declaration which includes additional

User guide 64 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

metadata beyond just the value attribute’s UUID. The following demonstrates how you would use this
command to add one service, one characteristics, one characteristics value, and one CCCD:

// syntax: /CAC,type, permissions, length, data[]

/CAC,T=00,P=02,L=12,D=0028D0002D121E4B0FA4994ECEB531F40579
1.

/CAC,T=00,P=02,L=15,D=0328301F00BD1DA299E625588CD94201630D12BF9F

2.

/CAC,T=01,P=89,L=40,D=1122334455667788
3.

/CAC,T=00,P=0A,L=04,D=02290000
4.

1. Create a service descriptor, which contains the 0x2800 structural UUID, 0xD0 properties byte, the 16-bit
attribute handle corresponding to the value attribute, and 128-bits UUID. Note that the attribute handle is

automatically generated and EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module
requires the value attribute to be present immediately after the declaration.

2. Create a characteristic descriptor, which contains the 0x2803 structural UUID, 0x030 properties byte, the 16-

bit attribute handle corresponding to the value attribute, and 128-bit UUID.

3. Create a characteristic value descriptor, which contains the initial value 0x1122334455667788 and reserve
0x40 length room to contain value.

4. Create a CCCD, which contains 0x2902 structural UUID and a value 0x0000.

Attention: Modifications to the custom GATT structure require flash write operations, which can

potentially disrupt Bluetooth® LE connectivity. Therefore, you should only make changes to
the GATT database while there is no active Bluetooth® LE connection to avoid the possibility
of a connection loss.

3.6.1.1 Understanding custom GATT limitations

The dynamic GATT implementation in EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module contains some built-in entries to provide required EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module functionality, leaving the remaining space available for custom entries. Each entry is
assembled by three structures:

1. GATT attribute entry: Containing the fixed-length portion of each entry (type, permissions, length, and the

16-bit length prefix value from the data array)

2. GATT data array: Containing the variable-length portion of each entry

3. GATT external read/write data: Containing the writable values of each entry

Table 39 lists each relevant value on both platforms:

Table 39 Dynamic GATT Structural Limitations

Category Built-in
 CYBT-243053-02

Total Available

SRAM reserved for GATT attribute entries 21*6 = 126 bytes 128*6=768 bytes 107*6=642 bytes

SRAM reserved for GATT data arrays 38+87 = 125 bytes 768 bytes 643 bytes

User guide 65 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Category Built-in
 CYBT-243053-02

Total Available

SRAM reserved for GATT external data arrays 107 bytes 512 bytes 405 bytes

Flash memory room reserved for storing GATT

data base

358 bytes 2048 bytes 1690 bytes

Attempting to create a new custom attribute which exceeds any of the bounds listed in Table 39 will generate
an error result indicating the nature of the limitation. See section Error codes for details.

3.6.1.2 Building custom services and characteristics

The GATT database is made up of one or more primary services. Each primary service has a service declaration
(UUID 0x2800) and includes one or more characteristics. Each characteristic has a characteristic declaration

(UUID 0x2803) and a value attribute (any UUID not in the above list), and often has additional characteristic-
related descriptors in the 0x2900 range.

UUIDs indicate the purpose of each attribute, but may be (and often are) repeated through the complete
database. For example, a database containing three services will contain three separate attributes which all
have the UUID 0x2800, which is the official “Primary Service Declaration” UUID defined by the Bluetooth® SIG.

Table 40 lists notable pre-defined structural definition UUIDs from the Bluetooth® SIG.

Table 40 Bluetooth® SIG structural UUIDs

UUID Description

0x2800 Primary Service Declaration

0x2801 Secondary Service Declaration

0x2802 Include Declaration

0x2803 Characteristic Declaration

0x2900 Characteristic Extended Properties

0x2901 Characteristic User Description

0x2902 Client Characteristic Configuration

0x2903 Server Characteristic Configuration

0x2904 Characteristic Format

0x2905 Characteristic Aggregate Format

For more details on these and other official identifiers, see the Bluetooth® SIG website.

When defining GATT elements at runtime, you must enter each attribute in the correct order based on the
desired structure. Any entries that do not conform to the correct order requirement will be rejected with a
validation error. The only case where a validation warning is allowed is when you define a new service or

characteristic declaration and have not yet entered the subsequent attributes which must follow. You can use

the gatts_validate_db (/VGDB, ID=5/3) API command at any time to perform an integrity check on the current
GATT structure to see whether additional attributes are expected.

The required order for each complete characteristic definition (declaration, value, and optional descriptors) is
dictated by the internal Bluetooth® LE stack as follows:

https://www.bluetooth.com/specifications/

User guide 66 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Table 41 Required characteristic attribute order

Order UUID Description Required

#1 0x2803 Characteristic Declaration Yes

#2 <custom> Characteristic Value Yes

#3 0x2900 Characteristic Extended Properties No

#4 0x2901 Characteristic User Description No

#5 0x2902 Client Characteristic Configuration No

#6 0x2903 Server Characteristic Configuration No

#7 0x2904 Characteristic Format No

#8 0x2905 Characteristic Aggregate Format No

Any optional attributes may be omitted if all provided attributes are supplied in the order mentioned in
Table 41.

For details on how to use custom GATT creation API commands to add support for Bluetooth® SIG official
services such as Device Information, Health Thermometer, and others, see section Adopted bluetooth SIG GATT

profile structure snippets and the API reference material for gatts_create_attr (/CAC, ID=5/1).

3.6.1.3 Choosing correct GATT permissions

It is critical to use correct permissions when defining any custom GATT structural elements. See section

Adopted bluetooth SIG GATT profile structure snippets for example definitions, and you may notice certain

patterns. Here are the recommended guidelines for the most common entries:

• Service declarations (UUID = 0x2800)

PERM =0x02

− PERM_READABLE

Characteristic properties are not needed because they do not apply.

• Characteristic declarations (UUID = 0x2803)

PERM =0x02

− PERM_READABLE

Characteristic properties = <actual properties>

• Characteristic value attributes (type = 0x0000)

PERM =0x89

− PERM_VARIABLE_LENGTH

− PERM_WRITE_REQ

− PERM_SERVICE_UUID_128 (if this service has a 128-bit UUID)

Characteristic properties value is not required because it has been defined in previous characteristic

declarations.

• Characteristic user description attributes (UUID = 0x2901)

PERM =0x02

− PERM_READABLE

Characteristic properties = 0x02 (read)

• Client characteristic configuration attributes (UUID = 0x2902)

User guide 67 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

PERM =0x0A

− PERM_READABLE

− PERM_WRITE_REQ

Characteristic properties = 0x0A (read + write)

In general, structural elements such as service and characteristic declarations should be read-only, but should
have no particular security restrictions on them. This ensures that a connected client is able to discover the

database structure correctly, even if additional security is required to execute read and/or write operations on
the characteristic value attributes. Some Android devices are known to have problems during discovery if the
declaration descriptors themselves have extra security requirements.

3.6.2 Listing local GATT services, characteristics, and descriptors

Listing the local GATT structure can be helpful in certain cases, even though it is typically the remote GATT
structure that requires discovery. This is especially true because you can dynamically change the local GATT
structure at runtime. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides

three commands for local discovery.

3.6.2.1 Discovering local GATT services

Use the gatts_discover_services (/DLS, ID=5/6) API command to obtain a list of services in the local GATT
database.

Table 42 Example 4. Local GATT service discovery with factory default structure (no custom

attributes)

Direction Text content Binary content Effect

TX→ /DLS,B=0,E=0 C0 04 05 06 00 00

00 00 68

Request to discover all

local services

←RX @R,0011,/DLS,0000,C=0004 C0 04 05 06 00 00

04 00 6C

Response indicates
success, 4 records to

follow

←RX @E,0024,DL,H=0001,R=0007,

T=2800,P=00,U=0018

80 0A 05 01 01 00
07 00 00 28 00 02

00 18 73

Service 0x1800, start=1,

end=7

←RX @E,0024,DL,H=0008,R=000B,

T=2800,P=00,U=0118

80 0A 05 01 08 00

0B 00 00 28 00 02

01 18 7F

Service 0x1801, start=8,

end=11 (0x0B)

←RX @E,0040,DL,H=000C,R=0015,T=2800,P=00,

U=00A10C2000089A9EE21115A133333365
80 18 05 01 0C 00
15 00 00 28 00 10
00 A1 0C 20 00 08
9A 9E E2 11 15 A1

33 33 33 65 44

Service 0x6533…A100,
start=12 (0x0C), end=21

(0x15)

←RX @E,0040,DL,H=0016,R=001C,T=2800,P=00,

U=00A20C2000089A9EE21115A133333365

80 18 05 01 16 00
1C 00 00 28 00 10
00 A2 0C 20 00 08
9A 9E E2 11 15 A1

33 33 33 65 56

Service 0x6533…A200,
start=22 (0x16), end=28

(0x1C)

User guide 68 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6.2.2 Discovering local GATT characteristics

Use the gatts_discover_characteristics (/DLC, ID=5/7) API command to obtain a list of characteristics in the
local GATT database.

Table 43 Example 5. Local GATT characteristic discovery with factory default structure (no custom
attributes)

Direction Text content Binary content Effect

TX→ /DLC,B=0,E=0,S=0 C0 06 05 07 00
00 00 00 00 00

6B

Request to discover
all local

characteristics

←RX @R,0011,/DLC,0000,C=0009 C0 04 05 07 00

00 09 00 72

Response indicates
success, 9 records to

follow

←RX @E,0024,DL,H=0002,R=0003,T=2803,P=02,U=002A 80 0A 05 01 02

00 03 00 03 28

02 02 00 2A 87

Char 0x2A00, decl

handle=2, value

handle=3, perm=0x02

←RX @E,0024,DL,H=0004,R=0005,T=2803,P=02,U=012A 80 0A 05 01 04

00 05 00 03 28

02 02 01 2A 8C

Char 0x2A01, decl

handle=4, value

handle=5, perm=0x02

←RX @E,0024,DL,H=0006,R=0007,T=2803,P=02,U=042A 80 0A 05 01 06

00 07 00 03 28

02 02 04 2A 93

Char 0x2A04, decl

handle=6, value

handle=7, perm=0x02

←RX @E,0024,DL,H=0009,R=000A,T=2803,P=22,U=052A 80 0A 05 01 09
00 0A 00 03 28

22 02 05 2A BA

Char 0x2A05, decl
handle=9, value
handle=10,

perm=0x22

←RX @E,0040,DL,H=000D,R=000E,T=2803,P=28,

U=01A10C2000089A9EE21115A133333365

80 18 05 01 0D
00 0E 00 03 28

28 10 01 A1 0C
20 00 08 9A 9E
E2 11 15 A1 33

33 33 65 6A

Char 0x6533…A101,
decl handle=13, value

handle=14,

perm=0x28

←RX @E,0040,DL,H=0010,R=0011,T=2803,P=14,

U=02A10C2000089A9EE21115A133333365

80 18 05 01 10

00 11 00 03 28

14 10 02 A1 0C
20 00 08 9A 9E

E2 11 15 A1 33

33 33 65 5D

Char 0x6533…A102,

decl handle=16, value

handle=17,

perm=0x14

←RX @E,0040,DL,H=0013,R=0014,T=2803,P=20,

U=03A10C2000089A9EE21115A133333365

80 18 05 01 13

00 14 00 03 28
20 10 03 A1 0C
20 00 08 9A 9E
E2 11 15 A1 33

33 33 65 70

Char 0x6533…A103,

decl handle=19, value
handle=20,

perm=0x20

User guide 69 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @E,0040,DL,H=0017,R=0018,T=2803,P=28,

U=01A20C2000089A9EE21115A133333365

80 18 05 01 17
00 18 00 03 28

28 10 01 A2 0C
20 00 08 9A 9E
E2 11 15 A1 33

33 33 65 7F

Char 0x6533…A201,
decl handle=23, value

handle=24,

perm=0x28

←RX @E,0040,DL,H=001A,R=001B,T=2803,P=28,

U=02A20C2000089A9EE21115A133333365

80 18 05 01 1A
00 1B 00 03 28
28 10 02 A2 0C

20 00 08 9A 9E

E2 11 15 A1 33

33 33 65 86

Char 0x6533…A202,
decl handle=26, value
handle=27,

perm=0x28

3.6.2.3 Discovering local GATT descriptors

Use the gatts_discover_descriptors (/DLD, ID=5/8) API command to obtain a list of descriptors in the local GATT

database.

Table 44 Example 6. Local GATT descriptor discovery with factory default structure (no custom
attributes)

Direction Text content Binary content Effect

TX→ /DLD,B=0,E=0,S=0,C=0 C0 08 05 08 00 00 00 00 00 00 00 00 6E Request to discover

all local descriptors

←RX @R,0011,/DLD,0000,C=001C C0 04 05 08 00 00 1C 00 86 Response indicates
success, 28 records to

follow

←RX @E,0024,DL,H=0001,R=0007,

T=2800,P=00,U=0028
80 0A 05 01 01 00 07 00 00 28 00 02 00

28 83

UUID 0x2800 (Primary

Service), start=1,

end=7

←RX @E,0024,DL,H=0002,R=0003,

T=2803,P=02,U=0328
80 0A 05 01 02 00 03 00 03 28 02 02 03

28 88

UUID 0x2803

(Characteristic),

decl=2, value

handle=3

←RX @E,0024,DL,H=0003,R=0000,

T=0000,P=02,U=002A
80 0A 05 01 03 00 00 00 00 00 02 02 00

2A 5A

UUID 0x2A00 (Device
Name), handle=3,

perm=0x02

Additional records omitted for brevity

←RX @E,0024,DL,H=0013,R=0014,

T=2803,P=20,U=0328
80 0A 05 01 13 00 14 00 03 28 20 02 03

28 C8

UUID 0x2803

(Characteristic),
decl=19, value
handle=20,

perm=0x20

User guide 70 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @E,0040,DL,H=0014,R=0000,

T=0000,P=20,

U=03A10C2000089A9EE21115A

133333365

80 18 05 01 14 00 00 00 00 00 20 10 03
A1 0C 20 00 08 9A 9E E2 11 15 A1 33 33

33 65 32

UUID 0x6533…A103
(RX Flow

Characteristic),
handle=20,

perm=0x20

←RX @E,0024,DL,H=0015,R=0000,

T=2902,P=0A,U=0229
80 0A 05 01 15 00 00 00 02 29 0A 02 02

29 A0

UUID 0x2902 (CCCD),
handle=21

perm=0x0A

←RX @E,0024,DL,H=0016,R=001C,

T=2800,P=00,U=0028
80 0A 05 01 16 00 1C 00 00 28 00 02 00

28 AD

UUID 0x2800 Primary
Service), start=22,

end=28

←RX @E,0024,DL,H=0017,R=0018,

T=2803,P=28,U=0328
80 0A 05 01 17 00 18 00 03 28 28 02 03

28 D8

UUID 0x2803
(Characteristic),

decl=23, value

handle=24,

perm=0x28

←RX @E,0040,DL,H=0018,R=0000,

T=0000,P=28,

U=01A20C2000089A9EE21115A

133333365

80 18 05 01 18 00 00 00 00 00 28 10 01

A2 0C 20 00 08 9A 9E E2 11 15 A1 33 33

33 65 3D

UUID 0x6533…A201

(Acknowledged Data
Characteristic),
handle=24,

perm=0x28

←RX @E,0024,DL,H=0019,R=0000,

T=2902,P=0A,U=0229
80 0A 05 01 19 00 00 00 02 29 0A 02 02

29 A4

UUID 0x2902 (CCCD),

handle=25,

perm=0x0A

←RX @E,0024,DL,H=001A,R=001B,

T=2803,P=28,U=0328
80 0A 05 01 1A 00 1B 00 03 28 28 02 03

28 DE

UUID 0x2803

(Characteristic),
decl=26, value
handle=27,

perm=0x28

←RX @E,0040,DL,H=001B,R=0000,

T=0000,P=28,

U=02A20C2000089A9EE21115A

133333365

80 18 05 01 1B 00 00 00 00 00 28 10 02
A2 0C 20 00 08 9A 9E E2 11 15 A1 33 33

33 65 41

UUID 0x6533…A202
(Acknowledged Data
Characteristic),

handle=27,

perm=0x28

←RX @E,0024,DL,H=001C,R=0000,

T=2902,P=0A,U=0229
80 0A 05 01 1C 00 00 00 02 29 0A 02 02

29 A7

UUID 0x2902 (CCCD),
handle=28,

perm=0x0A

User guide 71 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6.3 Reading and writing local GATT attribute values

Read and write local GATT values using the gatts_read_handle (/RLH, ID=5/9) and gatts_write_handle (/WLH,
ID=5/10) API commands, respectively.

It is always possible to locally read any attribute, and locally write any attribute that supports the write

operation. Some attributes, such as service and characteristic declarations, contain only constant data (stored
in flash) that is not meant to be modified with a typical GATT write command. If you intend to change the
structure of the GATT database itself, use the gatts_create_attr (/CAC, ID=5/1) and gatts_delete_attr (/CAD,

ID=5/2) API commands.

3.6.3.1 Reading local GATT data

You can read the value of a local attribute using the gatts_read_handle (/RLH, ID=5/9) API command. EZ-Serial

firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will return the current value in the response.

Table 45 Example 7. Read local device name characteristic

Direction Text content Binary content Effect

TX→ /RLH,H=3 C0 02 05 09 03 00 6C Read attribute with handle

= 3

←RX @R,0031,/RLH,0000,

D=455A2D53657269616C2031

413A32313A4433

C0 16 05 09 00 00 12 00 45 5A 2D

53 65 72 69 61 6C 20 31 41 3A 32

31 3A 44 33 9B

Response indicates success,

hex data is “EZ-Serial

1A:21:D3”

3.6.3.2 Writing local GATT data

You can write the value of a local attribute using the gatts_write_handle (/WLH, ID=5/10) API command. This
command replaces any existing data in the attribute and is limited by the maximum length of the attribute in

the GATT structure.

Writing data does not automatically push a notification or indication packet to a remote client, even if the client
has subscribed to either of these types of pushed updates. See section

Notifying and indicating data to a remote client for details on how to push data.

Table 46 Example 8. Write “ABCD” at beginning of local Device Name characteristic

Direction Text content Binary content Effect

TX→ /WLH,H=3,D=41424344 C0 08 05 0A 03 00 04 00

41 42 43 44 81

Write “ABCD” (hex) into attribute

with handle = 3

←RX @R,000A,/WLH,0000 C0 02 05 0A 00 00 6A Response indicates success

TX→ /RLH,H=3 C0 02 05 09 03 00 6C Read attribute with handle = 3 to

verify

←RX @R,0031,/RLH,0000,D=41424344 C0 08 05 09 00 00 04 00

41 42 43 44 7D

Response indicates success, data

shows expected value

User guide 72 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6.4 Notifying and indicating data to a remote client

Notifying and indicating allow a server to push updates to a client without the client specifically requesting the
latest values. These transfer mechanisms provide an efficient way to send real-time updates without constant

polling from the client side, saving power for use cases such as remote sensors or any interrupt-driven

activities.

Notifications and indications both transmit data from the server to the client, but notifications are
unacknowledged, while indications are acknowledged. You can transmit multiple notifications during a single

connection interval, but you can only transmit one indication every two connection intervals (one interval for
the transmission and one for the acknowledgement).

Although the server decides when to push data to the client using these methods, the client retains ultimate

control over whether the server may transmit at all, via the use of “subscription” bits for each type of transfer.
All GATT characteristics which support either the “notify” or “indicate” operation must have a CCCD within the

set of attributes making up the complete characteristic structure. For example, the “Service Changed”
characteristic (UUID 0x2A05) within the “Generic Attribute” service (UUID 0x1801) is made up of three separate
attributes as listed in Table 47.

Table 47 Service changed GATT characteristic structure

Handle UUID Description

0x0009 0x2803 Characteristic declaration

0x000A 0x2A05 Service change value attribute

0x000B 0x2902 Client Characteristic Configuration Descriptor (CCCD)

This characteristic supports the “indicate” operation. For a client to subscribe to indications, it must set Bit 1

(0x02) of the value in the CCCD. This descriptor holds a 16-bit value, so the correct operation on the client side
is to write [02 00] to the 0x000B handle.

For characteristics that support the “notify” operation, the correct subscription flag is Bit 0 (0x01).

Notification and indication subscriptions do not persist across multiple connections.

User guide 73 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6.4.1 Notifying data to a remote client

Use the gatts_notify_handle (/NH, ID=5/11) API command to notify data to a remote Client. You must use a
handle corresponding to a value attribute for a characteristic for which the remote client has already

subscribed to notifications by writing 0x0001 to the relevant CCCD. First, you need create a CCCD value as

shown here.

Note: Notifying data to a client requires an active connection.

Table 48 Example 9. Notify a four-byte value to a Client manually using the customized

characteristic with CCCD

Direction Text Content Binary content Effect

TX→ /CAC,T=00,P=2,L=0012,D=002

800B10C2000089A9EE21115A13

3333365

C0 18 05 01 00 02 12 00 12 00 00 28
00 B1 0C 20 00 08 9A 9E E2 11 15

A1 33 33 33 65 89

Create a new CCCD

value as follows:

First, create new

service, UUID=.

←RX @R,0018,/CAC,0000,H=001D,V

=0001
C0 06 05 01 00 00 1D 00 01 00 83 Response indicates

success.

TX→ /CAC,T=00,P=2,L=0015,D=032

828180001B10C2000089A9EE21

115A133333365

C0 1B 05 01 00 02 15 00 15 00 03 28
28 18 00 01 B1 0C 20 00 08 9A 9E E2

11 15 A1 33 33 33 65 D6

Then, create a

characteristic.

←RX @R,0018,/CAC,0000,H=001E,V

=0001
C0 06 05 01 00 00 1E 00 01 00 84 Response indicates

success.

TX→ /CAC,T=01,P=B9,L=0014,D=

C0 06 05 01 01 89 14 00 00 00 03 Create a value for the

above characteristic.

←RX @R,0018,/CAC,0000,H=001F,V

=0000
C0 06 05 01 00 00 1F 00 00 00 84 Response indicates

success.

TX→ /CAC,T=00,P=0A,L=04,D=0229 C0 08 05 01 00 0A 04 00 02 00 02 29

A2

Create CCCD.

←RX @R,0018,/CAC,0000,H=0020,V

=0000
C0 06 05 01 00 00 20 00 00 00 85

←RX @E,0035,C,C=01,A=00A0502C1

1D4,T=00,I=0007,L=0000,O=0

00A,B=00

80 0F 04 05 01 D4 11 2C 50 A0 00 00

07 00 00 00 0A 00 00 44

Connected from peer

device

←RX @E,000E,ASC,S=00,R=03 80 02 04 02 00 03 24

←RX @E,001D,CU,C=01,I=0006,L=0

000,O=0064
80 07 04 08 01 06 00 00 00 64 00 97

←RX @E,001A,W,C=01,H=0020,T=00

,D=0100
80 08 05 02 01 20 00 00 02 00 01 00

4C

Subscribe service by

peer device.

TX→ /NH,C=1,H=1F,D=41424344 C0 08 05 0B 01 1F 00 04 41 42 43 44

9F

Notify “ABCD” (hex) via
attribute with handle =

31 (0x1F).

←RX @R,0009,/NH,0000 C0 02 05 0B 00 00 6B Response indicates

success.

User guide 74 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.6.4.2 Indicating data to a remote client

Use the gatts_indicate_handle (/IH, ID=5/12) API command to indicate data to a remote client. You must use a
handle corresponding to a value attribute for a characteristic for which the remote client has already

subscribed to indications by writing 0x0002 to the relevant CCCD.

Note: Indicating data to a client requires an active connection.

Table 49 Example 10. Indicate a start/end handle range to a client through the service changed
characteristic

Direction Text content Binary content Effect

←RX @E,001A,W,C=01,H=000B,

T=00,D=0200
80 08 05 02 01 0B 00 00 02 00

02 00 38

Remote Client writes 0x002 to

handle 0x0B to subscribe the
Service Changed

Characteristic.

TX→ /IH,C=1,H=A,D=1D002500 C0 08 05 0C 01 0A 00 04 1D

00 25 00 C3

Write 1D002500 via attribute

with handle = 10 (0x0A)

←RX @R,0009,/IH,0000 C0 02 05 0C 00 00 6C Response indicates success.

←RX @E,000F,IC,C=01,H=000A 80 03 05 03 01 0A 00 2F Event indicates Client has

confirmed receipt of data.

3.6.5 Detecting and processing written data from a remote client

Write operations from a remote GATT Client generates the gatts_data_written (W, ID=5/2) API event, containing

the handle and value data as well as the remote connection handle from the device that initiated the request.
This event occurs only if the write succeeds and was not blocked due to incorrect permissions, insufficient
encryption or authentication levels, or invalid length or offset.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module does not currently
implement an API event for read requests.

User guide 75 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.7 GATT client examples

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides GATT Client operational
support through a variety of API methods. All methods described in the sections below require an active

connection to a remote peer device, and will generate an error result if attempted without an active

connection.

3.7.1 How to discover a remote server’s GATT structure

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s remote GATT discovery methods
function in the same way as local discovery methods, with an addition of a connection handle in the discovery

result output. For an overview of behavioral differences between local and remote GATT discovery, see Listing
local GATT services, characteristics, and descriptors.

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable

the authentication bit, make sure that you also enable the encryption bit. If not, the command will
be rejected with an error result.

Note: Remote discovery procedures often complete with a final result code of 0x060A rather than
0x0000. This does not indicate a problem, but only means that the final internal request to find

more data in the specified start/end range yielded no further results. This is a logical indicator to

the Client that it should terminate the discovery process. You can avoid this result code by

specifying start and end range values in the discovery request command, which do not result in a

final search in an empty range on the server. However, these start and end values are typically not
available before performing the discovery in the first place.

3.7.1.1 Discovering remote GATT services

Use the gattc_discover_services (/DRS, ID=6/1) API command to obtain a list of services in the remote GATT

database on a connected peer device.

Table 50 Example 1: Remote GATT service discovery on an EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module peer device with factory default configuration

Direction Content Effect

TX→ /DRS Request to discover all remote

services

←RX @R,000A,/DRS,0000 Response indicates success

←RX @E,0027,DR,C=01,H=0001,R=0007,T=01,P=00,

U=0018
Service 0x1800, start=1, end=7

←RX @E,0027,DR,C=01,H=0008,R=000B,T=01,P=00,

U=0118
Service 0x1801, start=8, end=11

(0x0B)

←RX

@E,0043,DR,C=01,H=000C,R=0015,T=01,P=00,

U=00A10C2000089A9EE21115A133333365

Service 0x6533…A100, start=12

(0x0C), end=21 (0x15)

←RX @E,0043,DR,C=01,H=0016,R=001C,T=01,P=00,

U=00A20C2000089A9EE21115A133333365

Service 0x6533…A200, start=22

(0x16), end=28(0x1C)

User guide 76 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @E,0043,DR,C=01,H=FF00,R=FF07,T=01,P=00,

U=1F38A138AD823586A043135C471E5DAE

Service 0xAE5D…381F, start=65280

(0xFF00), end= 65287(0xFF07)

3.7.1.2 Discovering remote GATT characteristics

Use the gattc_discover_characteristics (/DRC, ID=6/2) API command to obtain a list of characteristics in the
remote GATT database on a connected peer device.

Table 51 Example 1: Remote GATT characteristic discovery on an EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module peer device with factory default configuration

Direction Content Effect

TX→ /DRC Request to discover all remote

characteristics

←RX @R,000A,/DRC,0000 Response indicates success

←RX @E,0027,DR,C=01,H=0002,R=0003,T=04,P=02,

U=002A

Char 0x2A00, decl handle=2, value

handle=3, perm=0x02

←RX @E,0027,DR,C=01,H=0004,R=0005,T=04,P=02,

U=012A

Char 0x2A01, decl handle=4, value

handle=5, perm=0x02

←RX @E,0027,DR,C=01,H=0006,R=0007,T=04,P=02,

U=042A

Char 0x2A04, decl handle=6, value

handle=7, perm=0x02

←RX @E,0027,DR,C=01,H=0009,R=000A,T=04,P=22,

U=052A

Char 0x2A05, decl handle=9, value

handle=0xA, perm=0x22

←RX @E,0043,DR,C=01,H=000D,R=000E,T=04,P=28,
U=01A10C2000089A9EE21115A133333365

Char 0x6533…A101, decl
handle=0xD, value handle=0xE,

perm=0x28

←RX @E,0043,DR,C=01,H=0010,R=0011,T=04,P=14,

U=02A10C2000089A9EE21115A133333365

Char 0x6533…A102, decl

handle=0x10, value handle=0x11,

perm=0x14

←RX @E,0043,DR,C=01,H=0013,R=0014,T=04,P=20,

U=03A10C2000089A9EE21115A133333365

Char 0x6533…A103, decl

handle=0x13, value handle=0x14,

perm=0x20

←RX @E,0043,DR,C=01,H=0017,R=0018,T=04,P=28,

U=01A20C2000089A9EE21115A133333365

Char 0x6533…A201, decl

handle=0x17, value handle=0x18,

perm=0x28

←RX @E,0043,DR,C=01,H=001A,R=001B,T=04,P=28,

U=02A20C2000089A9EE21115A133333365

Char 0x6533…A202, decl
handle=0x1A, value handle=0x1B,

perm=0x28

←RX @E,0043,DR,C=01,H=FF01,R=FF02,T=04,P=38,

U=1B666C080A578E83994EA7F7BF50DDA3

Char 0xA3DD…661B, decl
handle=0xFF01, value

handle=0xFF02, perm=0x38

←RX @E,0043,DR,C=01,H=FF04,R=FF05,T=04,P=08,

U=26FE2EE709244FB7914061D97A6CE8A2

Char 0xA2E8…FE26, decl

handle=0xFF04, value

handle=0xFF05, perm=0x08

User guide 77 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @E,0043,DR,C=01,H=FF06,R=FF07,T=04,P=02,

U=4BDEC4EDD4753B91EB472D2E08767FA4

Char 0xA47F…DE4B, decl
handle=0xFF06, value

handle=0xFF07, perm=0x02

←RX @E,0010,RPC,C=01,R=0000 Remote procedure complete with

success result

3.7.1.3 Discovering remote GATT descriptors

Use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors in the remote

GATT database on a connected peer device.

Table 52 Example 1: Remote GATT descriptor discovery on an EZ-Serial firmware platform for
AIROC™ Bluetooth® & Bluetooth® LE module peer device with factory default configuration

Direction Content Effect

TX→ /DRD Request to discover all remote

descriptors

←RX @R,000A,/DRD,0000 Response indicates success

←RX @E,0027,DR,C=01,H=000B,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x000B

←RX @E,0027,DR,C=01,H=000F,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x000F

←RX @E,0027,DR,C=01,H=0012,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x0012

←RX @E,0027,DR,C=01,H=0015,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x0015

←RX @E,0027,DR,C=01,H=0019,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x0019

←RX @E,0027,DR,C=01,H=001C,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0x001C

←RX @E,0027,DR,C=01,H=FF03,R=0000,T=05,P=00,

U=0229

UUID 0x2902 (CCCD),

handle=0xFF03

←RX @E,0010,RPC,C=01,R=0000 Remote procedure complete with

success result

User guide 78 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.7.2 How to read and write remote GATT attribute values

Reading and writing local GATT values can be done with the gattc_read_handle (/RRH, ID=6/4) and
gattc_write_handle (/WRH, ID=6/5) API commands, respectively.

3.7.3 How to detect notified or indicated values from a remote GATT server

A remote GATT Server may push data updates to a GATT Client at unpredictable times if the client has
subscribed to notifications or indications on a supported remote GATT Server characteristic. When this occurs,
EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module generates the gattc_data_received

(D, ID=6/3) API event with the connection handle, attribute handle, and value data.

To receive notifications or indications from a remote GATT server, you must first subscribe to the relevant type
of data updates by writing a special value to the attribute called Client Characteristic Configuration Descriptor

(CCCD). This attribute always has a UUID of 0x2902, and is a separate attribute relative to the characteristic
declaration (UUID 0x2803) or characteristic value (custom UUID).

Usually, the CCCD attribute has a handle value that is +1 or +2 from the characteristic value attribute. You can
use the gattc_discover_descriptors (/DRD, ID=6/3) API command to obtain a list of descriptors and identify

which attributes you need to use. For example, a remote server structure might contain something like the
following:

• Handle 0x0017, UUID 0x2803: Characteristic Declaration Descriptor

• Handle 0x0018, UUID 0x2A46: Characteristic Value Descriptor (“New Alert” characteristic)

• Handle 0x0019, UUID 0x2902: Client Characteristic Configuration Descriptor

With this structure, you can subscribe to notifications for this characteristic by writing the 16-bit value 0x0001
to the attribute with handle 0x0019. Remember that you must write this value as a little-endian integer [01

00]. To unsubscribe from receiving notifications, simply write the value 0x0000 to the same CCCD attribute.

Subscribing to indications requires the same procedure, but you must use the value 0x0002 instead of 0x0001.

The CCCD attribute with UUID 0x2902 will only be present for a characteristic which supports either
notifications or indications. Whether you should enable notifications or indications depends on which of those
two GATT methods is implemented on the GATT Server side. For official, adopted characteristics, you can find

this information on the Bluetooth® SIG developer website. For proprietary/custom characteristics, see the
documentation or reference material available from the product developer.

User guide 79 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.8 Security and encryption examples

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports built-in Bluetooth®
security technologies for safeguarding sensitive data transmitted wirelessly, including privacy and encryption.

3.8.1 Bonding with or without MITM protection

Bonding between two devices requires generating and exchanging encryption keys, and then permanently
storing encryption data along with the information required to identify the bonded device and reuse the same
keys again in the future. The mechanism of pairing depends on which side (master or slave) initiates the pairing

request, and the I/O capabilities of each side.

Note: While the Bluetooth® specification allows pairing (generation and exchange of encryption keys)
without bonding (permanent storage of encryption data), most common smartphones, tablets,
and computer operating systems require performing both at the same time if you need encryption.

The encryption-only arrangement (no bonding) is supported only between modules that support
pairing without bonding.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports pairing with or without
MITM protection enabled. The factory default settings apply the so-called “just works” method, with no

passkey entry and no MITM protection. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module also supports the configuration of a fixed passkey to be used during the pairing process instead of no

passkey.

3.8.1.1 Pairing in “Just Works” mode without MITM protection (Bluetooth® LE)

The simplest way to bond requires no special passkey entry or display. If your device has no input or output
capabilities, you must use this mode for pairing since MITM protection requires numeric display or entry (or

both) to function correctly.

Table 53 assumes that you have already connected to a remote peer device. An active connection is required
for any type of pairing operation to succeed. However, configuration of security settings may be done either
before or after connecting.

Table 53 Example 11. Configure simple pairing without MITM protection, then initiate pairing

Direction Text content Binary content Effect

TX→ SSBP,M=40,B=1,K=10,P=0,I=3,F=1 C0 06 07 0B 40 01 10

00 03 01 C6

Set “No Input / No Output”

I/O (Factory default).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates

success.

TX→ /P,C=01,B=0,K=10,M=40,P=0 C0 05 07 03 01 40 00

10 00 B9

Initiate pairing request to

remote peer.

←RX @R,0008,/P,0000 C0 02 07 03 00 00 65 Response indicates

success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00 00

00 00 28

Event indicates pairing

process request.

User guide 80 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 00 00

27

Event indicates pairing
process completed

successfully.

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00 27 Event indicates encryption
status changed

successfully.

3.8.1.2 Pairing with a fixed passkey(Bluetooth® LE) (Obsolete, not supported)

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports the configuration of a

fixed passkey to be used during the pairing process instead of either no passkey or a random one. You can
choose a fixed 6-digit value between 000000 and 999999 by using the smp_set_fixed_passkey (SFPK, ID=7/13)
API command and configuring the local I/O capabilities to the “Display Only” value with the
smp_set_security_parameters (SSBP, ID=7/11) API command.

Note: The fixed passkey takes effect only if you enable fixed passkey use by setting Bit 1 (0x02) of the
security flags parameter and set the “Display Only” I/O capabilities value (0x00) using the

smp_set_security_parameters (SSBP, ID=7/11) API command. If both conditions are not met, the
stack reverts to the default behavior of using a random passkey.

Table 54 assumes that the module is already connected to a remote peer device. An active connection is

required for any type of pairing operation to succeed. However, configuration of security settings may be done
either before or after connection.

In CYSmart, you need to set its IO ability to keyboard only.

Table 54 Example 12. Configure “123456” fixed passkey value and required I/O capabilities, then
pair from remote peer

Direction Text content Binary content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=2,F=3

C0 06 07 0B 4D 01 10

00 02 03 D4

Set “Display Only” I/O,
enable fixed passkey use

flag bit (0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00 6D Response indicates success.

TX→ SFPK,P=1E240 C0 04 07 0D 40 E2 01

00 94

Set fixed passkey value

(1E240 hex = 123456 dec).

←RX @R,000A,SFPK,0000 C0 02 07 0D 00 00 6F Response indicates success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00 00

00 00 28

Event indicates pairing

process request.

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 00 00

27

Event indicates encryption
status changed (peer

entered key).

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00 27 Event indicates encryption

status changed successfully.

User guide 81 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.8.1.3 Pairing with a random passkey (Bluetooth® LE)

Example 13 shows how to generate a random passkey and that peer device compares the passkey and accept
pairing.

In CYSmart, you need to set its IO ability to display Yes or No.

Table 55 Example 13. Configure random passkey value and required I/O capabilities, then pair from
remote peer

Direction Text content Binary content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=4,F=3

C0 06 07 0B 4D 01

10 00 04 03 D6

Set “Keyboard + Display” I/O,
enable fixed passkey use flag

bit (0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00

6D

Response indicates success.

←RX @E,001B,P,C=01,M=00,B=00,K=00,P=00 80 05 07 02 01 00

00 00 00 28

Event indicates pairing

process request.

←RX @E,0014,PKD,C=01,P=0000EA26 80 05 07 05 01 26

EA 00 00 3B

Event shows the random

passkey

 Peer device compare passkey

and click yes

←RX @E,000F,PR,C=01,R=0000 80 03 07 03 01 00

00 27

Event indicates encryption

status changed (peer entered

key).

←RX @E,000E,ENC,C=01,S=00 80 02 07 04 01 00

27

Event indicates encryption

status changed successfully.

3.8.1.4 Pairing with a random passkey (Bluetooth® classic)

Table 56 illustrates how to enter a Passkey to accept pairing with Bluetooth® Classic.

Table 56 Example 14. Enter random key to accept the pair from remote peer

Direction Text content Binary content Effect

TX→ SSBP,M=4D,B=1,K=10,P=0,I=2,F=3

C0 06 07 0B 4D 01

10 00 02 03 D4

Set “Display Only” I/O, enable

fixed passkey use flag bit

(0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00

6D

Response indicates success.

←RX @E,001B,P,C=00,M=00,B=00,K=00,P=00 80 05 07 02 00 00

00 00 00 27

Event indicates pairing

process request.

←RX @E,0015,BTPIN,A=E4A471C2FDFC 80 06 07 07 FC FD

C2 71 A4 E4 E1

Pin entry request from peer

device

TX→ /BTPIN,P=C8CEC,C=0 C0 05 07 11 00 EC

8C 0C 00 FA

Send Bluetooth® PIN code to

peer device as it displays

User guide 82 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @R,000C,/BTPIN,0000 C0 02 07 11 00 00

73

Response indicates success.

←RX @E,000F,PR,C=00,R=0000 80 03 07 03 00 00

00 26

Event indicates encryption
status changed (peer entered

key).

←RX @E,000E,ENC,C=00,S=00 80 02 07 04 00 00

26

Event indicates encryption

status changed successfully.

Table 57 shows how to compare the passkey and uses a yes/no indication for pairing via an end product

display. The peer device compares the key and accepts pairing.

Table 57 Example 15.Display random passkey value for Peer Device and select Yes/No to accept
pairing

Direction Text content Binary content Effect

TX→ SSBP,M=5D,B=1,K=10,P=0,I=0,F=3

C0 06 07 0B 4D 01

10 00 02 03 D4

Set “Display Only” I/O, enable

fixed passkey use flag bit

(0x02).

←RX @R,000A,SSPB,0000 C0 02 07 0B 00 00

6D

Response indicates success.

←RX @E,001B,P,C=00,M=00,B=00,K=00,P=00 80 05 07 02 00 00

00 00 00 27

Event indicates pairing

process request.

←RX @E,0014,PKD,C=01,P=0000EA26 80 05 07 05 01 26

EA 00 00 3B

Event shows the random

passkey

 Peer device compare passkey

and click yes

←RX @E,000F,PR,C=00,R=0000 80 03 07 03 00 00

00 26

Event indicates encryption
status changed (peer entered

key).

←RX @E,000E,ENC,C=00,S=00 80 02 07 04 00 00

26

Event indicates encryption

status changed successfully.

User guide 83 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.9 Performance testing examples

This section covers techniques to achieve optimal performance in specific contexts.

3.9.1 Maximizing throughput to a remote peer

Throughput concerns how much data you can move across a link within a specific period, usually expressed in

bytes per second or bits per second (8 bits per byte). In the case of Bluetooth® LE, the following guidelines help
improve the average throughput:

• Minimize the connection interval. The Bluetooth® LE specification allows 7.5 ms minimum connection

interval. Data transfers are specifically timed during Bluetooth® LE connections, and more frequent

transfers mean higher potential throughput.

• When operating in the GAP Peripheral role, the remote Central determines the initial interval, and you must

request an update with the gap_update_conn_parameters (/UCP, ID=4/3) API command after connecting.
The remote peer (master/central device) may either accept or reject this request. Note that if the remote
peer rejects the request, it does not notify the requesting device; the only evidence of the rejection is the

lack of a subsequent gap_connection_updated (CU, ID=4/8) API event.

• Maximize the payload size for GATT transfers. It takes much longer to send 20 one-byte packets than one

20-byte packet, due to the low transmission duty cycle required by the Bluetooth® LE protocol. If your
application has five 16-bit sensor measurement values that are used to the remote peer on the same

interval, use a single characteristic to send all 10 bytes at once rather than using five separate

characteristics.

• Use unacknowledged transfers. You can push more unacknowledged data through in a single connection
interval than you can with acknowledged transfers. A typical acknowledged data transfer requires two full
connection intervals to complete (one for the transfer and one for the acknowledgement), but multiple

unacknowledged transfers can be used in sequence within the same interval—up to one packet every 1.25
ms, if supported by the remote client. Typically, standalone full-stack modules cannot buffer and process

data quite this fast, but it is often possible to achieve something near this level of throughput. Note that
making this change may require additional application logic to provide a packet delivery/retry request

mechanism.

− For client-to-server transfers, use the “write-no-response” operation instead of “write.”

− For Server-to-Client transfers, use the “notify” operation instead of “indicate.”

These actions help increase the observed throughput, but simultaneously increase power consumption. Keep
this trade-off in mind to choose the right balance between power consumption and throughput.

Table 58 Example 16. Request a connection parameter update to 7.5-ms interval, no latency, 1-
second timeout

Direction Text content Binary content Effect

TX→ /UCP,C=40,I=6,L=0,O=64 C0 07 04 03 40

06 00 00 00 64

00 11

Request connection update

to 7.5 ms (6 * 1.25 ms), no
slave latency, 1-second

supervision timeout.

←RX @R,000A,/UCP,0000 C0 02 04 03 00

00 62

Response indicates success;

request sent to remote peer.

User guide 84 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Text content Binary content Effect

←RX @E,001D,CU,C=40,I=0006,L=0000,O=0064 80 07 04 08 40
06 00 00 00 64

00 D6

Event indicates new
connection parameters

accepted.

3.9.1.1 Maximizing throughput to an iOS device

Apple devices began supporting Bluetooth® LE technology with the iPhone 4S and iOS 5. iOS devices have
additional limitations on top of those mandated in the Bluetooth® specification.

The following additional guidelines apply for maximizing iOS throughput:

• When operating in the GAP Central role, the latest iOS devices limit the minimum connection interval of 30
ms (or 11.25 ms when connecting to HID devices). If the peripheral requests a shorter connection interval
than this, the iOS device rejects the request.

• iOS devices limit unacknowledged GATT data transfers (write-no-response or notify) to a maximum of four

per connection interval, according to widespread observations.

• iOS 5 added support for GAP Peripheral role operation, which includes support for 7.5-ms intervals as
required by the Bluetooth® specification. However, switching GAP roles may not be suitable depending on
other application requirements, and requires a notably different mobile app development approach with its

own side effects. In addition, AIROC™ Bluetooth® & Bluetooth® LE module for EZ-Serial firmware platform

for AIROC™ Bluetooth® LE module requires Peripheral-mode operation on the module, so the remote client

must use the Central role.

See the Core Bluetooth® Programming Guide on the Apple Developer website for official guidelines.

Table 59 Example 17. Request a connection parameter update to 30-ms interval, no latency, 1-

second timeout

Direction Text content Binary content Effect

TX→ /UCP,C=40,I=18,L=0,O=64 C0 07 04 03 40
18 00 00 00 64

00 23

Request connection update
to 30 ms (24 * 1.25 ms), no
slave latency, 1-second

supervision timeout.

←RX @R,000A,/UCP,0000 C0 02 04 03 00

00 62

Response indicates success;

request sent to remote peer.

←RX @E,001D,CU,C=40,I=0018,L=0000,O=0064 80 07 04 08 40
18 00 00 00 64

00 E8

Event indicates new
connection parameters

accepted.

3.9.1.2 Maximizing throughput to an Android device

Android devices officially began supporting Bluetooth® LE technology with the Android 4.3 release, though
Android 4.4 and onward greatly improved stability and supported functionality.

The following additional guidelines apply for maximizing Android throughput:

• Android 4.4.2 and earlier releases only support a single connection interval of 48.75 ms.

• Android 4.4.3 and later releases support intervals down to 7.5 ms when requested by the remote device,
even though the default interval is still 48.75 ms when first establishing the connection.

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html

User guide 85 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

• Newer Android handsets allow up to six unacknowledged GATT transfers in a single connection interval.

3.9.1.3 Minimizing power consumption

You can reduce power consumption by making the Bluetooth® LE radio active as infrequently as your
application allows. Specific actions described in this section help decrease average consumption, but also

decreases the potential throughput. Keep this trade-off in mind to choose the right balance between power
consumption and throughput.

If you have not already done so, ensure that the best possible CPU sleep mode for your application is

configured as described in section Managing sleep states. This will ensure that the CPU is not taking more

power than necessary. If the CPU is fully or partially awake more often than necessary, relative improvements

possible using the methods described below may not make a notable difference.

3.9.1.4 Minimizing power consumption while broadcasting

To reduce power consumption in an advertising state:

• Maximize the advertisement interval while broadcasting. The Bluetooth® LE specification allows
advertising at any interval between 20 ms and 10240 ms. Increasing the interval means fewer transmissions

within a given period. For example, a device advertising at 500 ms will use roughly 20% of the power
required by that same device advertising at 100 ms. Use the gap_set_adv_parameters (SAP, ID=4/23) API

command to change the default advertisement interval, or the gap_start_adv (/A, ID=4/8) API command to
use a non-default interval at the moment you enter an advertising state.

Side effects:

− Scanning devices are less likely to detect each advertisement packet, due to the reduced probability of

the scanning device actively receiving on the same channel at the same time as the advertisement
transmission occurs.

− Connections may take longer to establish, because this process begins with the same scanning process

and requires detection of a connectable advertisement packet from the target device.

• Do not use all three advertisement channels. The Bluetooth® LE spectrum dedicates three channels to
advertisement packets, spread across the 2.4-GHz Bluetooth® RF spectrum to help ensure reception in busy
RF environments. Most Bluetooth® LE devices advertise on all three channels, but you can selectively
advertise on only one or two of these channels using the gap_set_adv_parameters (SAP, ID=4/23) or

gap_start_adv (/A, ID=4/8) API commands. Advertising on only one channel requires roughly 33% of the
power needed when using all three.

Side effects:

− Scanning devices are less likely to detect advertisement packets for the same reason as above—there are
fewer advertisement packets being transmitted, which reduces the probability of actively receiving on
the correct channel at the correct time.

− The advertising device cannot combat RF interference as effectively. If you enable only one

advertisement channel, but that portion of the RF spectrum is extremely congested, then a scanning

device may not be able to detect advertisement packets at all even if the timing lines up correctly.

• If connections are not required, use a non-connectable/non-scannable mode. When a Peripheral device
is connectable (accepting new connections) or scannable (accepting scan request packets while

advertising), the Bluetooth® LE radio switches to a receiving state for approximately 150 µs after every

advertisement packet to listen for a connection request or scan request packet. When using all three

User guide 86 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

advertising channels, this means three complete TX-RX cycles occur repeatedly at the configured
advertisement interval. If a Peripheral device needs to broadcast only, you can configure a broadcast-only
advertising mode with the gap_set_adv_parameters (SAP, ID=4/23) or gap_start_adv (/A, ID=4/8) API

commands. This prevents the radio from switching into a receiving state after each transmission, saving
both time and power.

Side effects:

− Any data configured in the scan response packet payload is never transmitted. Most often, this is the
friendly device name.

• Minimize the advertisement and/or scan response data payload length. Regardless of the configured
advertisement interval, the advertisement payload also has a significant effect on the amount of time spent

on transmissions. The advertisement payload may be between 0 and 31 bytes, and the Bluetooth® LE RF
protocol uses a symbol rate of 1 Mbit/sec, which translates to 8 µs per byte. The fixed encapsulation and

overhead data in every advertisement or scan response packet takes roughly 140 µs to transmit, but the
payload can add up to 248 µs to this duration. In other words, a 31-byte payload (~390 µsec) requires twice

as much transmission time as a 7-byte payload (~195 µs).

In most cases, the application design requires very specific content in the advertisement payload. However,

you should optimize this as much as possible if low power consumption is critical for the application. You

can configure custom advertisement data content with the gap_set_adv_data (SAD, ID=4/19) and

gap_set_adv_parameters (SAP, ID=4/23) API commands, as described in section Customizing advertisement
and scanning response data.

3.9.1.5 Minimizing power consumption while connected

To reduce power consumption in a connected state:

• Maximize the connection interval. The Bluetooth® LE specification allows a connection interval from 7.5

ms to 4000 ms.

− When operating in the GAP Peripheral role, the remote Central determines the initial interval; you must

request an update after connecting if you need to change it. The remote peer may either accept or reject
this request.

• Use non-zero slave latency. While this affects only power consumption on the slave or peripheral device
during a connection, the slave latency setting can drastically improve power efficiency in many

applications. This setting controls how many connection intervals the slave may skip if it has no data to
send to the connected master device. Once the allowed number of intervals have occurred, the slave must

respond regardless of whether it has any new data to send. The slave may respond at any interval.

With the default “0” slave latency setting, the slave must acknowledge the master’s connection
maintenance packets at every interval. In applications requiring infrequent data transfers, this wastes a
great deal of power. Increasing the slave latency value to “3” allows the slave to respond every four intervals
instead of every interval, for an average power reduction of 75% while connected. Applications such as

environmental sensors and human input devices can benefit greatly from non-zero slave latency.

The slave latency value may not be higher than the maximum number that allows the calculated value for
[conn_interval * slave_latency] to remain below the supervision_timeout value, because
otherwise the connection would time out regularly.

Side effects:

− If the slave has no data to send, the master must wait until the slave latency period passes before it can

send or request data to or from the slave. The slave will not be aware of any requests from the master
until it enables its radio again. This can result in noticeable delays especially when using long connection

User guide 87 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

intervals. For example, a 500-ms connection interval and slave latency setting of “3” could create a
master-to-slave response delay of up to two full seconds. To mitigate this, select a balanced combination
of connection interval and slave latency values that provides acceptable master-side delay and slave-side

power consumption.

− Non-zero slave latency interval increases the possibility of a connection timeout in non-optimal RF
environments. The master triggers a supervision timeout condition if it does not receive an
acknowledgement from the slave before the timeout period elapses. The master resends any connection
maintenance packet that is not acknowledged, but if the slave has already switched back to a low-power

state between required response intervals, the master’s attempted retries may be ignored for too long.
To mitigate this, select a longer supervision timeout, shorter connection interval, and/or lower slave

latency value to achieve required connection stability in the target environment.

• Use unacknowledged transfers. Acknowledged transfers involve more data sent over the air to handle the

acknowledgement. This results in higher average consumption. If you do not need application-level data
transfer confirmations, use unacknowledged methods instead.

− For client-to-server transfers, use the “write-no-response” operation instead of “write.”

− For Server-to-Client transfers, use the “notify” operation instead of “indicate.”

3.10 Device firmware update examples

See section Latest EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module image for
information on where to find the latest EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module firmware images.

3.10.1 Updating firmware locally using UART

If you have access to the HCI UART interface, you can use standard the ModusToolbox™ Software and an UART
interface to flash a new firmware image onto the module. Details about how to do this are available on the

Infineon website.

Updating firmware via this method always returns to factory default settings and removes any bonding data
and custom GATT structure.

3.10.2 Updating firmware locally using Bluetooth® LE connection

You also can use Bluetooth® LE connection to update a new firmware image onto the module. Suppose you
have a computer with Windows 10 and which supports Bluetooth® LE, then follow these steps to update a
firmware image.

1. Connect to Infineon WICED Module as follows:

a) Select the Start button, then select Settings > Devices > Bluetooth® & other devices.

b) Turn on Bluetooth®.

2. Download WsOtaUpgrade.exe from: https://github.com/Infineon/btsdk-peer-apps-
ota/blob/master/Windows/WsOtaUpgrade/Release/x64/WsOtaUpgrade.exe. Or

If you have WICED Studio installed, WsOtaUpgrade.exe is also typically located in your WICED Studio
installation path:
…\WICED-Studio-5.2\common\peer_apps\ota_firmware_upgrade\Windows\WsOtaUpgrade\Release\x64.

Run WsOtaUpgrade.exe 20230412_ezserial_app_CYBT-243053-EVAL_140606_v1.4.6.6.ota.bin.

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://www.infineon.com/cms/en/design-support/software/device-driver-libraries/airoc-wi-fi-bluetooth-ez-serial-module-firmware-platform/
https://github.com/Infineon/btsdk-peer-apps-ota/blob/master/Windows/WsOtaUpgrade/Release/x64/WsOtaUpgrade.exe
https://github.com/Infineon/btsdk-peer-apps-ota/blob/master/Windows/WsOtaUpgrade/Release/x64/WsOtaUpgrade.exe

User guide 88 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Figure 10 WsOtaUpgrade.exe in cmd Terminal

3. Click Start to update the image on the module.

User guide 89 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Figure 11 WICED Bluetooth® LE firmware upgrade

After the upgrade has completed, the module will reboot automatically and execute the new image.

3.11 GPIO operation examples

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports reading and configuring

GPIO states including during system start up, before entering, or after exiting a low-power state. It also

supports reading and configuring GPIO interrupts.

Current AIROC™ Bluetooth® LE module chips usually have 40+ 8 GPIOs. Amount of system RAM required by EZ-

Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module firmware will increase with the

number of supported GPIO’s. Current EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module firmware supports only a limited number of GPIOs (by default, 20 GPIOs in the current implementation)
in order to optimially use the system RAM.

The following examples are based on CYBT_343026_EVAL unless specified otherwise.

3.11.1 Get current GPIO status

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports reading the current
status and configuration of GPIO for example input, output. It also supports reading current status and

configuration of GPIO interrupt:

Direction Content Effect

Get current GPIO status

TX→ GIOL,P=2,D=0 Get the input status and configuration of

Pin 2

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Input status is HIGH and configuration is

0x4000 (out_enable) for Pin 2

TX→ GIOL,P=2,D=1 Get the output status and configuration Pin

2

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Output status is HIGH and configuration is

0x4000 for Pin 2

TX→ GIOL,P=2,D=2 Get the interrupt status and configuration

of Pin 2

User guide 90 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @R,0020,GIOL,0000,L=00000001,H=00004000 Interrupt status is set and configuration is

0x4000 for Pin 2.

Note: The interrupt status works
only when interrupt is
configured; L=1 here does not
have any effect.

3.11.2 GPIO configuration when entering or exiting Low-Power state

To support the low-power scenario, the system may need to change GPIO state to LOW or HIGH when it enters

or exits a low-power state (sleep level =1).

Direction Content Effect

Set GPIO behavior when system enters/exits low power

TX→ SIOD,P=2,C=4200,L=0,O=0 To set Pin 2 to low with GPIO
configuration set to Pull down

immediately

←RX @R,000A,SIOD,0000 Response indicates success. LED
of CYBT_343026_EVAL should be

ON.

TX→ SIOD,P=2,C=4400,L=1,O=1 To set Pin 2 to high with

configuration set to Pull up when

system enters low power state

←RX @R,000A,SIOD,0000 Response indicates success

TX→ SIOD,P=2,C=4200,L=0,O=2 To set Pin 2 to low with
configuration set to Pull down

when system exits low power

state

←RX @R,000A,SIOD,0000 Response indicates success

With above configuration, LED will turn ON when device enters Low-Power state and turn OFF when device

exits Low-Power state (setting LP_MOD pin (I2C_SDA of CYBT_343026_EVAL) to high or low).

3.11.3 GPIO interrupt configuration

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports configuration of GPIO
interrupt based on user requirement.

Direction Content Effect

Set GPIO interrupt

TX→ SIOD,P=0,C=40D, O=3 To configure Pin 0 to
generate interrupt

event for both edges

User guide 91 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @R,000A,SIOD,0000 Response indicates

success

←RX @E,0020,INT,P=00,L=01,R=00000344,F=C53D Press SW3 of
CYBT_343026_EVAL, it
generates interrupt

event with timestamp

since boot

←RX @E,0020,INT,P=00,L=00,R=00000345,F=C5BB

3.11.4 Remove GPIO operation

Current EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module supports only 20 GPIO

operation due to system RAM limitation. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module maintains a operation list, in this case it supports up to 20 entries in the list. You may need to delete
further GPIO operation from the list in order to increase available RAM. Below commands help to understand
the process of removing support for a GPIO operation from the list.

Direction Content Effect

Get current GPIO operation list info

TX→ GIOL,P=FF,D=0 To get current pin map of GPIO

operation list

←RX @R,0020,GIOL,0000,L=00000005,H=00000000 It indicates that Pin 0 and Pin 2

(bit 0 and bit 2) have entries in

the operation list.

TX→ GIOL,P=FF,D=1 To get the current slot map of

the operation list.

←RX @R,0020,GIOL,0000,L=0000000F,H=00000000 It indicates that 4 slots have

been occupied.

Remove GPIO operation from operation list

TX→ SIOD,P=0,C=40D, O=4 Release Pin 0 from operation
list. C(configuraton) is ignored

in this command.

←RX @R,000A,SIOD,0000 Response indicates success.

Note: This operation
will only remove
the operation
from the list; it

does not change
the hardware
configuration.

TX→ GIOL,P=0,D=2 To get interrupt status and

configure value of Pin 0

User guide 92 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

←RX @R,0020,GIOL,0000,L=00000000,H=0000040D It indicates that Pin 0
operation is still interrupt

triggered.

Press SW3 of
CYBT_343026_EVAL, it still

generates interrupt event

TX→ GIOL,P=FF,D=0 To get current pin map of

operation list

←RX @R,0020,GIOL,0000,L=00000004,H=00000000 It indicates Pin 2 (bit 2) has

configuration entry in the list.
Pin 0 is removed from the

operation list.

TX→ GIOL,P=FF,D=1 To get current slot map of

operation list

←RX @R,0020,GIOL,0000,L=00000007,H=00000000 It indicates 3 slots have been

occupied. Slot 3 is released.

Note: Since one pin may have more than one operation (you may set pin 2 to 3 operations as the above

example). FW maintains one operation per one slot in the operation list. Slot map and pin map are

different: slot is unique in the configutation list while pin number is not. In the above example, you

set PIN 2 to 3 operations, the bit map of Pin is 0x00000004(only one pin, and pin value is 2), but the

bit map of slot is 0x00000007(it contain 3 slots).

3.11.5 GPIO pin configuration

GPIO pin configuration is a 32-bit value which corresponds to the internal WICED SDK API definition. The
following are the details of configuration from WICED SDK API:

001 // Trigger Type

002 // GPIO configuration bit 0, Interrupt type defines

003 GPIO_EDGE_TRIGGER_MASK = 0x0001,

004 GPIO_EDGE_TRIGGER = 0x0001,

005 GPIO_LEVEL_TRIGGER = 0x0000,

006

007 // Negative Edge Triggering

008 // GPIO configuration bit 1, Interrupt polarity defines

009 GPIO_TRIGGER_POLARITY_MASK = 0x0002,

010 GPIO_TRIGGER_NEG = 0x0002,

011

012 // Dual Edge Triggering

013 // GPIO configuration bit 2, single/dual edge defines

014 GPIO_DUAL_EDGE_TRIGGER_MASK = 0x0004,

015 GPIO_EDGE_TRIGGER_BOTH = 0x0004,

016 GPIO_EDGE_TRIGGER_SINGLE = 0x0000,

017

018 // Interrupt Enable

User guide 93 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

019 // GPIO configuration bit 3, interrupt enable/disable

defines

020 GPIO_INTERRUPT_ENABLE_MASK = 0x0008,

021 GPIO_INTERRUPT_ENABLE = 0x0008,

022 GPIO_INTERRUPT_DISABLE = 0x0000,

023

024 // Interrupt Config

025 // GPIO configuration bit 0:3, Summary of Interrupt

enabling type

026 GPIO_EN_INT_MASK = GPIO_EDGE_TRIGGER_MASK |

GPIO_TRIGGER_POLARITY_MASK | GPIO_DUAL_EDGE_TRIGGER_MASK |

GPIO_INTERRUPT_ENABLE_MASK,

027 GPIO_EN_INT_LEVEL_HIGH = GPIO_INTERRUPT_ENABLE |

GPIO_LEVEL_TRIGGER,

028 GPIO_EN_INT_LEVEL_LOW = GPIO_INTERRUPT_ENABLE |

GPIO_LEVEL_TRIGGER | GPIO_TRIGGER_NEG,

029 GPIO_EN_INT_RISING_EDGE = GPIO_INTERRUPT_ENABLE |

GPIO_EDGE_TRIGGER,

030 GPIO_EN_INT_FALLING_EDGE = GPIO_INTERRUPT_ENABLE |

GPIO_EDGE_TRIGGER | GPIO_TRIGGER_NEG,

031 GPIO_EN_INT_BOTH_EDGE = GPIO_INTERRUPT_ENABLE |

GPIO_EDGE_TRIGGER | GPIO_EDGE_TRIGGER_BOTH,

032

033 // GPIO Output Buffer Control and Output Value Multiplexing

Control

034 // GPIO configuration bit 4:5, and 14 output enable control

and

035 // muxing control

036 GPIO_INPUT_ENABLE = 0x0000,

037 GPIO_OUTPUT_DISABLE = 0x0000,

038 GPIO_OUTPUT_ENABLE = 0x4000,

039 GPIO_KS_OUTPUT_ENABLE = 0x0010, // Keyscan Output

enable

040 GPIO_OUTPUT_FN_SEL_MASK = 0x0030,

041 GPIO_OUTPUT_FN_SEL_SHIFT = 4,

042

043 // Global Input Disable

044 // GPIO configuration bit 6, "Global_input_disable" Disable

bit

045 // This bit when set to "1" , P0 input_disable signal will

control

046 // ALL GPIOs. Default value (after power up or a reset

event) is "0".

047 GPIO_GLOBAL_INPUT_ENABLE = 0x0000,

048 GPIO_GLOBAL_INPUT_DISABLE = 0x0040,

049

050 // Pull-up/Pull-down

051 // GPIO configuration bit 9 and bit 10, pull-up and pull-

down enable

052 // Default value is [0,0]--means no pull resistor.

053 GPIO_PULL_UP_DOWN_NONE = 0x0000, //[0,0]

054 GPIO_PULL_UP = 0x0400, //[1,0]

055 GPIO_PULL_DOWN = 0x0200, //[0,1]

User guide 94 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

056 GPIO_INPUT_DISABLE = 0x0600, //[1,1] // input

disables the GPIO

057

058 // Drive Strength

059 // GPIO configuration bit 11

060 GPIO_DRIVE_SEL_MASK = 0x0800,

061 GPIO_DRIVE_SEL_LOWEST = 0x0000, // 2mA @ 1.8V

062 GPIO_DRIVE_SEL_MIDDLE_0 = 0x0000, // 4mA @ 3.3v

063 GPIO_DRIVE_SEL_MIDDLE_1 = 0x0800, // 4mA @ 1.8v

064 GPIO_DRIVE_SEL_HIGHEST = 0x0800, // 8mA @ 3.3v

065

066 // Input Hysteresis

067 // GPIO configuration bit 13, hysteresis control

068 GPIO_HYSTERESIS_MASK = 0x2000,

069 GPIO_HYSTERESIS_ON = 0x2000,

070 GPIO_HYSTERESIS_OFF = 0x0000,

3.12 Init command examples

The init commands feature allows you to store EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®
LE module commands in the pre-allocated section. During FW startup, FW loads these init commands from pre-

allocated section and executes them in a sequence. It is useful for the use cases which do not have host MCU.
Currently, the stored command is only for text format command. It is the extend feature for the command

“/WUD” and ”/RUD”. Refer system_write_user_data (/WUD, ID=2/11) and system_read_user_data (/RUD,

ID=2/12).

FW reserves some flash slots (3 slots in current FW implementation) as a list to save Init commands. Each slot is
255 bytes. User can not add additional Init commands after reaching maximum capacity (Maximum capacity for

existing FW is 765 bytes (3*255=765 Bytes)).

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides command to Add, Delete
and Display Init commands.

3.12.1 Add Init command

Current EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides two methods to
add commands into Init command list: use history command information or simply use prefix ‘&’.

Direction Content Effect

Add command to Init command list with two methods

TX→ /PING Sent to ping the local module to verify proper

communication

←RX @R,001D,/PING,0000,R=00000115,F=3DBF Response indicates success

TX→ /WUD,O=1,D=00,M=3 Use history command info and store it to flash.

O = 1 means the previous command. ‘D’ is ignored.

←RX @R,000A,/WUD,0000 Response indicates success

TX→ &GBA Store “GBA” to Init command list using ‘&’ before the

command

←RX @R,0018,GBA,0000,A=E755F205D0D8 Response indicates success

User guide 95 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

3.12.2 Display current Init commands

Direction Content Effect

Display current commands in the Init command list

TX→ /RUD,O=00,M=5,L=1 Display all Init commands in the

Init command list.

‘O’ and ‘L’ is ignored in this

command.

←RX Init cmd list(Enabled):

 00:[/ping]

 01:[GBA]

 end of list

@R,000D,/RUD,0000,D=

Response indicates success and

shows “/PING” and “GBA”is

stored.

‘D’ is ignored here.

3.12.3 Check Init command is executed at system start up

Direction Content Effect

Command in the Init command list will be executed after system start up

TX→ /RBT Reset the module
(or you can press

reset button to

reset module)

←RX @R,000A,/RBT,0000

@E,003B,BOOT,E=01021313,S=05020016,P=0103,H=D1,C=00,A=E755F205D0D8

@E,000E,ASC,S=01,R=03

Start executing init cmd:

 --->/ping

@R,001D,/PING,0000,R=00000000,F=023E

 --->GBA

@R,0018,GBA,0000,A=E755F205D0D8

Finish executing init cmd!

Commands are
executed

sequentially after
system start up.
Observe that GBA

is command is

executed in the
startup

sequence.

3.12.4 Delete Init command

Direction Content Effect

Delete command one by one or remove all commands

TX→ /WUD,O=1,D=00,M=4 Delete Init command 1 from the list

‘D’ is ignored

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 display all Init commands in the Init

command list

←RX Init cmd list(Disabled):

 00:[/PING]

 end of list

Command 1 (GBA) is removed

User guide 96 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Operational examples

Direction Content Effect

@R,000D,/RUD,0000,D=

TX→ /WUD,O=1,D=00,M=5 Remove all commands from the Init

command list

‘D’ is ignored

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 Display current Init commands in the

Init command list

←RX @R,000D,/RUD,0000,D= No commands in the list now

3.12.5 Enable/disable Init command

Init command execution is enabled by default in EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides
commands to disable/enable Init command execution based on users requirement.

Direction Content Effect

Disable/Enable Init command operation

TX→ /WUD,O=FFFF,M=5,D=1 Disable Init command.

D= 1 is disable. D=0 is enable

←RX @R,000A,/WUD,0000 Response indicates success

TX→ /RUD,O=00,M=5,L=1 Display all Init commands in the

Init command list.

‘O’ and ‘L’ is ignored.

←RX Init cmd list(Disabled):

 00:[/PING]

 01:[GBA]

 end of list

@R,000D,/RUD,0000,D=

Response indicates success and

Init command list is Disabled.

If you restart system, these

commands will not be executed.

TX→ /WUD,O=FFFF,M=5,D=0 Enable Init command.

D= 1 is disable. D=0 is enable

←RX @R,000A,/WUD,0000 Response indicates success

User guide 97 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Application design examples

4 Application design examples

Examples in this section describe the hardware design and platform configuration necessary for some common
types of applications. You can use any of these exactly as described for your design, or modify as needed.

4.1 Smart MCU host with 4-Wire UART and full GPIO connections

This application design example allows maximum functionality with an external host microcontroller, including
efficient sleep state control and optional CYSPP/SPP communication.

4.1.1 Hardware design

Include the following design elements in your hardware:

• Module UART_TX pin to host UART RX pin

• Module UART_RX pin to host UART TX pin

• Module UART_CTS pin to host UART RTS pin

• Module UART_RTS pin to host UART CTS pin

• Module CYSPP, and LP_MODE pins to digital output host GPIOs

• Module CONNECTION pins to high-impedance digital input host GPIO

4.1.2 Module configuration

Most configuration settings will depend on your communication requirements. However, you may wish to
make one or more of the following changes:

• Change Device Name with gap_set_device_name (SDN, ID=4/15)

• Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters (.CYSPPSP,
ID=10/3)

• Enable system-wide Deep Sleep with system_set_sleep_parameters (SSLP, ID=2/19)

• Enable flow control and optionally change UART parameters with system_set_uart_parameters (STU,

ID=2/25)

4.1.3 Host configuration

The external host must match EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s

configured UART communication. The factory default settings are 115200,8/N/1 with no flow control. However,
you should enable and use flow control if the host supports it.

Use the host API library examples described in Host API Library to facilitate easy API communication between

the host and the module, making sure to properly assert and de-assert the module’s LP_MODE pin as described
in section Connecting GPIO pins.

Monitor the CONNECTION signal for a simple indicator of Bluetooth® LE/Bluetooth® connectivity without
needing to parse all possible API events from the module. This can be especially helpful when using CYSPP/SPP
mode.

User guide 98 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Application design examples

4.2 Dumb terminal host with CYSPP and simple GPIO state indication

This application design example takes advantage of the factory-default EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module configuration and support for automatic CYSPP connectivity. It is best

suited for applications where the external host cannot or does not need to impose any control over the EZ-

Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module via API commands or events.

4.2.1 Hardware design

Include the following design elements in your hardware:

• Module CYSPP pin to GND (force CYSPP data mode always, no API communication)

• Module UART_TX pin to host UART RX pin

• Module UART_RX pin to host UART TX pin

• Optional for flow control:

− Module UART_CTS pin to host UART RTS pin

− Module UART_RTS pin to host UART CTS pin

• Optional for connectivity status:

− Module CONNECTION pin to LED (active LOW)

4.2.2 Module configuration

The factory default configuration provides most of the behavior required. However, you may wish to make one

or more of the following changes:

• Change device name with gap_set_device_name (SDN, ID=4/15)

• Change CYSPP connection key and/or security requirements with p_cyspp_set_parameters (.CYSPPSP,
ID=10/3)

• Change system sleep settings with system_set_sleep_parameters (SSLP, ID=2/19)

• Change UART baud or other parameters with system_set_uart_parameters (STU, ID=2/25)

4.2.3 Host configuration

The external host must match EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module’s

configured UART communication. The factory-default settings are 115200,8/N/1 with no flow control. However,
you should enable and use flow control if the host supports it.

If the host supports a simple “enable” control line for whether it is safe to send data, use the module’s

CONNECTION pin. This signal is asserted (LOW) only when the CYSPP data pipe is fully established.

User guide 99 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Application design examples

4.3 Module-Only application with Beacon functionality

This application design example requires no special external hardware and only minimal initial configuration to
define the type of beaconing desired.

4.3.1 Hardware design

For correct operation, the module only requires power to the supply pins. You may also wish to include test pad
or header access to the UART interface and status pins such as LP_STATUS or CONNECTION during prototyping,
because this can greatly simplify debugging if necessary.

4.3.2 Module configuration

Make the following changes from the factory default configuration:

• Disable CYSPP mode with p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• Enable system-wide sleep mode with system_set_sleep_parameters (SSLP, ID=2/19)

• Configure non-connectable (broadcast-only) with gap_set_adv_parameters (SAP, ID=4/23)

• Configure custom advertisement data with the appropriate beacon content using gap_set_adv_data (SAD,
ID=4/19)

4.3.3 Host configuration

The simple automatic beacon design does not require any host hardware, and therefore needs no host

configuration.

User guide 100 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Host API library

5 Host API library

The host library implements a protocol parser/generator that communicates with the EZ-Serial firmware
platform for AIROC™ Bluetooth® & Bluetooth® LE module using the API protocol. The library is usually written in

standard C and wraps all API methods into easy-to-use command functions or response/event callbacks.
However, such a host API library is not provided with this EZ-Serial firmware platform for AIROC™ Bluetooth® LE

module. If it is required for system integration, you must create your own host API library based on the online
host API library provided for EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module on
Bluetooth® LE modules based on PSoC Creator. Attention should be paid because this EZ-Serial firmware

platform for AIROC™ Bluetooth® LE module has set of features different from EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module based on PSoC Creator. See previous chapters for details.

This section uses the online host API library for EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module based on PSOC™ Creator as examples to describe how to use the library as designed,
how to port it to other platforms, or how to create your own library if the provided code is not suited for direct

use or porting for any reason.

5.1 Host API library overview

5.1.1 High level architecture

The host library communicates with the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module, providing the host side of the command, response, or event communication mechanism that the
module implements. The host must perform the following over the UART interface:

• Read and parse incoming data (may be either response or event packets)

• Validate packets using checksum

• Trigger application-defined callbacks when incoming packets arrive

• Generate and send outgoing data (command packets)

The protocol parser and generator on the module side strictly follow these rules:

• Events may be generated by the module at any time

• Every command received from the host immediately generates a response

• An event generated (for example, by a GPIO interrupt) while a command is being processed does not
interrupt the command-response packet flow, but is sent out after the response packet is sent

The parser and generator on the host side must operate under these assumptions.

5.1.2 Host library design

Host communication with an EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module
requires that only the incoming module-to-host byte stream is processed correctly, and that the outgoing host-
to-module byte stream is properly formatted. To simplify this and provide a convenient layer of abstraction, the
host API library provides a simple “parse” function for incoming bytes, and “wrapper” command functions that
convert named parameter lists into binary packets ready for transmission.

Other than expecting standard C compiler functionality and little-endian byte order, the library is intentionally

platform-agnostic. The source of incoming data does not matter; the internal methods process the data only
after it arrives. The destination of outgoing data also does not matter; the internal methods perform only

http://www.cypress.com/file/384511/download
http://www.cypress.com/file/384511/download
http://www.cypress.com/file/384511/download

User guide 101 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Host API library

packetization and buffering of data so that it is ready to transmit. This improves portability because UART
peripherals are accessed differently on different platforms, and a single library cannot provide support across
all (or even very many) platforms if the UART peripheral implementation is built into the library itself.

5.2 Implementing a project using the Host API library

5.2.1 Basic application architecture

Any host application that uses the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module

API library must follow the same basic behavior:

• Set up UART peripheral for incoming and outgoing data

• Assign hardware-specific input/output callback methods

• Monitor UART for incoming data, and send to parser

• Handle event/response packets sent to callback handler

• Call command wrapper functions as needed for application

This process is shown Figure 12.

Boot

Initialize

Custom application behavior

UART RX?

Host API Library

YES

Setup UART peripheral

Assign UART TX function

Assign event handler function

Non-blocking app code

Send API commands as needed

Sleep
(optional)

NO

ParseByte()

Event handler call

ezs_cmd_...()

UART TX call

Figure 12 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module Host API

library application flow

The host API library contains the core parsing and generating functions necessary to translate incoming data

into callbacks and command function calls into binary packets.

User guide 102 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Host API library

5.2.2 Exposed API functions

The generic host API implementation written in C provides the following methods:

Function Description

EZSerial_Init Initializes parser and callback functions used for event

handling, serial output, and serial input

EZSerial_Parse Processes incoming bytes and triggers the event callback
function when response or event packet is successfully

processed

EZSerial_FillPacketMetaFromBinary Fills binary packet metadata in ezs_packet_t structure based
on the 4-byte binary packet header content (used internally

within EZSerial_Parse)

EZSerial_SendPacket Sends binary packet and checksum byte using the host-specific

output callback function

EZSerial_WaitForPacket Reads the data using the host-specific input callback function in
a blocking or non-blocking way depending on the timeout

argument (calls EZSerial_Parse as part of its functionality)

The application is responsible for providing implementation functions for three methods, assigned to the

function pointers below:

Function Description

EZSerial_AppHandler Called whenever a valid incoming packet is observed.

This is strictly required in all cases. It is a core element of

abstracting incoming packets into callback functions.

EZSerial_HardwareOutput Called whenever the API generator needs to send data to the

module over UART.

This is required if you intend to use the
EZSerial_SendPacket method, or the ezs_cmd_... macros

which also use that method. If you are manually sending well-
formed binary command packet data directly from your own

application, this may be assigned as NULL.

EZSerial_HardwareInput Called whenever the API parser needs to read data from the

module over UART.

This is required if you intend to use the

EZSerial_WaitForPacket method, or the EZS_WAIT_... or
EZS_CHECK_... macros which also use that method. If you are
manually calling the EZSerial_Parse method after reading

bytes in over UART, this may be assigned as NULL.

User guide 103 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Host API library

5.2.3 Command macros

To simplify binary packet creation, the library implements packet builder macros that match the protocol
definitions for each command method. For example:

• ezs_cmd_system_ping()

• ezs_cmd_system_reboot()

• ezs_cmd_gap_start_adv (mode, type, interval, channels, filter, timeout)

Commands which fall into the SET/GET categories and may access flash memory for retrieving or storing
setting data have two separate command functions for each:

• RAM: ezs_cmd_gatts_set_parameters(flags)

• Flash: ezs_fcmd_gatts_set_parameters(flags)

To substantially reduce flash usage, the above commands are defined as macros that make use of a single

function that accepts variable arguments:

ezs_output_result_t ezs_cmd_va(uint16 index, uint8 memory, ...)

This single method uses the supplied command table index (defined in the library header file as an enumerated
list) and the packed binary protocol structure definition to determine the number of arguments needed for any

given command and their data types.

This macro-based approach means that it is not possible to perform type checking at compile time, but it also
means that the entire command generator implementation uses a tiny quantity of flash memory (well under

1KB as measured on one 8-bit MCU).

5.2.4 Convenience macros

If the hardware-specific input and output functions are correctly defined, the library also provides macros to
further abstract common behavior into simpler code.

Function Description

EZS_SEND_AND_WAIT(CMD,

TIMEOUT)
Sends a command and then calls EZS_WAIT_FOR_RESPONSE

EZS_WAIT_FOR_PACKET(TIMEOUT) Calls EZSerial_WaitForPacket with type set to any

EZS_WAIT_FOR_RESPONSE(TIMEOUT) Calls EZSerial_WaitForPacket with type set to response

EZS_WAIT_FOR_EVENT(TIMEOUT) Calls EZSerial_WaitForPacket with type set to event

EZS_CHECK_FOR_PACKET() Wrapper for EZS_WAIT_FOR_PACKET(0), a non-blocking attempt

to read data

The assignable “return value” (evaluated expression result) for all these macros is a pointer to an
ezs_packet_t object. If the process fails at any point for any reason—timeout, command transmission failure,

incoming packet in progress, and so on—then the pointer value will be 0 (NULL).

User guide 104 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Host API library

5.3 Porting the Host API library to different platforms

The API protocol uses a packet byte stream, so the API host library expects matching byte ordering and packet
structure mapping to avoid any extra processing overhead. The module (and low-level Bluetooth® spec) uses

little-endian byte ordering, so the host must as well for all multi-byte integer data.

The example application code provided with the library to demonstrate EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module API usage includes a block of code that can verify proper support and
configuration of byte ordering and structure packing. While it is not possible to provide a single, comprehensive

cross-platform implementation of a structure packing macro due to variations between compilers, it is possible
to definitively test whether the existing code will work properly. This can quickly identify and avoid potential

problems that are otherwise very difficult to troubleshoot.

No special C extensions are used; tested compilers are GCC or GCC-compliant and follow the default C89 ruleset
because no additional extensions are enabled.

5.4 Using the API definition JSON file to create a custom library

The JSON schema used for the API definition has the following structure:

• info (single dictionary)

− date – Definition revision date

− version – API protocol definition version

• groups (list of dictionaries) […

− id – Numeric ID assigned to group

− name – Alpha name assigned to group (for example, “gap”)

− commands (list of dictionaries) […

o id – Numeric ID assigned to command

o name – Alpha name assigned to command (for example, “start_adv”)

o flashopt – Boolean flag indicating flash storage for settings

o parameters (list of dictionaries) […

▪ type – Data type (for example, “uint16”)

▪ name – Alpha name assigned to parameter (for example, “mode”)

▪ textname – text-mode equivalent (for example, “M”)

▪ required – Boolean flag indicating optional or required parameter

▪ format – Intended data presentation format (for example, “string”

or “hex”)

▪ default – Fixed default value if optional parameter

o returns (list of dictionaries) […see parameters…]

o references (single dictionary)

▪ commands (dictionary)

▪ events (dictionary)

− events (list of dictionaries) […see commands…]

User guide 105 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Troubleshooting

6 Troubleshooting

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module is designed to be as robust and
intuitive as possible, but it is always possible for something to go wrong. The instructions below can help

narrow down the cause of failure in identify solutions in some cases.

6.1 UART communication issues

If you are unable to send or receive data as expected over the UART interface, perform the following steps:

1. Ensure that VDD and GND pins are properly connected (VDDR also requires power).

2. Ensure that VDD has a stable supply within the supported range (typically 3.3 V).

3. Ensure that UART data pins are properly connected:

a. Module UART_RX to host TX

b. Module UART_TX to host RX

4. If flow control is enabled or expected, ensure that the UART flow control pins are properly connected:

a. Module UART_RTS to host CTS

b. Module UART_CTS to host RTS

5. Ensure that the CYSPP pin is floating or HIGH to avoid entry into CYSPP mode. When CYSPP is active, API
communication is disabled, and this can appear as a non-communicative state until a connection is

established.

6. Drive or strongly pull the LP_MODE pin HIGH to disable normal sleep mode. This is not necessary in most

cases, but it can help eliminate potential uncertainty during testing.

7. Reset the module and monitor the UART_TX pin during the boot process. If the module boots normally
(CYSPP pin de-asserted), the system_boot (BOOT, ID=2/1) API event should occur at the configured baud

rate. With factory default settings, these values are 115200 baud and text mode. If possible, verify activity
using an oscilloscope or a logic analyzer.

8. If attempting to communicate using the API protocol, ensure that your command packet structures are

correct per the definitions in Section Protocol structure and communication flow.

9. If you are sending commands in binary mode and the commands in use have any variable-length arguments

(data type of uint8a or longuint8a), ensure that the argument has the correct <length> [data0, data1,
..., dataN] format. Omitting the length byte will cause the API parser to interpret the packet incorrectly.

User guide 106 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Troubleshooting

6.2 Bluetooth® LE connection issues

If you are unable to connect from a remote device, perform the following steps:

1. Ensure that the module is advertising in a connectable state. Start advertising specifically in the
“connectable, undirected” mode using the gap_start_adv (/A, ID=4/8) API command, and watch for the

expected gap_adv_state_changed (ASC, ID=4/2) API event indicating that the state actually changed to
“active.”

2. Ensure you have set properly formed custom advertising data with gap_set_adv_data (SAD, ID=4/19) if you
have disabled automatic advertising packet management with gap_set_adv_parameters (SAP, ID=4/23).
Advertisement packets without a standard “Flags” field (usually [02 01 06]) do not appear in a

generic scan. See section Customizing advertisement and scanning response data.

6.3 GPIO signal issues

If you do not observe the expected behavior for GPIO input and/or output signals, perform the following steps:

1. Ensure that the pins that you have connected are correct based on your chosen module. See section GPIO
pin map for supported modules for per-device pin map details.

2. If a special-function output pin is not sufficiently driving a connected external device’s input logic, ensure

that the external device is not also attempting to drive or strongly pull the pin in the opposite direction at
the same time.

User guide 107 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7 API protocol reference

This section describes the API protocol that EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module uses. This protocol allows an external host to control the module, in addition to any GPIO signals

involved in the design. The protocol follows a strict set of rules to make deterministic host-side behavior
possible.

7.1 Protocol structure and communication flow

7.1.1 API protocol formats

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module implements a unified set of
functionalities that can be accessed using binary API communication. Infineon text-based protocol APIs are
also provided for ease of reading, as well as to generate binary API commands via the provided Python script.

7.1.1.1 Text format overview

The text protocol definition is comprised entirely of printable ASCII characters for ease of use in terminal

software. Response and Event packets sent from the module shall end with “\r\n” characters (0x0D, 0x0A).
Commands sent to the module may end with either or both. Unlike the binary mode described below, the text

protocol does not contain any checksum data or have a command entry timeout.

7.1.1.2 Binary format overview

The binary protocol uses a fixed packet structure for every transaction in either direction. This fixed structure

comprises a 4-byte header, followed by an optional payload of up to 2047 bytes (length specifier field is 11 bits

wide).

Currently defined binary packet does not contain more than 520 payload bytes at this time, and very few
packets contain more than 48. The API reference material below lists every fixed or minimum/maximum length

value for all commands, responses, and events within the protocol.

The payload carries information related to the command, response, or event. If present, this payload always

comes immediately after the header. All data in the payload is contained within one or more of the datatypes
specified in section API protocol data types.

To simplify the implementation of parsers and generators both inside the firmware and on external host
microcontrollers, any packet may have a maximum of one variable-length data member (byte array or string),

and if present, it must be the last element in the payload.

7.1.2 API protocol data types

The data types implemented for individual parameters/arguments in the API protocol are described below,
including representative text and binary examples.

In both text and binary modes, all negative numbers are represented in two’s complement form. In this form,

the MSb is the sign bit, which indicates a negative number if set. The remaining bits count upward from the

bottom of the selected (positive or negative) range. For example, the value 0x80 is the bottom of the “int8”
range, -128.

User guide 108 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Table 60 API protocol data types

Type Bytes Description Example

uint8 1 Unsigned 8-bit integer.

Range is 0 to 255.

Text Mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal 154

Binary Mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal 154

int8 1 Signed 8-bit integer.

Range is -128 to 127.
Text Mode:

• “10” = 0x10, decimal 16

• “9A” = 0x9A, decimal -102

Binary Mode:

• [10] = 0x10, decimal 16

• [9A] = 0x9A, decimal -102

uint16 2 Unsigned 16-bit integer.

Range is 0 to 65,535.

Text Mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal 39,612

Binary Mode: (little-endian)

• [34 12] = 0x1234, decimal 4,660

• [BC 9A] = 0x9ABC, decimal 39,612

int16 2 Signed 16-bit integer.
Range is -32,768 to

32,767.

Text Mode:

• “1234” = 0x1234, decimal 4,660

• “9ABC” = 0x9ABC, decimal -25,924

Binary Mode: (little-endian)

• [34 12] = 0x1234, decimal 4,660

• [BC 9A] = 0x9ABC, decimal -25,924

uint32 4 Unsigned 32-bit integer.
Range is 0 to

4,294,967,295.

Text Mode:

• “12345678” = 0x12345678 decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0, decimal 2,596,069,104

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678 decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0 decimal 2,596,069,104

int32 4 Signed 32-bit integer.
Range is -2,147,438,648

to 2,147,483,647.

Text Mode:

• “12345678” = 0x12345678 decimal 305,419,896

• “9ABCDEF0” = 0x9ABCDEF0, decimal -1,698,898,192

Binary Mode: (little-endian)

• [78 56 34 12] = 0x12345678 decimal 305,419,896

• [F0 DE BC 9A] = 0x9ABCDEF0 decimal -1,698,898,192

User guide 109 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Type Bytes Description Example

macaddr 6 48-bit MAC address. Text Mode:

“112233AABBCC” = 11:22:33:AA:BB:CC

Binary Mode: (little-endian)

[CC BB AA 33 22 11] = 11:22:33:AA:BB:CC

uint8a 1+ Array of uint8 bytes,

with prefixed one-byte

length value. Supported

length is 0-255 bytes.

Text Mode: (length omitted, detected automatically)

• “41424344” = Length 4, Data [41 42 43 44]

• “1122334455” = Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 41 42 43 44] = Ln. 4, [41 42 43 44]

• [05 11 22 33 44 55] = Ln. 5, [11 22 33 44 55]

longuint8a 2+ Array of uint8 bytes,
with prefixed two-byte

length value. Supported

length is 0-65535 bytes.

Text Mode: (length omitted, detected automatically)

• “41424344”= Length 4, Data [41 42 43 44]

• “1122334455”= Length 5, Data [11 22 33 44 55]

Binary Mode:

• [04 00 41 42 43 44]= Length 4, Data [41 42 43 44]

• [05 00 11 22 33 44 55]= Length 5, Data [11 22 33 44 55]

Note the 16-bit length prefix in binary mode is transmitted

in little-endian byte order, so the value 0x0005 is sent as [

05 00].

string 1+ String of uint8 bytes,
with prefixed one-byte

length value. Length is

0-255 bytes.

These two datatypes are represented in binary the same
way as uint8a and longuint8a data, but in text mode

they are entered and displayed exactly as-is, with the
assumption that they contain printable ASCII characters.
An example of a string value entered and displayed in this

way is the Device Name value.

7.1.3 Binary format details

7.1.3.1 Byte ordering and structure packing

The protocol implements a collection of common data types representing signed and unsigned integers, arrays

of binary bytes, arrays of printable characters, and certain technology-specific data (6-byte MAC address).

In text mode, all data except string/longstring values are represented as ASCII hexadecimal characters, without
a leading “0x” or other prefix. For example, the decimal value 154 is shown or entered as “9A”. Leading zeros
may be omitted. Also, in text mode, all multi-byte integer and MAC address data shall be entered in big-endian

byte order. For example, the value 0x1234 is entered or displayed as “1234”. The MAC address
11:22:33:AA:BB:CC is entered or displayed as “112233AABBCC”.

In binary mode, all multi-byte integers and MAC address data must be transmitted serially in little-endian byte
order. For example, the value 0x1234 is two bytes and transmitted as [34 12], and the MAC address

11:22:33:AA:BB:CC is six bytes and transmitted as [CC BB AA 33 22 11].

User guide 110 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

The Bluetooth® Low Energy specification mandates little-endian byte order internally, so data from the stack is
naturally presented to the application layer in this byte order. Further, many common embedded processors
use little-endian data storage. As a result, host MCU firmware can read in a serial byte stream into a contiguous

SRAM buffer, and define a structure like the following:

typedef struct {

 uint16 app;

 uint32 stack;

 uint16 protocol;

 uint8 hardware;

 uint8 cause;

 macaddr address;

} ezs_evt_system_boot_t;

The host MCU application can directly map this structure onto the packet buffer in memory with no additional

byte-swap operations. Accessing any one of the structure members gives correct access to the data in the
packet. This arrangement allows for minimal flash usage and CPU execution time.

7.1.3.2 Binary packet header

The binary packet 4-byte header structure is described Table 61.

Table 61 Binary packet header structure

Byte Field(s) Description

0 [7:6] - Type

[5:4] - Memory

[2:0] - Length

MSB

Type:

The “Type” field is a 2-bit value (MSb aligned) indicating whether the packet is a

command, response, or event. Options are as follows:

• 00: RESERVED

• 01: RESERVED

• 10: Event (module-to-host)

• 11: Response (module-to-host) and Command (host-to-module)

Protocol methods follow this convention when the “Type” value is aligned properly:

• Commands sent to the module begin with 0xC0

• Responses sent to the host begin with 0xC0

• Events sent to the host begin with 0x80

Memory:
The “Memory” field is a 2-bit value (MSb aligned) indicating whether a sent

command accesses the runtime value stored in RAM or the boot value stored in

flash. This field is ignored for commands which do not read or write configuration

data stored in either flash or RAM. Options are as follows:

• 00: Runtime (RAM)

• 01: Boot (Flash)

• 10: RESERVED

• 11: RESERVED

The values stored in RAM and flash may be the same, if you have not modified the

runtime value separately from the boot value since the last power-on or reset.

User guide 111 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Byte Field(s) Description

Length MSB:

The length MSB field contains the upper three bits of the payload length value (11

bits total). See below for length detail.

The “Type”, “Memory”, and “Length MSB” bitfields are positioned within Byte 0 as

follows:

 0b TTMM 0LLL

The remaining bit in the middle is currently reserved and should always be set to

zero.

1 Length LSB This value indicates the number of bytes in the payload. It may be 0 to indicate no
payload, or any value up to the 11-bit maximum of 2047 (combining the LSB and

MSB fields together).

Typically, packets fit easily within a 64-byte buffer. However, a few packets such as

local GATT reads and writes may potentially be much longer than this. Protocol
methods which may require or generate atypically long packets are documented

specifically.

2 Group ID All protocol methods are organized into logically separate groups, such as GAP,
GATT Server, CYSPP, and so on. This byte represents the group ID, between 0 and

255.

A single group ID applies to all commands, responses, and events within that group.

3 Method ID Within each group and packet type, every protocol method has a unique ID between
0 and 255. Command/response pairs always have matching IDs.

Command/response pairs and events are separate collections and may have

overlapping method IDs, each in a set starting from 0.

7.2 API commands and responses

All commands and responses implemented in the API protocol are described in detail below. API events are
documented separately in section 7.3. A master list of all possible error codes resulting from commands can be

found in section Error codes.

Important things to note about the reference material in the following sections:

• The 16-bit “result” code is common to every response, and always occupies the same position in the packet
(immediately after the binary header or text name). For simplicity, this “result” field is omitted from each list

of response parameters in the tables below.

• The “Text” column in each “C ommand Arguments” table contains the text code for each argument.
Required arguments have a red asterisk (*) next to their text codes. Optional arguments in text mode will
not have a red asterisk.

User guide 112 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• All command arguments are required in binary mode, because binary parsing depends on predictable
argument position and byte width for proper data identification and unpacking.

• The “Command-Specific Result Codes” list appearing for some commands do not include some errors that

may result from command entry or protocol format mistakes. These common errors include:

− 0x0203 – EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND

− 0x0206 – EZS_ERR_PROTOCOL_SYNTAX_ERROR

− 0x0207 – EZS_ERR_PROTOCOL_COMMAND_TIMEOUT

− 0x0209 – EZS_ERR_PROTOCOL_INVALID_CHECKSUM

− 0x020A – EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH

− 0x020B – EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT

− 0x020C – EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE

− 0x020D – EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT

− 0x020E – EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA

− 0x020F – EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE

− 0x0210 – EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE

See section Error codes for details on these and other error codes.

Commands and responses are broken down into the following groups:

• Protocol group (ID=1)

• System group (ID=2)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• GATT Client Group (ID=6)

• SMP Group (ID=7)

• GPIO Group (ID=9)

• CYSPP Group (ID=10)

• Bluetooth® group (ID=14)

• Spp group (ID=19)

7.2.1 Protocol group (ID=1)

Protocol methods allow you to change the way the API protocol operates while communicating with an

external host over the serial interface.

Commands within this group are listed below:

• protocol_set_parse_mode (SPPM, ID=1/1)

• protocol_get_parse_mode (GPPM, ID=1/2)

• protocol_set_echo_mode (SPEM, ID=1/3)

• protocol_get_echo_mode (GPEM, ID=1/4)

Events within this group are documented in section System Group (ID=2).

User guide 113 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)

Configure new protocol parse mode and transparent mode.

In binary mode, all API packets to and from the module must use a binary format with a fixed header and
payload structure, as described in the reference material. In text mode, all commands, responses, and events

use a human-readable format that is suitable for typing in a terminal. See section Protocol structure and
communication flow for details.

In non-transparent mode, though SPP is connected, user still can use command mode. Data receive from SPP
connection will arrive with event “.SPPD”.

Note: When the protocol mode is changed with this command, the effect is immediate. The response
packet returned will come in the newly configured format, not the previous format.

Binary header

 Type Length Group ID Notes

CMD C0 01 01 01 None

RSP C0 02 01 01 None

Text info

Text name Response length Category Notes

SPPM 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M

New parse and tansparent mode:

Bit 0 - Text or Binary Mode

• 0 = Text mode (factory default)

• 1 = Binary mode

Bit 1: Disables Transparent transmission mode for SPP

• 0: Does not include the header for SPP

• 1: Includes header for SPP

Bit 7: Enables Auto detection text/binary mode

• 0: Disables automatic detecton text/binary mode(in default)

• 1: Enables automatic detection text/binady mode

Response parameters

None.

Related commands

• protocol_get_parse_mode (GPPM, ID=1/2)

User guide 114 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)

Obtain current protocol parse mode.

Binary header

 Type Length Group ID Notes

CMD C0 00 01 02 None

RSP C0 03 01 02 None

Text info

Text name Response length Category Notes

GPPM 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M

Current parse and tansparent mode:

Bit 0 - Text or Binary Mode

• 0 = Text mode (factory default)

• 1 = Binary mode

Bit 1: Disable Transparent transmission mode for SPP

• 0: It does not include header for SPP

• 1: It includes header for SPP

Bit 7: Enable Auto detection text/binary mode

• 0: It disable automatic detecton text/binary mode(in default)

• 1: It enable automatic detection text/binady mode

Related commands

• protocol_set_parse_mode (SPPM, ID=1/1)

User guide 115 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)

Configure new protocol echo mode.

The protocol echo mode applies when using text mode API protocol over UART to communicate with the
module. Enabling echo will result in each input byte being sent back to the host after it is parsed. Local echo

may be desirable during a terminal session, but it is typically simpler disable it for MCU communication so that
the MCU only needs to parse response and event data.

Note: Local echo does not apply in CYSPP data mode or CYCommand data mode, regardless of the

protocol format in use. It only affects communication over the UART interface when using the API

protocol in text mode.

Binary header

 Type Length Group ID Notes

CMD C0 01 01 03 None

RSP C0 02 01 03 None

Text info

Text name Response length Category Notes

SPEM 0x000A SET None

Command arguments

Data type Name Text Description

uint8 mode M

New echo mode:

• 0 = Disabled

• 1 = Enabled (factory default)

Response parameters:

None.

Related commands:

• protocol_get_echo_mode (GPEM, ID=1/4)

User guide 116 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

Obtain current protocol echo mode.

Binary header

 Type Length Group ID Notes

CMD C0 00 01 04 None

RSP C0 03 01 04 None

Text info

Text name Response length Category Notes

GPEM 0x000F GET None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M

Current echo mode:

• 0 = Disabled

• 1 = Enabled (factory default)

Related commands:

• protocol_set_echo_mode (SPEM, ID=1/3)

User guide 117 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2 System group (ID=2)

System methods relate to the core device and describe functionality such as boot status, setting or obtaining
device address information, and resetting to an initial state.

Commands within this group are listed below:

• system_ping (/PING, ID=2/1)

• system_reboot (/RBT, ID=2/2)

• system_dump (/DUMP, ID=2/3)

• system_store_config (/SCFG, ID=2/4)

• system_factory_reset (/RFAC, ID=2/5)

• system_query_firmware_version (/QFV, ID=2/6)

• system_query_random_number (/QRND, ID=2/8)

• system_write_user_data (/WUD, ID=2/11)

• system_read_user_data (/RUD, ID=2/12)

• system_set_bluetooth_address (SBA, ID=2/13)

• system_get_bluetooth_address (GBA, ID=2/14)

• system_set_sleep_parameters (SSLP, ID=2/19)

• system_get_sleep_parameters (GSLP, ID=2/20)

• system_set_tx_power (STXP, ID=2/21)

• system_get_tx_power (GTXP, ID=2/22)

• system_set_transport (ST, ID=2/23)

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

• system_get_uart_parameters (GTU, ID=2/26)

Events within this group are documented in section System Group (ID=2).

7.2.2.1 system_ping (/PING, ID=2/1)

Test API communication.

Pinging the module verifies that the host and the module can communicate properly in API mode. The module

should immediately generate a well-formed response to this command if communication is working correctly.

Host-side initialization routines often begin with this step.

Runtime values returned in the response to this command are calculated based on the built-in 32768-Hz watch

clock oscillator (WCO) that is used to manage low-power operation of the Bluetooth® LE stack. No external
hardware is required for this functionality.

Pinging the module does not serve any purpose other than to verify proper communication, or to obtain
runtime since reset. You do not need to ping at regular intervals to keep a connection alive or prevent the

module from entering low-power states. The platform automatically maintains Bluetooth® LE connections
unless commanded otherwise. See section Managing sleep states for details of sleep behavior.

User guide 118 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 00 02 01 None

RSP C0 08 02 01 None

Text info

Text name Response length Category Notes

/PING 0x001D ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 runtime R Number of seconds since boot

uint16 fraction F Fraction of a second (units are ms)

7.2.2.2 system_reboot (/RBT, ID=2/2)

Reboot module.

A module reboot takes effect immediately. Any configuration settings not stored in flash revert to their boot-

level values, and any active connections are terminated without clean closure (remote peer will detect a
supervision timeout). See section Saving runtime settings in flash for details about how to store settings in flash
to make them persist across reboots and power cycles.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 02 None

RSP C0 02 02 02 None

Text info

Text name Response length Category Notes

/RBT 0x000A ACTION None

Command arguments

None.

Response parameters

None.

User guide 119 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• system_store_config (/SCFG, ID=2/4) – Used to store all configuration items in flash before rebooting, if

desired

Related events

• system_boot (BOOT, ID=2/1) – Occurs once the reboot process completes

7.2.2.3 system_dump (/DUMP, ID=2/3)

Dump current device configuration or state information.

Performing a system dump generates a sequence of system_dump_blob (DBLOB, ID=2/5) API events, each
containing up to 16 bytes, until all data transmission is complete. You can provide this information for

troubleshooting if requested by Infineon support staff.

Binary header

 Type Length Group ID Notes

CMD C0 01 02 03 None

RSP C0 04 02 03 None

Text info

Text name Response length Category Notes

/DUMP 0x0012 ACTION None

Command arguments

Data type Name Text Description

uint8 type T

Type of information to dump:

• 0 = Runtime configuration data (default)

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

• 3 = System state data

Response parameters

Data type Name Text Description

Uint16 Length L

Number of bytes to be dumped:

• Configuration data is 674 bytes (0x02A2)

• State data is 1,955 bytes (0x07A3)

Related commands

• system_store_config (/SCFG, ID=2/4)

Related events

• system_dump_blob (DBLOB, ID=2/5)

User guide 120 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.4 system_store_config (/SCFG, ID=2/4)

Store all configuration settings into flash.

This command applies all runtime settings into the boot-level configuration area stored in non-volatile flash.
See section Configuration settings, storage, and protection for details about different configuration areas.

Attention: This command briefly halts CPU execution, and may cause connectivity loss for any open
connections if this occurs during a precise moment when low-level Bluetooth® LE interrupts
require processing. If possible, use this command only while not connected to avoid this

potential issue.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 04 None

RSP C0 02 02 04 None

Text info

Text name Response length Category Notes

/SCFG 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related commands

• system_factory_reset (/RFAC, ID=2/5)

User guide 121 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.5 system_factory_reset (/RFAC, ID=2/5)

Reset all settings to factory defaults and reboot.

This command reverts all configuration settings back to the values stored in the factory default area. After
applying these default values, the system reboots immediately.

Attention: If you have configured custom serial communication settings using the system_set_transport
(ST, ID=2/23) API command, using this command will undo these changes and may prevent a
working communication until you reconfigure your host device to the factory default

transport settings. See section Factory default behavior for details about these settings.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 05 None

RSP C0 02 02 05 None

Text info

Text name Response length Category Notes

/RFAC 0x000B ACTION None

Command arguments

None.

Response parameters

None.

Related events

• system_factory_reset_complete (RFAC, ID=2/3) – Occurs after the settings are reset

• system_boot (BOOT, ID=2/1) – Occurs after the system reboots

User guide 122 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)

Query EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module firmware version info.

This command provides the same version details that the system_boot (BOOT, ID=2/1) event contains.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 06 None

RSP C0 0D 02 06 None

Text info

Text name Response length Category Notes

/QFV 0x002C ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 App E Application version number (for example, 0x0101021F = 1.1.2 build 31)

uint32 stack S
Bluetooth® LE stack version number (for example, 0x02020355 = 2.2.3 build

85)

uint16 protocol P API protocol version number (for example, 0x0103 = 1.3)

uint8 hardware H

Hardware identifier:

• 0x01 = CYBLE-01201X-X0

• 0x02 = CYBLE-014008-00

• 0x03 = CYBLE-022001-00

• 0x04 = CYBLE-2X20XX-X1

• 0x05 = CYBLE-2120XX-X0

• 0x06 = CYBLE-212020-01

• 0x07 = CYBLE-214009-00

• 0x08 = CYBLE-214015-01

• 0x09 = CYBLE-222005-00

• 0x0A = CYBLE-222014-01

• 0x0B = CYBLE-224110-00

• 0x0C = CYBLE-224116-01

• 0xB1 = CYBLE-013025-00

• 0xD1 = CYBT-343026-01

• 0xD2 = CYBT-353027-02

• 0x22 = CYBT-213043-02

User guide 123 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

• 0x23 = CYBT-243053-02

• 0x24 = CYBT-223058-02

• 0x25 = CYBT-253059-02

• 0x26 = CYBT-273063-02

• 0x27 = CYBT-243068-02

• 0x31 = CYBLE-343072-02

Related commands

• system_boot (BOOT, ID=2/1)

7.2.2.7 system_query_random_number (/QRND, ID=2/8)

Query random number generator for 8-byte pseudo-random sequence.

This command provides simple access to the random number generator in the AIROC™ Bluetooth® &
Bluetooth® LE module’s chipset. The query always provides exactly eight bytes of random data.

Note: This pseudo-random generation mechanism is FIPS PUB 140-2 compliant.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 08 None

RSP C0 0B 02 08 None

Text info

Text name Response length Category Notes

/QRND 0x001E ACTION None

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a data D

Random 8-byte sequence (1 length byte equal to 0x08, followed by 8 data

bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

User guide 124 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.8 system_write_user_data (/WUD, ID=2/11)

Write arbitrary data to the user flash storage area.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides 256 bytes of non-volatile
flash storage for application data. This command allows writing 1-32 bytes to any position within this 256-byte

area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if
you are writing 32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary header

 Type Length Group ID Notes

CMD C0 06+ 02 0B Variable-length command payload, value specified is minimum.

RSP C0 02 02 0B None

Text info

Text name Response length Category Notes

/WUD 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint16 offset O*

Offset (0-65535)

Note: See details for difference case.

User guide 125 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

Uint8 Mode M

Operation Mode(0~6):

• 0 =Write user data (default)

O: Offset from 0-0xFF

D: Data to write

• 1 = Write register. Start from: 0x320000+offset

Note: Obsolete, not implemented.

O: Offset from 0-0xFFFF

D: Data to write. Data length is only 4 bytes

• 2 = Write RAM. Start from: 0x00220000+offset

Note: Obsolete, not implemented.

O: Offset from 0-0xFFFF

D: Data to write

• 3 = Add Init command to list

O: Offset in history command list.

D: N/A

• 4 = Delete Init command to list.

O: Init command number,

D: N/A

• 5 = Reset Init command list.

O: If 0xFFFF, specially disable Init command list,

otherwise delete all Init command list content

D: N/A

• 6 = Write register2. Start from: 0x330000+offset

Note: Obsolete, not implemented.

O: Offset from 0-0xFFFF

D: Data to write

uint8a data D*

Data to write (1-32 bytes)

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload

Detail depends on Mode

Response parameters

None.

User guide 126 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• system_read_user_data (/RUD, ID=2/12)

7.2.2.9 system_read_user_data (/RUD, ID=2/12)

Read arbitrary data from the user flash storage area.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides 256 bytes of non-volatile
flash storage for application data. This command allows reading 1-32 bytes from any position within this 256-
byte area.

Note: You must specify a data offset and length which do not exceed 256 when combined. For example, if
you are reading 32 bytes of data, the specified “offset” argument must be 224 (0xE0) or less.

Binary header

 Type Length Group ID Notes

CMD C0 06 02 0C None.

RSP C0 03-23 02 0C Variable-length response payload, minimum of 3 (0x3), maximum of 35

(0x23).

Text info

Text name Response length Category Notes

/RUD 0x000D-0x004D ACTION Variable-length response payload, minimum of 13 (0xD),

maximum of 77 (0x4D).

Command arguments

Data type Name Text Description

uint16 offset O* Offset (0-65535)

Uint8 Mode M

Operation Mode(0~6):

• 0 = Read user data (default)

O: Offset from 0-0xFF

D: Data read

• 1 = Read register. Start from: 0x320000+offset (Note: Obsolete, not

implemented).

O: Offset from 0-0xFFFF

D: Data to Read

• 2 = Read RAM. Start from: 0x00220000+offset

Note: Obsolete, not implemented.

O: Offset from 0-0xFFFF

D: Data to Read

• 3 = Read Init command

User guide 127 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

O: Init command number,

D: Command content to Read

• 4 = Read Init command list info.

O: N/A

D: Init command list info

 Byte 0: disable

 Byte 1: Init command total number

 Byte 2&3: Next Init command write location

• 5 = Print current init command list.

O: N/A

D: N/A

• 6 = Read register 2. Start from: 0x330000+offset

Note: Obsolete, not implemented.

O: Offset from 0-0xFFFF

D: Data to Read

uint8 length L*
Number of bytes to read (1-32)

Only valid for M=0,2

Response parameters

Data type Name Text Description

uint8a data D

Data read (1-32 bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

Detail depend on M

Related commands

• system_write_user_data (/WUD, ID=2/11)

User guide 128 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.10 system_set_bluetooth_address (SBA, ID=2/13)

Configure a new Bluetooth® address.

This address is visible to remote scanning or connected devices, if the module is not operating with privacy
enabled. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module uses a fixed public

address by default, which is generated dynamically based on unique properties of the chipset inside each
module (including wafer/die data). Normally, you do not need to change the Bluetooth® address using this
command.

Note: When privacy is enabled, remote peer devices see a random address instead of the fixed address.

Central or Peripheral privacy is not the same as encryption. See related commands and example

usage for detail.

Binary header

 Type Length Group ID Notes

CMD C0 06 02 0D None.

RSP C0 02 02 0D None.

Text info

Text name Response length Category Notes

SBA 0x0009 SET None.

Command arguments

Data type Name Text Description

Macaddr address A New Bluetooth® address. Set all six 0x00 bytes to revert to factory-provided

address.

Response parameters

None.

Related commands

• system_get_bluetooth_address (GBA, ID=2/14)

• smp_send_passkeyreq_response (/PE, ID=7/6)

User guide 129 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.11 system_get_bluetooth_address (GBA, ID=2/14)

Obtain the current Bluetooth® address.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 0E None.

RSP C0 08 02 0E None.

Text info

Text name Response length Category Notes

GBA 0x0018 GET None.

Command arguments

None.

Response parameters

Data type Name Text Description

Macaddr address A Current public Bluetooth® address

Related commands

• system_set_bluetooth_address (SBA, ID=2/13)

• smp_send_passkeyreq_response (/PE, ID=7/6)

7.2.2.12 system_set_sleep_parameters (SSLP, ID=2/19)

Configure new system-wide sleep settings.

To maintain the required activity (including Bluetooth® LE communication, PWM output, and UART output), EZ-

Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will not automatically enter Deep
Sleep mode even if it is configured as normal sleep mode.

Binary header

 Type Length Group ID Notes

CMD C0 03 02 13 None.

RSP C0 02 02 13 None.

Text info

Text name Response length Category Notes

SSLP 0x000A SET None.

User guide 130 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

Data type Name Text Description

uint8 Level L

New maximum system-wide sleep level:

• 0 = Sleep disabled

• 1 = EPDS when possible (factory default)

• 2 = Hibernate when possible

uint16 hid_off_sleep_time T

hid_off_sleep_time in second

• 0: Not set

• Other: Set hid off wake up time

Response parameters

None.

Related commands

• system_get_sleep_parameters (GSLP, ID=2/20)

• gpio_set_pwm_mode (SPWM, ID=9/11) – Configure PWM output

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3) – Configure new CYSPP parameters, including CYSPP data
mode sleep level

Example usage

Section Configuring the system-wide sleep level

7.2.2.13 system_get_sleep_parameters (GSLP, ID=2/20)

Obtain the current system-wide sleep settings.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 14 None.

RSP C0 05 02 14 None.

Text info

Text name Response length Category Notes

GSLP 0x0016 GET None.

Command arguments

None.

User guide 131 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

Data type Name Text Description

uint8 Level L

Current maximum system-wide sleep level:

• 0 = Sleep disabled

• 1 = EPDS when possible (factory default)

• 2 = Hibernate when possible

uint16 hid_off_sleep_time T

hid_off_sleep_time in second

• 0: Not set

• Other: Set hid off wake up time

Related commands

• system_set_sleep_parameters (SSLP, ID=2/19)

7.2.2.14 system_set_tx_power (STXP, ID=2/21)

Configure new transmit power for all outgoing radio communications.

This power setting affects all transmissions, including advertising, scan requests and connection requests, and
all packets sent during an active connection. Changes take effect as soon as the next transmitted packet

begins.

Binary header

 Type Length Group ID Notes

CMD C0 02+ 02 15 Variable-length command payload, value specified is minimum.

RSP C0 02 02 15 None.

Text info

Text name Response length Category Notes

STXP 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 Power P

Available power value can be set. See section 3.1.4 for details on

the TX output power map.

New transmit power

• 0: set power level array:

• 1~8: set power level, the default is 7.

uint8a power_array D

Array for power value,valid only if P=0.

There is a 3*8 bytes array for power level.

0 - 7 bytes for BR

8 - 15 bytes for EDR

16- 23 bytes for Bluetooth® LE

User guide 132 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

None.

Related commands

• system_get_tx_power (GTXP, ID=2/22)

7.2.2.15 system_get_tx_power (GTXP, ID=2/22)

Obtain current transmit power for all outgoing radio communications.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 16 None.

RSP C0 04+ 02 16 Variable-length response payload, value specified is minimum.

Text info

Text name Response length Category Notes

GTXP 0x0012+ GET Variable-length response payload, value specified is minimum.

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 Power P
Current active power level value, it should be in the range of 1 and 8. See

3.1.4 for details on the TX output power map.

uint8a power_array D

Array for power value

there is a 3*8 bytes array for power level.

0 - 7 bytes for BR

8 - 15 bytes for EDR

16- 23 bytes for Bluetooth® LE

Related commands

• system_set_tx_power (STXP, ID=2/21)

User guide 133 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.16 system_set_transport (ST, ID=2/23)

Configure new host communication interface.

This command configures the interface used for wired external host communication. If a change is successful,
EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will send the response packet in

the original configuration, and then switch to the new transport interface. A few special features are
implemented here as enhancement.

Note: The current EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module release

supports only the UART transport interface. No other options are available.

Binary header

 Type Length Group ID Notes

CMD C0 0E+ 02 17 Variable-length command payload, value specified is minimum.

RSP C0 02 02 17 None.

Text info

Text name Response length Category Notes

ST 0x0008 SET None.

Command arguments

Data

type
Name Text Description

uint8 interface I
New host transport interface:

1 = UART (factory default)

uint8 cmd_channel N cmd_channel: Not implemented

uint8 spp_route S spp route: Not implemented

uint32 cyspp_route C cyspp route: Not implemented

User guide 134 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 BT flag T

To control Bluetooth® behavior when Bluetooth® LE is

connected.

The default value is 0x80: Non-discoverable and Not
connectable for Bluetooth® when Bluetooth® LE link is

connected

Bit 7: control if this flag is valid

− 0: Not valid

− 1: Valid

Bit 4: Set connectablilty

− 0: Not connectable

− 1: Bluetooth® Classic connectable

Bit 1~0: Set discoverability

− 0: Non-discoverable

− 1: Limited Bluetooth® Classic discoverable

− 2: General Bluetooth® Classic discoverable

uint8 BLE flag L

To control Bluetooth® LE behavior when Bluetooth® SPP is

connected.

The default value is 0x80: No ADV broadcast when Bluetooth®

SPP link is connected

Bit 7: control if this flag is valid

− 0: Not valid

− 1: Valid

Bit 3~0: advType after Bluetooth® SPP is connected

− 0, Stop advertisement

− 1: Directed advertisement (high duty cycle)

− 2: Directed advertisement (low duty cycle)

− 3: Undirected advertisement (high duty cycle)

− 4: Undirected advertisement (low duty cycle)

− 5: Non-connectable advertisement (high duty cycle)

− 6: Non-connectable advertisement (low duty cycle)

− 7: Discoverable advertisement (high duty cycle)

− 8: Discoverable advertisement (low duty cycle)

uint8 active_time_due_puart A

Active kept time after received data from PUART in low power

state. Unit is second.

Note: Not implemented

User guide 135 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 event_filter E

event filter

− 0: Not set

− 1: Set, command response and event will not appear in
command terminal

Note: Factory default = 0 (Not set)

uint8a event_array D
response&events which are not filtered:

12 bytes in max, so it can set 6 non-filtered response&events

Response parameters

None.

Related commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

7.2.2.17 system_get_transport (GT, ID=2/24)

Obtain the current host transport setting.

Binary header

 Type Length Group ID Notes

CMD C0 00 02 18 None.

RSP C0 1A 02 18 None.

Text info

Text name Response length Category Notes

GT 0x0051 GET None.

Command arguments

None.

Response parameters

Data

type
Name Text Description

uint8 interface I
Current host transport interface:

1 = UART (factory default)

uint8 cmd_channel N cmd_channel: Not implemented

uint8 spp_route S spp_route: Not implemented

User guide 136 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint32 cyspp_route C cyspp_route: Not implemented

uint8 BT flag T

To control Bluetooth® behavior when Bluetooth® LE is

connected.

In default, value is 0x80: No discoverity, no connect for

Bluetooth® when Bluetooth® LE link is connected

Bit 7: control if this flag is valid

− 0: Not valid

− 1: Valid

Bit 4: Set connectablilty

− 0: Not connectable

− 1: Bluetooth® Classic connectable

Bit 1~0: Set discoverability

− 0: Non-discoverable

− 1: Limited Bluetooth® Classic discoverable

− 2: General Bluetooth® Classic discoverable

uint8 BLE flag L

To control Bluetooth® LE behavior when Bluetooth® SPP is

connected.

In default, value is 0x80: No ADV broadcast when Bluetooth®

SPP link is connected

Bit 7: control if this flag is valid

− 0: Not valid

− 1: Valid

Bit 3~0: advType after Bluetooth® SPP is connected

− 0: Stop advertising

− 1: Directed advertisement (high duty cycle)

− 2: Directed advertisement (low duty cycle)

− 3: Undirected advertisement (high duty cycle)

− 4: Undirected advertisement (low duty cycle)

− 5: Non-connectable advertisement (high duty cycle)

− 6: Non-connectable advertisement (low duty cycle)

− 7: Discoverable advertisement (high duty cycle)

− 8: Discoverable advertisement (low duty cycle)

uint8 active_time_due_puart A
Active kept time after received data from PUART in low power

state. Unit is second.

User guide 137 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 event_filter E

Event filter

− 0: Not set

− 1: Set, command response and event will not appear in
command terminal

Note: Factory default = 0 (Not set)

uint8a event_array D
response&events which are not filtered:

12 bytes in max, so it can set 6 non-filtered response&events

Related commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

7.2.2.18 system_set_uart_parameters (STU, ID=2/25)

Configure new UART settings for host communication.

This command configures the UART peripheral behavior used for wired external host communication when the

host transport interface is set to “UART” with the system_set_transport (ST, ID=2/23) API command. If a change

is successful, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will send the

response packet using the original configuration, and then apply the new UART settings.

Note: This command affects protected settings, which means you cannot immediately apply changes to

flash. To store new settings in non-volatile memory, you must send the command once without the
flash storage bit/flag, and then re-send the same command again with the flash storage bit/flag
set. This prevents accidental permanent communication lockout resulting from flash-stored
settings that the connected host cannot use. For detail, see section Protected configuration

settings.

Binary header

 Type Length Group ID Notes

CMD C0 0B 02 19 None.

RSP C0 02 02 19 None.

Text info

Text name Response length Category Notes

STU 0x0009 SET None.

User guide 138 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

Data type Name Text Description

uint32 baud B

UART baud rate:

• Minimum = 9600 baud (0x2580)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 3,000,000 baud (0x2DC6C0)

Note: Because of hardware limitation, PUART only supports
2727272 bps with 1 stop bit. To support more than 2727272,

set stop bit as 2.

uint8 autobaud A
Auto-detect UART baud rate at boot:

0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C
Auto-correct UART clock to compensate for wide temperature variation:

0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F

UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D
UART data bits:

8 = 8 data bits (factory default)

uint8 parity P

UART parity:

• 0 = Disabled (factory default)

• 1 = Odd parity

• 2 = Even parity

uint8 stopbits S

UART stop bits:

• 1 = 1 stop bit (factory default)

• 2 = 2 stop bits

uint8 uart_type T

Uart type:

• 0 = PUART (factory default)

• 1 = HCI UART(Not implemented)

Response parameters

None.

Related commands

• system_set_transport (ST, ID=2/23)

• system_get_uart_parameters (GTU, ID=2/26)

Example usage

See section Changing the serial communication parameters.

User guide 139 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.2.19 system_get_uart_parameters (GTU, ID=2/26)

Obtain the current UART settings for host communication.

Binary header

 Type Length Group ID Notes

CMD C0 01 02 1A None.

RSP C0 0C 02 1A None.

Text info

Text name Response length Category Notes

GTU 0x0032 GET None.

Command arguments

Data type Name Text Description

uint8 uart_type T

Uart type:

• 0 = puart (factory default)

• 1 = HCI UART(Not implemented)

Response parameters

Data type Name Text Description

uint32 baud B

UART baud rate:

• Minimum = 300 baud (0x12C)

• Factory default = 115,200 baud (0x1C200)

• Maximum = 3,000,000 baud (0x2DC6C0)

uint8 autobaud A
Auto-detect UART baud rate at boot:

0 = Disabled (factory default, must always be disabled in current version)

uint8 autocorrect C
Auto-correct UART clock to compensate for wide temperature variation:

0 = Disabled (factory default, must always be disabled in current version)

uint8 flow F

UART RTS/CTS flow control:

• 0 = Disabled (factory default)

• 1 = Enabled

uint8 databits D
UART data bits:

8 = 8 data bits (factory default)

uint8 parity P

UART parity:

• 0 = Disabled (factory default)

• 1 = Odd parity

• 2 = Even parity

User guide 140 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 stopbits S

UART stop bits:

• 1 = 1 stop bit (factory default)

• 2 = 2 stop bits

Related commands

• system_get_transport (GT, ID=2/24)

• system_set_uart_parameters (STU, ID=2/25)

7.2.3 GAP Group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning and advertising, connection establishment, and connection maintenance.

Commands within the GAP group are listed below:

• gap_connect (/C, ID=4/1)

• gap_cancel_connection (/CX, ID=4/2)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_disconnect (/DIS, ID=4/5)

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_query_rssi (/QSS, ID=4/13)

• gap_query_whitelist (/QWL, ID=4/14)

• gap_set_device_name (SDN, ID=4/15)

• gap_get_device_name (GDN, ID=4/16)

• gap_set_device_appearance (SDA, ID=4/17)

• gap_get_device_appearance (GDA, ID=4/18)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

• gap_get_adv_parameters (GAP, ID=4/24)

• gap_set_scan_parameters (SSP, ID=4/25)

• gap_get_scan_parameters (GSP, ID=4/26)

• gap_set_conn_parameters (SCP, ID=4/27)

User guide 141 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• gap_get_conn_parameters (GCP, ID=4/28)

Events within this group are documented in section GAP Group (ID=4).

7.2.3.1 gap_connect (/C, ID=4/1)

Initiate a connection to a remote Peripheral device.

For this command to succeed, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module

must not have other ongoing Bluetooth® LE activity. In other words:

• The module must not be advertising. Use gap_stop_adv (/AX, ID=4/9) to stop, if necessary.

• The module must not be scanning. Use gap_stop_scan (/SX, ID=4/11) to stop, if necessary.

• The module must not be in a connection with other remote Peripheral device. Use gap_disconnect (/DIS,
ID=4/5) to disconnect, if necessary.

After starting the connection process, the module will begin scanning for a connectable advertisement packet
from the target device. This will continue until it succeeds, or until the connection attempt is canceled with the
gap_cancel_connection (/CX, ID=4/2) API command, or the connection scan timeout period expires (if it has

been set).

When sending this command in text mode, all omitted arguments except address and type will default to the

values set using the gap_set_conn_parameters (SCP, ID=4/27) API command.

Binary header

 Type Length Group ID Notes

CMD C0 13 04 01 None.

RSP C0 03 04 01 None.

Text info

Text name Response length Category Notes

/C 0x000D ACTION None.

Command arguments

Data type Name Text Description

macaddr address A Target connection address:

uint8 type T

Address type:

• 0 = Public

• 1 = Random/private

uint16 interval I Not implemented

uint16 slave_latency L Not implemented

uint16 supervision_timeout O Not implemented

uint16 scan_interval V Not implemented

uint16 scan_window W Not implemented

User guide 142 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint16 scan_timeout M
Connection scan timeout (unit is second):

0 to disable

Response parameters

Data type Name Text Description

uint8 conn_handle C Handle assigned to new pending connection

Related commands:

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Related events:

• gap_connected (C, ID=4/5) – Occurs when an outgoing connection attempt succeeds

Example usage:

None.

User guide 143 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.2 gap_cancel_connection (/CX, ID=4/2)

Cancel a pending connection attempt.

Use this command to manually end a pending connection attempt to a remote peer device which you
previously initiated with the gap_connect (/C, ID=4/1) API command. This command takes no parameters

because it is not possible to have more than one pending outgoing connection attempt at a time.

Note: This command applies only when ending a connection attempt that has not succeeded yet. To
close an established connection, use the gap_disconnect (/DIS, ID=4/5) API command instead.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 02 None.

RSP C0 02 04 02 None.

Text info

Text name Response length Category Notes

/CX 0x0009 ACTION None.

Command arguments:

None.

Response parameters:

None.

Related commands:

• gap_connect (/C, ID=4/1)

• gap_disconnect (/DIS, ID=4/5)

Related events:

• gap_connected (C, ID=4/5)

Example usage:

None.

User guide 144 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.3 gap_update_conn_parameters (/UCP, ID=4/3)

Request a connection parameter update for an active connection.

Use this command to change the connection interval, slave latency, and supervision timeout for an active
connection. If the parameter update is successful, EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module will generate the gap_connection_updated (CU, ID=4/8) API event after applying new
parameters. This will only occur if one or more of the parameters changes from its previous value.

The behavior following this command depends on the link-layer role (master or slave) of the device which
initiated the request. The master device has final authority over connection parameters. The AIROC™

Bluetooth® LE module version of EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module
supports operation only in the slave role.

If used while in the slave role (connection from peer initiated remotely):

• New connection parameters must be confirmed by the master

• Local device will generate the gap_connection_updated (CU, ID=4/8) event if master accepts parameters

Binary header

 Type Length Group ID Notes

CMD C0 07 04 03 None.

RSP C0 02 04 03 None.

Text info

Text name Response length Category Notes

/UCP 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Handle of connection to update

(Ignored in current release)

uint16 interval I*

Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L*

Slave latency (connection interval count):

• Minimum = 0, no intervals skipped

• Maximum depends on interval and supervision timeout,

such that:

[interval * slave_latency] <

supervision_timeout

uint16 supervision_timeout O*

Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x0C80 (3200 * 10 ms = 32 seconds)

User guide 145 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

None.

Related commands

None.

Related events

• gap_connection_updated (CU, ID=4/8)

7.2.3.4 gap_disconnect (/DIS, ID=4/5)

Close an open connection to a remote device.

Use this command to cleanly close an established connection with a remote peer device. The connection must
first have been fully opened, indicated by the gap_connected (C, ID=4/5) API event.

Binary header

 Type Length Group ID Notes

CMD C0 01 04 05 None.

RSP C0 02 04 05 None.

Text info

Text name Response length Category Notes

/DIS 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection to disconnect

Response parameters

None.

Related commands

None.

Related events

• gap_disconnected (DIS, ID=4/6)

User guide 146 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.5 gap_add_whitelist_entry (/WLA, ID=4/6)(Not implemented)

Add a new Bluetooth® address to the whitelist.

The whitelist is an optional filter for determining which remote peers are allowed to connect, or which the local
module may try to connect. When whitelist filtering is active, devices that are not on the whitelist are not

allowed to connect with the module. You can control whitelist filter usage during advertising, scanning, or
outgoing connect attempts.

The whitelist is an optional filter: it will determine which remote peers are allowed to connect the local module.
On the other hand, the local module may try to connect the device in the whitelist. When whitelist filtering is

active, devices that are not on the whitelist are not allowed to connect with the module. You can control
whitelist filter usage during advertising, scanning, or outgoing connect attempts.

Note: You can only use this command while disconnected. Changes to the whitelist are not allowed
during a connection.

Each whitelist entry is made up of two parts: the peer's Bluetooth® address and the type of address (public or

private). You must specify the correct address type for each peer based on the type of address being used. This
information is available in scan results and connection details.

Note: The Bluetooth® LE stack in EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module automatically mirrors the bonded device list into the whitelist. This behavior
accommodates the most common use case for the whitelist, and you may not need any manual

additions or removals from the whitelist.

Binary header

 Type Length Group ID Notes

CMD C0 07 04 06 None.

RSP C0 03 04 06 None.

Text info

Text name Response length Category Notes

/WLA 0x000F ACTION None.

Command arguments

Data type Name Text Description

macaddr address A* Bluetooth® address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

User guide 147 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command-specific result codes

None.

Related commands

• gap_delete_whitelist_entry (/WLD, ID=4/7)

• gap_query_peer_address (/QPA, ID=4/12)

• gap_set_adv_parameters (SAP, ID=4/23) – Configure whitelist filter for advertising

Related events

None.

7.2.3.6 gap_delete_whitelist_entry (/WLD, ID=4/7) (Not implemented)

Remove a Bluetooth® address from the whitelist.

Use this command to remove a specific device that exists on the whitelist. For details on whitelist behavior, see
the documentation for the gap_add_whitelist_entry (/WLA, ID=4/6) API command.

Binary header

 Type Length Group ID Notes

CMD C0 07 04 07 None.

RSP C0 03 04 07 None.

Text info

Text name Response length Category Notes

/WLD 0x000F ACTION None.

Command arguments

Data type Name Text Description

macaddr address A Bluetooth® address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Response parameters

Data type Name Text Description

uint8 count C Updated whitelist entry count

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

User guide 148 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.7 gap_start_adv (/A, ID=4/8)

Start advertising.

This command begins advertising using the specified parameters or using the pre-configured default
advertising parameters if in text mode and some arguments are omitted. EZ-Serial firmware platform for

AIROC™ Bluetooth® & Bluetooth® LE module must not already be advertising for this command to succeed.
However, it is possible to advertise and scan simultaneously.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will generate the
gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state changes.

Note: You can start advertising while connected only if you specify “0” (broadcast-only) for the mode
argument. The Bluetooth® LE stack does not support being connected and connectable at the

same time.

Note: When using the “scannable, undirected” type or “non-connectable, undirected” setting for the
type argument, the advertisement interval must be 100 ms (0xA0) or greater, per the Bluetooth®

specification. Shorter intervals than this will result in an error response.

Binary header

 Type Length Group ID Notes

CMD C0 13 04 08 None.

RSP C0 02 04 08 None.

Text info

Text name Response length Category Notes

/A 0x0008 ACTION None.

Command arguments

Data type Name Text Description

Uint8 Mode M Discovery mode: Not implemented.

User guide 149 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

Note: If you set high duty (T=3,5,7), FW will auto switch to low

duty(T=4,6,8) respectively after high duration is elapsed

uint8 channels C

Advertisement channel selection bitmask (at least one bit must be

set):

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D high duty duration in seconds (0 for infinite)

uint16 low interval L

low_duty_interval: (625 μs):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O low duty duration in seconds (0 for infinite)

uint8 flag F

Advertisement interval Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon

boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

macaddr directAddr A Directed advertisement address

User guide 150 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 directAddrType Y

Directed Address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Note: Current implementation does not care address type

Response parameters

None.

Related commands

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_data (SAD, ID=4/19)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

Example usage

See Advertising as peripheral device

7.2.3.8 gap_stop_adv (/AX, ID=4/9)

Stop advertising.

This command immediately stops advertising if it is currently active. Note that advertising may have started

because of the gap_start_adv (/A, ID=4/8) API command, or due to specific configuration settings (GAP
parameters, CYSPP profile) that automatically begin advertising.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will generate the
gap_adv_state_changed (ASC, ID=4/2) API event when the advertising state changes.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 09 None.

RSP C0 02 04 09 None.

Text info

Text name Response length Category Notes

/AX 0x0009 ACTION None.

User guide 151 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

None.

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

Related events

• gap_adv_state_changed (ASC, ID=4/2)

7.2.3.9 gap_start_scan (/S, ID=4/10)

Start scanning. This command will use the configured default scan parameters, unless specified otherwise
using arguments.

Binary header

 Type Length Group ID Notes

CMD C0 0A 04 0A None.

RSP C0 02 04 0A None.

Text info

Text name Response length Notes

/S 0x0008 None.

Command arguments

Data type Name Text Description

uint8 mode M

Discovery mode:

• 0 = Not scan

• 1 = High duty cycle scan

• 2 = Low duty cycle scan

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)Cannot be greater than
interval

User guide 152 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 active A

Active scanning:

• 0 = Passive scanning

• 1 = Active scanning

uint8 filter F
Whitelist filter policy:

Not implemented and always 0

uint8 nodupe D

Duplicate filter policy:

• 0 = Disable duplicate result filtering

• 1 = Enable duplicate result filtering

uint16 timeout O

Scan timeout (seconds):

• Maximum = 255

• 0 to disable

Response parameters

None.

Related commands:

• gap_stop_scan (/SX, ID=4/11)

Related events:

None.

7.2.3.10 gap_stop_scan (/SX, ID=4/11)

Stop scanning.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 0B None.

RSP C0 02 04 0B None.

Text info

Text name Response length Notes

/SX 0x0009 None.

Command arguments:

None.

Response parameters:

None.

Related commands:

User guide 153 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• gap_start_scan (/S, ID=4/10)

Related events:

None.

7.2.3.11 gap_query_peer_address (/QPA, ID=4/12)

Query remote peer Bluetooth® address.

This command returns the Bluetooth® address of the currently connected remote peer device. An active

connection is required to use this command successfully.

Binary header

 Type Length Group ID Notes

CMD C0 01 04 0C None.

RSP C0 09 04 0C None.

Text info

Text name Response length Notes

/QPA 0x001E None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Handle of connection for which to query remote peer address

(Ignored in current release)

Response parameters

Data type Name Text Description

macaddr address A Peer Bluetooth® address

uint8 address_type T Address type

Related commands

• gap_query_rssi (/QSS, ID=4/13)

User guide 154 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.12 gap_query_rssi (/QSS, ID=4/13)

This command returns the remote signal strength indication (RSSI) value detected in the packet received most
recently from the currently connected remote peer device. An active connection is required to use this

command successfully.

Note: RSSI values in real-world environments often fall in the -50 dBm to -70 dBm range. An RSSI value at
this level does not necessarily indicate a poor connection.

The RSSI value returned in the response is expressed as a signed 8-bit integer. In text mode, it will appear in

two’s complement form. Positive numbers in this form fall in the range [0, 127] and are as they appear.
Negative numbers fall in the range [128, 255] and should have 256 subtracted from the value to obtain the real
value.

Examples:

• 0x03 = +3 dBm

• 0xFF = -1 dBm (0xFF = 255 - 256 = -1)

• 0xF0 = -16 dBm (0xF0 = 240 - 256 = -16)

• 0xC5 = -59 dBm (0xC5 = 197 - 256 = -59)

Binary header

 Type Length Group ID Notes

CMD C0 01 04 0D None.

RSP C0 03 04 0D None.

Text info

Text name Response length Notes

/QSS 0x000F None.

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection for which to query signal strength

Response parameters

Data type Name Text Description

int8 rssi R
RSSI value in dBm (between -85 and +5), or 0 if used while not

connected

Related commands

• gap_query_peer_address (/QPA, ID=4/12)

User guide 155 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.13 gap_query_whitelist (/QWL, ID=4/14)(Not implemented)

Request a list of whitelisted devices.

This command provides access to the current whitelist. The response from this command includes the number
of devices on the whitelist, and the response is followed by the gap_whitelist_entry (WL, ID=4/1) API events

which provide details for each entry.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 0E None.

RSP C0 03 04 0E None.

Text info

Text name Response length Category Notes

/QWL 0x000F ACTION None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 Count C Whitelist entry count

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_delete_whitelist_entry (/WLD, ID=4/7)

Related events

• gap_whitelist_entry (WL, ID=4/1)

7.2.3.14 gap_set_device_name (SDN, ID=4/15)

Configure a new device name.

This is typically a UTF-8 string value that is stored in the Device Name characteristic (UUID 0x2A00) in the local
GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP service is mandatory for all
Bluetooth® Smart devices, and the Device Name characteristic is a mandatory part of the GAP service.

Using this command affects the value in the local GATT Server Device Name characteristic, and the local name
field in the automatically managed scan response packed used for advertising.

User guide 156 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD
C0 02-42 04 0F Variable-length command payload, minimum of 2 (0x02), maximum of

66 (0x42)

RSP C0 02 04 0F None.

Text info

Text name Response length Category Notes

SDN 0x0009 SET None.

Command arguments

Data type Name Text Description

uint8 Type T

Device Type:

• 0 = Bluetooth® LE Device Name

• 1 = Bluetooth® classic Device Name

string name N New device name (0-64 bytes, raw ASCII data when in text mode)

Response parameters

None.

Related commands

• gap_get_device_name (GDN, ID=4/16)

Example usage

See section Changing device name and appearance

7.2.3.15 gap_get_device_name (GDN, ID=4/16)

Obtain the current device name.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 10 None.

RSP
C0 03-43 04 10 Variable-length response payload, minimum of 3 (0x03), maximum of

67 (0x43)

Text info

Text name Response length Category Notes

GDN 0x000C-

0x004C

GET Variable-length response payload, minimum of 12 (0x0C),

maximum of 76 (0x4C)

User guide 157 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

Data type Name Text Description

uint8 Type T

Device Type:

• 0 = Bluetooth® LE Device Name

• 1 = Bluetooth® classic Device Name

Response parameters

Data type Name Text Description

string name N Current device name (0-64 bytes, raw ASCII data when in text mode)

Related Commands

• gap_set_device_name (SDN, ID=4/15)

7.2.3.16 gap_set_device_appearance (SDA, ID=4/17)

Configure a new device name.

Define the device appearance value. This is a 16-bit value which is stored in the Appearance characteristic

(UUID 0x2A01) in the local GATT structure. This characteristic is part of the GAP service (UUID 0x1800). The GAP
service is mandatory for every Bluetooth® Smart device, and the Appearance characteristic is a mandatory part

of the GAP service.

Using this command affects the value in the local GATT Server Device Appearance characteristic.

Binary header

 Type Length Group ID Notes

CMD C0 02 04 11 None.

RSP C0 02 04 11 None.

Text info

Text name Response length Category Notes

SDA 0x0009 SET None.

Command arguments

Data

type
Name Text Description

uint16 appearance A New device appearance value (factory default is 0x0000)

Response parameters

None.

Related commands

• gap_get_device_appearance (GDA, ID=4/18)

User guide 158 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.17 gap_get_device_appearance (GDA, ID=4/18)

Obtain the current device appearance value.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 12 None.

RSP C0 04 04 12 None.

Text info

Text name Response length Category Notes

GDA 0x0010 GET None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint16 appearance A Current device appearance value

Related commands

• gap_set_device_appearance (SDA, ID=4/17)

7.2.3.18 gap_set_adv_data (SAD, ID=4/19)

Configure new custom advertisement packet data.

Define a new byte sequence for the primary advertisement packet data payload. This content is visible to all
scanning devices performing a passive or active scan when the AIROC™ Bluetooth® & Bluetooth® LE module is

in an advertising state.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module automatically
manages advertisement content unless you enable the use of user-defined data with the

gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set custom data but do not
enable user-defined content, the data here remains unused.

Binary header

 Type Length Group ID Notes

CMD
C0 01-20 04 13 Variable-length command payload, minimum of 1 (0x01), maximum of

32 (0x20)

RSP C0 02 04 13 None.

User guide 159 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Category Notes

SAD 0x0009 SET None.

Command arguments

Data type Name Text Description

uint8a data D

New advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_data (GAD, ID=4/20)

• gap_set_sr_data (SSRD, ID=4/21)

• gap_set_adv_parameters (SAP, ID=4/23)

Example usage

See section Customizing advertisement and scanning response data

7.2.3.19 gap_get_adv_data (GAD, ID=4/20)

Obtain the current custom advertisement packet data.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 14 None.

RSP
C0 03-22 04 14 Variable-length response payload, minimum of 3 (0x03), maximum of

34 (0x22)

Text info

Text name Response length Category Notes

GAD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0x0D),

maximum of 75 (0x4B)

Command arguments

None.

User guide 160 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

Data type Name Text Description

uint8a data D

Current advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

Related commands

• gap_set_adv_data (SAD, ID=4/19)

7.2.3.20 gap_set_sr_data (SSRD, ID=4/21)

Configure new custom scan response packet payload.

This command defines a new byte sequence for the scan response packet. This content is visible to all scanning
devices performing an active scan when the AIROC™ Bluetooth® & Bluetooth® LE module is in a scannable

advertising state.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module automatically

manages scan response content unless you enable the use of user-defined data with the
gap_set_adv_parameters (SAP, ID=4/23) API command. If you only set custom data but do not

enable user-defined content, the data in gap_set_sr_data will remain unused.

Binary header

 Type Length Group ID Notes

CMD
C0 01-20 04 15 Variable-length command payload, minimum of 1 (0x01), maximum of

32 (0x20)

RSP C0 02 04 15 None.

Text info

Text name Response length Category Notes

SSRD 0x000A SET None.

Command arguments

Data type Name Text Description

uint8a data D

New scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

Response parameters

None.

User guide 161 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_set_adv_data (SAD, ID=4/19)

• gap_get_sr_data (GSRD, ID=4/22)

• gap_set_adv_parameters (SAP, ID=4/23)

Example usage

See section Customizing advertisement and scanning response data

7.2.3.21 gap_get_sr_data (GSRD, ID=4/22)

Obtain the current custom scan response packet data.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 16 None.

RSP
C0 03-22 04 16 Variable-length response payload, minimum of 3 (0x03), maximum of

34 (0x22)

Text info

Text name Response length Category Notes

GSRD 0x000D-0x004B GET Variable-length response payload, minimum of 13 (0xD),

maximum of 75 (0x4B)

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a data D

Current scan response payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload

Related commands

• gap_set_sr_data (SSRD, ID=4/21)

User guide 162 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.22 gap_set_adv_parameters (SAP, ID=4/23)

Configure new default advertisement parameters.

These parameters are used when sending the gap_start_adv (/A, ID=4/8) API command in text mode without
specifying non-default arguments.

Note: Setting Bit 0 (0x01) of the flags value using this command enables automatic advertisement on
boot, as described. However, advertisements may automatically start even if this bit is cleared if
the enable setting of CYSPP is set to the “enable + autostart” setting. Factory default settings

include this value for the CYSPP feature.

Binary header

 Type Length Group ID Notes

CMD C0 13 04 17 None.

RSP C0 02 04 17 None.

Text info

Text name Response length Category Notes

SAP 0x0009 SET None.

Command arguments

Data

type
Name Text Description

uint8 mode M Discovery mode: Not implemented

uint8 type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

Note: If you set high duty (T = 3, 5, 7), FW will auto switch to low

duty(T=4,6,8) respectively after high duration is elapsed.

User guide 163 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 channels C

Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all
bits set)

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D High duty duration in seconds (0 for infinite)

uint16 low interval L

low_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O Low duty duration in seconds (0 for infinite)

uint8 flags F

Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon

boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

macaddr directAddr A Directed advertisement address

uint8 directAddrType Y

Directed address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Response parameters

None.

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_get_adv_parameters (GAP, ID=4/24)

User guide 164 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.23 gap_get_adv_parameters (GAP, ID=4/24)

Obtain the current advertisement parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 18 None.

RSP C0 15 04 18 None.

Text info

Text name Response length Category Notes

GAP 0x004D GET None.

Command arguments

None.

Response parameters

Data

type
Name Text Description

uint8 Mode M Discovery mode: Not implemented.

uint8 Type T

Advertisement type:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

• 8 = discoverable advertisement (low duty cycle)

uint8 channels C

Advertisement channel selection bitmask:

• Bit 0 (0x1) = Channel 37

• Bit 1 (0x2) = Channel 38

• Bit 2 (0x4) = Channel 39

Note: At least one bit must be set, factory default is all 0x07 (all
bits set)

uint16 high interval H

high_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 high duration D high duty duration in seconds (0 for infinite)

User guide 165 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint16 low interval L

low_duty_interval: (625 μs units):

• Minimum = 0x0020 (32 * 0.625 ms = 20 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

uint16 low duration O low duty duration in seconds (0 for infinite)

uint8 flags F

Advertisement behavior flags bitmask:

• Bit 0 (0x1) = Enable automatic advertising mode upon

boot/disconnection

• Bit 1 (0x2) = Use custom advertisement and scan response data

Note: Factory default = 0x00 (no bits set)

macaddr directAddr A Directed advertisement address

uint8 directAddrType Y

Directed address type (if using directed advertisement mode):

• 0: BLE_ADDR_PUBLIC

• 1: BLE_ADDR_RANDOM

Related commands

• gap_set_adv_parameters (SAP, ID=4/23)

7.2.3.24 gap_set_scan_parameters (SSP, ID=4/25)

Configure new default scan parameters.

These parameters will be used when sending the gap_start_scan (/S, ID=4/10) API command in text mode

without specifying non-default arguments.

Binary header

 Type Length Group ID Notes

CMD C0 0A 04 19 None.

RSP C0 02 04 19 None.

Text info

Text name Response length Category Notes

SSP 0x0009 SET None.

Command arguments

Data

type
Name Text Description

uint8 mode M Discovery mode: not implemented.

User guide 166 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms) Cannot be greater
than interval.

uint8 active A

Active scanning:

• 0 = Passive scanning

• 1 = Active scanning

uint8 filter F

Whitelist filter policy: not implemented.

• 0 = Accept all advertising packets

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this

device

• 3 = Accept only from whitelisted devices sending directed
advertisements to this device

uint8 nodupe D

Duplicate filter policy:

• 0 = Disable duplicate result filtering

• 1 = Enable duplicate result filtering

uint16 timeout O

Scan timeout (seconds):

• Maximum = 255

• 0 to disable

Response parameters:

None.

Related commands:

• gap_start_scan (/S, ID=4/10)

• gap_get_scan_parameters (GSP, ID=4/26)

User guide 167 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.3.25 gap_get_scan_parameters (GSP, ID=4/26)

Obtain the current scan parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 1A None.

RSP C0 0C 04 1A None.

Text info

Text name Response length Category Notes

GSP 0x0032 GET None.

Command arguments

None.

Response parameters

Data

type
Name Text Description

uint8 mode M Discovery mode: not implemented.

uint16 interval I

Scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 window W

Scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than interval

uint8 active A

Active scanning:

• 0 = Passive scanning (factory default)

• 1 = Active scanning

uint8 filter F

Whitelist filter policy:

• 0 = Accept all advertising packets (factory default)

• 1 = Accept only from whitelisted devices

• 2 = Accept only from devices sending directed advertisements to this
device

• 3 = Accept only from whitelisted devices sending directed
advertisements to this device

User guide 168 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 nodupe D

Duplicate filter policy:

• 0 = Disable duplicate result filtering (factory default)

• 1 = Enable duplicate result filtering

uint16 timeout O
Scan timeout (seconds):

0 to disable (factory default)

Related commands

• gap_set_scan_parameters (SSP, ID=4/25)

7.2.3.26 gap_set_conn_parameters (SCP, ID=4/27)

Configure new default connection parameters.

These parameters will be used when sending the gap_connect (/C, ID=4/1) API command in text mode without

specifying non-default arguments.

Binary header

 Type Length Group ID Notes

CMD C0 0C 04 1B None.

RSP C0 02 04 1B None.

Text info

Text name Response length Category Notes

SCP 0x0009 SET None.

Command arguments

Data

type
Name Text Description

uint16 interval I

Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L

Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

• Maximum depends on interval and supervision timeout, such

that: [interval * slave_latency] <
supervision_timeout

uint16 supervision_timeout O

Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

User guide 169 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint16 scan_interval V

Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W

Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M
Connection scan timeout (seconds):

0 to disable (factory default)

Response parameters:

None.

Related commands:

• gap_connect (/C, ID=4/1)

• gap_update_conn_parameters (/UCP, ID=4/3)

• gap_get_conn_parameters (GCP, ID=4/28)

7.2.3.27 gap_get_conn_parameters (GCP, ID=4/28)

Get the current default connection parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 04 1C None.

RSP C0 0E 04 1C None.

Text info

Text name Response length Category Notes

GCP 0x0033 GET None.

Command arguments

None.

User guide 170 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

Data

type
Name Text Description

uint16 interval I

Connection interval (1.25 ms units):

• Minimum = 0x0006 (6 * 1.25 ms = 7.5 ms, factory default)

• Maximum = 0x0C80 (3200 * 1.25 ms = 4 seconds)

uint16 slave_latency L

Slave latency (connection interval count):

• Minimum = 0, no intervals skipped (factory default)

• Maximum depends on interval and supervision timeout, such
that: [interval * slave_latency] <
supervision_timeout

uint16 supervision_timeout O

Supervision timeout (10 ms units):

• Minimum = 0x000A (10 * 10 ms = 100 ms)

• Maximum = 0x01F4 (500 * 10 ms = 5 seconds)

• Factory default = 0x064 (100 * 10 ms = 1 second)

uint16 scan_interval V

Connection scan interval (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

uint16 scan_window W

Connection scan window (625 µs units):

• Minimum = 0x0004 (4 * 0.625 ms = 2.5 ms)

• Maximum = 0x4000 (16384 * 0.625 ms = 10.24 seconds)

• Factory default = 0x0100 (256 * 0.625 ms = 160 ms)

• Cannot be greater than scan_interval

uint16 scan_timeout M
Connection scan timeout (seconds):

0 to disable (factory default)

Related commands:

• gap_set_conn_parameters (SCP, ID=4/27)

User guide 171 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.4 GATT Server Group (ID=5)

GATT Server methods relate to the Server role of the Generic Attribute Protocol layer of the Bluetooth® stack.
These methods are used for working with the local GATT structure.

Commands within this group are listed below:

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_store_db (/SGDB, ID=5/4)

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gatts_set_parameters (SGSP, ID=5/14)

• gatts_get_parameters (GGSP, ID=5/15)

Events within this group are documented in section GATT Server Group (ID=5).

7.2.4.1 gatts_create_attr (/CAC, ID=5/1)

Add a new custom attribute to the local GATT structure.

The new attribute is given the next available handle. All handles are assigned sequentially. Attributes must be

added in order, and are always appended to the next available position in the GATT structure.

New attributes must be entered such that the database always has a valid structure, other than possibly being
incomplete while adding other required attributes. EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module rejects new attribute creation attempts that would result in an invalid structure and
provide a validity report code from the list in section EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module GATT database validation error codes.

See sections Defining custom local GATT services and characteristics and Adopted bluetooth SIG GATT profile

structure snippets for detailed instructions and example usage, including important guidelines for permission
settings.

Note: Always configure structural declarations (types 0x2800 and 0x2803) to have unrestricted read
permissions (0x01) and no write permissions (0x00) to ensure that clients can properly discover the
basic GATT database structure. Special security requirements should only be applied to

characteristic value attributes or, in limited cases, related configuration descriptors.

Use the gatts_dump_db (/DGDB, ID=5/5) API command to list the current local GATT database entries in a
format similar to what this command requires.

User guide 172 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module includes a fixed set of
attributes as part of the core functionality, which cannot be deleted or modified. These attributes
occupy the handle range from 1 (0x0001) to 21 (0x0015). Therefore, the first custom attribute

created in a factory default state receives the handle value 22 (0x0016).

Note: Additions to and removals from the GATT structure are always stored in flash. As long as the
“result” value in the response indicates success, the change are effective immediately and persist
through power cycles and resets. The internal CPU is occupied for approximately 15 ms during
each flash write operation; during this time, no other activity is processed (UART or Bluetooth® LE

communication). Any UART data sent during this brief window is lost. Therefore, you should modify

the GATT structure only while disconnected, and you should allow a gap of at least 20 ms between

the end of one API command and the beginning of a new one. If you have enabled hardware flow
control using the system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial firmware

platform for AIROC™ Bluetooth® & Bluetooth® LE module blocks incoming data flow during flash
writes to prevent serial data corruption or loss.

Binary header

 Type Length Group ID Notes

CMD C0 06 05 01 Variable-length command payload, value specified is minimum

RSP C0 06 05 01 None.

Text info

Text name Response length Category Notes

/CAC 0x0018 ACTION None.

Command arguments

Data type Name Text Description

uint8 type T*

type:

• 0 = structure

• 1 = characteristic value

Structural entries require constant data containing the definition.

Structural entries optionally allow additional RAM data beyond the

constant length for descriptor value information, such a two-byte CCCD

values.

Characteristic value entries do not require any constant data, but may

have it if a default boot-time value is desired.

User guide 173 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 perm P*

Permission bits:

• Bit 0 (0x01) = Variable length

• Bit 1 (0x02) = Readable

• Bit 2 (0x04) = Write command (unacknowledged)

• Bit 3 (0x08) = Write request (acknowledged)

• Bit 4 (0x10) = Authenticated readable

• Bit 5 (0x20) = Reliable write (includes prepared write)

• Bit 6 (0x40) = Authenticated writeable

uint16 length L*
Indicates how many bytes of RAM are allocated for the definition

(structure) or content (characteristic value)

longuint8a data D*

Data (UUID or default attribute value where applicable)

Data may include UUID, characteristic properties byte and/or value.

Note: longuint8a data type requires two prefixed “length” bytes
before binary parameter payload.

Characteristic properties:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (requires 0x2900)

Characteristic declaration stores the UUID of the Characteristic value

attribute. So its ‘D’ will be:

0x2803 (UUID)+ Characteristic properties (1 byte) + handle of value

attribute (2 byte) + UUID of value attribute.

Response parameters

Data type Name Text Description

uint16 handle H New attribute handle (0x0001-0xFFFF)

uint16 valid V GATT database validity status

Related commands

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

User guide 174 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related events

• gatts_db_entry_blob (DGATT, ID=5/4)

Example usage

• Section Defining custom local GATT services and characteristics

• Section Adopted bluetooth SIG GATT profile structure snippets

7.2.4.2 gatts_delete_attr (/CAD, ID=5/2)

Remove one or more attributes from the GATT structure.

If you use this command without a handle in text mode or you supply handle value 0 in either text or binary
mode, the highest attribute number (most recently added) is removed. If you supply a non-zero handle, the

attribute with that handle and all higher handles are removed.

After removing an attribute with this command, the local GATT database may no longer be strictly valid. See

section EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module GATT database validation
error codes.

for possible validity states. Use the gatts_dump_db (/DGDB, ID=5/5) API command to list the current local GATT

database entries.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module includes a fixed set of

attributes as part of the core functionality, which cannot be deleted or modified. These attributes

occupy the handle range from 1 (0x0001) to 28 (0x001C). Therefore, you cannot delete any

attribute with a handle value less than 29 (0x001D).

Note: Additions to and removals from the GATT structure are always stored in flash. If the “result” value

in the response indicates success, the change is effective immediately and persists through power

cycles and resets. The internal CPU is occupied for approximately 15 ms during each flash write

operation; during this time, no other activity is processed (UART or Bluetooth® LE communication).
Any UART data sent during this brief window is lost. Therefore, you should modify the GATT
structure only while disconnected, and you should allow a gap of at least 20 ms between the end

of one API command and the beginning of a new one. If you have enabled hardware flow control
using the system_set_uart_parameters (STU, ID=2/25) API command, EZ-Serial firmware platform
for AIROC™ Bluetooth® & Bluetooth® LE module blocks incoming data flow during flash writes to

prevent serial data corruption or loss.

User guide 175 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 02 05 02 None.

RSP C0 08 05 02 None.

Text info

Text name Response length Category Notes

/CAC 0x001F ACTION None.

Command arguments

Data type Name Text Description

uint16 handle H Attribute handle to remove (includes all higher attributes)

Response parameters

Data

type
Name Text Description

uint16 Count C Number of attributes deleted from GATT structure

uint16 next_handle H Next available attribute handle after removal

uint16 valid V GATT database validity status

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

7.2.4.3 gatts_validate_db (/VGDB, ID=5/3)

Check to ensure that the custom GATT structure has no malformed or missing elements.

Use this command to check for errors in the custom GATT structure configured in EZ-Serial firmware platform

for AIROC™ Bluetooth® & Bluetooth® LE module. The dynamic GATT implementation automatically tests for

validity issues when making changes to the structure with the gatts_create_attr (/CAC, ID=5/1) and
gatts_delete_attr (/CAD, ID=5/2) API commands, but this command provides the same test result upon request

without making or attempting any modifications. See section EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module GATT database validation error codes for possible validity states.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module allows only one non-valid state,

indicated by GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES code (0x0001). This non-valid state is
unavoidable during custom attribute creation, because attributes must be added one at a time, and every new
service or characteristic requires multiple attributes. All other non-valid states prevent the addition of a custom
attribute in the first place. Therefore, running this command should result only in a valid state (0x0000) or the

warning state noted here (0x0001).

User guide 176 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 00 05 03 None.

RSP C0 04 05 03 None.

Text info

Text name Response length Category Notes

/VGDB 0x0012 ACTION None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint16 Valid V GATT database validity status

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_dump_db (/DGDB, ID=5/5)

7.2.4.4 gatts_store_db (/SGDB, ID=5/4) – Not implemented

Store the current custom GATT structure in flash.

Note: This command has been deprecated and has no effect when used. As of the latest firmware build,
GATT database changes are always written instantly to flash when using either gatts_create_attr

(/CAC, ID=5/1) or gatts_delete_attr (/CAD, ID=5/2).

Binary header

 Type Length Group ID Notes

CMD C0 00 05 04 None.

RSP C0 02 05 04 None.

Text info

Text name Response length Category Notes

/SGDB 0x000B ACTION None.

Command arguments

None.

Response parameters

None.

User guide 177 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_dump_db (/DGDB, ID=5/5)

7.2.4.5 gatts_dump_db (/DGDB, ID=5/5)

List current local GATT database attributes.

This command produces a series of gatts_db_entry_blob (DGATT, ID=5/4) API events, one for each attribute in
the current local GATT database. The output is similar to that of the gatts_discover_descriptors (/DLD, ID=5/8)
API command, but in a format that more closely matches the input parameters of the gatts_create_attr (/CAC,

ID=5/1) API command.

You can choose to dump only those attributes in the user-definable range (0x001D and above), or include fixed

attributes as well (0x0001 and above) for complete reference.

Binary header

 Type Length Group ID Notes

CMD C0 01 05 05 None.

RSP C0 04 05 05 None.

Text info

Text name Response length Notes

/DGDB 0x0012 None.

Command arguments

Data

type
Name Text Description

uint8 include_fixed F

Include fixed attributes:

• 0 = Start from handle 0x001D, do not include fixed attributes (default)

• 1 = Start from handle 0x0001, include fixed attributes

Response parameters

Data type Name Text Description

uint16 Count C Number of entries to be returned

Related commands

• gatts_create_attr (/CAC, ID=5/1)

• gatts_delete_attr (/CAD, ID=5/2)

• gatts_validate_db (/VGDB, ID=5/3)

• gatts_discover_descriptors (/DLD, ID=5/8)

User guide 178 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related events

• gatts_db_entry_blob (DGATT, ID=5/4)

7.2.4.6 gatts_discover_services (/DLS, ID=5/6)

Request a list of all services in the local GATT structure.

This allows convenient discovery of services within the local GATT database. This command does not require

an active connection because it concerns only local resources. Normally, you should not need to use this

command except during development because the application should already know all relevant details about

its own local GATT structure. To find all services in the local database, use “0” for both arguments, or explicitly
set 0x0001 and 0xFFFF for the beginning and end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command will be generated when any
local GATT services discovered.

For local GATT database information that more closely matches the input format required for the
gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary header

 Type Length Group ID Notes

CMD C0 04 05 06 None.

RSP C0 04 05 06 None.

Text info

Text name Response length Category Notes

/DLS 0x0011 ACTION None.

Command arguments

Data type Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

Response parameters

Data type Name Text Description

uint16 Count C Number of entries to be returned

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related events

• gatts_discover_result (DL, ID=5/1)

User guide 179 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Example usage

Note: Any attribute that requires authentication (bonding) must also require encryption. If you enable
the authentication bit, ensure that you also enable the encryption bit, or the command will be

rejected with an error result.

Section Listing Local GATT Services, Characteristics, and Descriptors

7.2.4.7 gatts_discover_characteristics (/DLC, ID=5/7)

Request a list of all characteristics in the local GATT structure.

This allows convenient discovery of characteristics within the local GATT database. This command does not
require an active connection because it concerns only local resources. Normally, you should not need to use

this command except during development because the application should already know all relevant details
about its own local GATT structure. To find all characteristics in the local database, use “0” for both arguments,
or explicitly set 0x0001 and 0xFFFF for the beginning and end handles.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command will be generated when any

local GATT characteristics discovered.

For local GATT database information that more closely matches the input format required for the
gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary header

 Type Length Group ID Notes

CMD C0 06 05 07 None.

RSP C0 04 05 07 None.

Text info

Text name Response length Category Notes

/DLC 0x0011 ACTION None.

Command arguments

Data

type
Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all) – Currently not implemented in firmware, set

to 0

Response parameters

Data type Name Text Description

uint16 Count C Number of entries to be returned

User guide 180 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_descriptors (/DLD, ID=5/8)

Related events

• gatts_discover_result (DL, ID=5/1)

Example usage

See section Listing Local GATT Services, Characteristics, and Descriptors

7.2.4.8 gatts_discover_descriptors (/DLD, ID=5/8)

Request a list of all descriptors in the local GATT structure.

This allows convenient discovery of descriptors within the local GATT database. This command does not
require an active connection because it concerns only local resources. Normally, you should not need to use

this command except during development because the application should already know all relevant details
about its own local GATT structure. To find all descriptors in the local database, use “0” for both arguments, or

explicitly set 0x0001 and 0xFFFF for the beginning and end handles, respectively.

The gatts_discover_result (DL, ID=5/1) API events resulting from this command wil be generated when any local
GATT descriptors discovered.

For local GATT database information that more closely matches the input format required for the
gatts_create_attr (/CAC, ID=5/1) API command, use the gatts_dump_db (/DGDB, ID=5/5) API command instead.

Binary header

 Type Length Group ID Notes

CMD C0 08 05 08 None.

RSP C0 04 05 08 None.

Text info

Text name Response length Category Notes

/DLD 0x0011 ACTION None.

Command arguments

Data

type
Name Text Description

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)

(Ignored in current release, set to 0)

uint16 characteristic C
Characteristic UUID filter (0 for all)

(Ignored in current release, set to 0)

User guide 181 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

Data type Name Text Description

uint16 Count C Number of entries to be returned

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

Related events

• gatts_discover_result (DL, ID=5/1)

Example usage

See section Listing Local GATT Services, Characteristics, and Descriptors.

7.2.4.9 gatts_read_handle (/RLH, ID=5/9)

Read the value of an attribute in the local GATT Server.

This command does not require an active connection because it concerns only local resources.

Binary header

 Type Length Group ID Notes

CMD C0 02 05 09 None.

RSP C0 04+ 05 09 Variable-length response payload, value specified is minimum.

Text info

Text name Response length Category Notes

/RLH 0x000D+ ACTION Variable-length response payload, value specified is minimum.

Command arguments

Data

type
Name Text Description

uint16 attr_handle H* Handle of attribute to read value from

Response parameters

Data type Name Text Description

longuint8a data D

Data read from attribute

Note: longuint8a data type requires two prefixed “length” bytes
before binary parameter payload

User guide 182 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• gatts_write_handle (/WLH, ID=5/10)

7.2.4.10 gatts_write_handle (/WLH, ID=5/10)

Write a new value to an attribute in the local GATT Server.

This command does not require an active connection because it concerns only local resources.

Note: Writing data to a local characteristic value attribute does not automatically trigger a notification

or indication of that data to a connected Client, even if the Client has subscribed to notifications or

indications for the characteristic. This command affects only the value stored locally in RAM if the
Client performs a GATT read operation later. To push data to a Client that subscribed to
notifications or indications, use the gatts_notify_handle (/NH, ID=5/11) or gatts_indicate_handle

(/IH, ID=5/12) API command.

Binary header

 Type Length Group ID Notes

CMD C0 04 05 0A Variable-length command payload, value specified is minimum.

RSP C0 02 05 0A None.

Text info

Text name Response length Category Notes

/WLH 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint16 attr_handle H* Handle of attribute to read value from

longuint8a data D*

Data read from attribute

Note: longuint8a data type requires two prefixed “length”
bytes before binary parameter payload

Response parameters

None.

Related commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

User guide 183 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.4.11 gatts_notify_handle (/NH, ID=5/11)

Notify a new attribute value to a remote GATT Client.

Note: This command does not change any locally stored values for the notified attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts_write_handle (/WLH,

ID=5/10) API command.

Binary header

 Type Length Group ID Notes

CMD C0 05 05 0B Variable-length command payload, value specified is minimum.

RSP C0 02 05 0B None.

Text info

Text name Response length Category Notes

/NH 0x0009 ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for notification

(Ignored in current release)

uint16 attr_handle H* Handle of attribute to notify

uint8a data D*

Data to push to remote Client via notification

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

Response parameters

None.

Related commands

• gatts_write_handle (/WLH, ID=5/10)

• gatts_indicate_handle (/IH, ID=5/12)

User guide 184 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.4.12 gatts_indicate_handle (/IH, ID=5/12)

Indicate a new attribute value to a remote GATT Client.

If successful, pushing an indicated value to a remote client results in the gatts_indication_confirmed (IC,
ID=5/3) API event occurring after the client acknowledges the transfer.

This method requires client acknowledgement, so you cannot attempt another GATT operation until this

confirmation event arrives. A single acknowledged transfer requires two connection intervals: one for the

actual data transfer and one for the acknowledgement. Using this type of transfer has effects on potential
throughput; see section Maximizing throughput to a remote peer for details on alternative design choices.

Note: This command does not change any locally stored values for the indicated attribute. To modify the
data stored locally in RAM for the attribute in question, use the gatts_write_handle (/WLH,

ID=5/10) API command.

Binary header

 Type Length Group ID Notes

CMD C0 05 05 0C Variable-length command payload, value specified is minimum.

RSP C0 02 05 0C None.

Text info

Text name Response length Category Notes

/IH 0x0009 ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for indication

(Ignored in current release)

uint16 attr_handle H* Handle of attribute to indicate

uint8a data D*

Data to indicate

Note: uint8a data type requires one prefixed “length” byte before

binary parameter payload

Response parameters

None.

Related commands

• gatts_read_handle (/RLH, ID=5/9)

• gatts_write_handle (/WLH, ID=5/10)

• gatts_notify_handle (/NH, ID=5/11)

User guide 185 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related events

• gatts_indication_confirmed (IC, ID=5/3) - Occurs on the Server after the remote Client confirms receipt of
indicated data

7.2.4.13 gatts_send_writereq_response (/WRR, ID=5/13) ---Not implemented

Respond to a GATT client’s acknowledged write request.

Use this command after receiving a gatts_data_written (W, ID=5/2) API event an acknowledged request to write
data to a local GATT server attribute (the event’s type parameter will be 0x80). Sending a response value of

zero indicates success, while any non-zero value indicates an error. Values 0x01 through 0x7F are errors defined

in the Bluetooth® specification, while values 0x80 through 0xFF are user-defined errors.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will automatically respond to write

requests unless Bit 0 of the GATT server behavior flags is cleared using the flags field in the

gatts_set_parameters (SGSP, ID=5/14) API command, or if the characteristic being written has Bit 24 set for

user data management in the GATT database structure entry created with the gatts_create_attr (/CAC, ID=5/1)
API command.

Binary header

 Type Length Group ID Notes

CMD C0 02 05 0D None.

RSP C0 02 05 0D None.

Text info

Text name Response length Category Notes

/WRR 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for response
(Ignored in current release due to internal Bluetooth® LE stack

functionality, set to 0)

uint8 response R*

GATT result code for response:

• 0 = Success

• 0x01-0x7F = Error from Bluetooth® specification

• 0x80-0xFF = Error from application (user-defined)

Response parameters

None.

Related commands:

• gattc_write_handle (/WRH, ID=6/5)

User guide 186 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related events:

• gatts_data_written (W, ID=5/2)

7.2.4.14 gatts_set_parameters (SGSP, ID=5/14) - Not implemented

Configure new GATT Server parameters.

Binary header

 Type Length Group ID Notes

CMD C0 01 05 0E None.

RSP C0 02 05 0E None.

Text info

Text name Response length Category Notes

SGSP 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 flags F

GATT Server behavior flags bitmask:

Bit 0 (0x01) = Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set)

Response parameters

None.

Related chommands

• gatts_get_parameters (GGSP, ID=5/15)

7.2.4.15 gatts_get_parameters (GGSP, ID=5/15) - Not implemented

Obtain current GATT Server parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 05 0F None.

RSP C0 03 05 0F None.

Text info

Text name Response length Category Notes

GGSP 0x000F GET None.

User guide 187 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 flags F

GATT Server behavior flags bitmask:

Bit 0 (0x01) = Enable automatic response to acknowledged writes

Note: Factory default is 0x01 (all bits set)

Related commands

• gatts_set_parameters (SGSP, ID=5/14)

7.2.5 GATT Client Group (ID=6)

GATT Client methods relate to the client role of the GATT layer of the Bluetooth® stack. These methods are used
for working with the GATT structures on remote devices, and can only be used while a device is connected.

Commands within this group are listed below:

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_write_handle (/WRH, ID=6/5)

• gattc_confirm_indication (/CI, ID=6/6)

• gattc_set_parameters (SGCP, ID=6/7)

• gattc_get_parameters (GGCP, ID=6/8)

Events within this group are documented in section GATT Client Group (ID=6).

7.2.5.1 gattc_discover_services (/DRS, ID=6/1)

Request a list of GATT services from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts_discover_services (/DLS, ID=5/6) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be

returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must

wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the
discovery procedure is finished.

User guide 188 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 05 06 01 None.

RSP C0 02 06 01 None.

Text info

Text name Response length Category Notes

/DRS 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for discovery

(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

Response parameters

None.

Related commands

• gatts_discover_services (/DLS, ID=5/6)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage:

See section How to discover a remote server’s GATT structure.

7.2.5.2 gattc_discover_characteristics (/DRC, ID=6/2)

Request a list of GATT characteristics from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts_discover_characteristics (/DLC, ID=5/7) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be

returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the
discovery procedure is finished.

User guide 189 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 07 06 02 None.

RSP C0 02 06 02 None.

Text info

Text name Response length Notes

/DRC 0x000A None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for discovery

(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)

(Ignored in current release, set to 0)

Response parameters

None.

Related commands

• gatts_discover_characteristics (/DLC, ID=5/7)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage:

See section How to discover a remote server’s GATT structure.

User guide 190 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.5.3 gattc_discover_descriptors (/DRD, ID=6/3)

Request a list of GATT attribute descriptors from a connected remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To discover the
local GATT structure instead, use the gatts_discover_descriptors (/DLD, ID=5/8) API command.

Note: Because this command works with remote data, it cannot determine the number of records to be
returned in advance. Only local GATT Server discovery operations can do this. Therefore, you must
wait for the gattc_remote_procedure_complete (RPC, ID=6/2) API event to indicate that the

discovery procedure is finished.

Binary header

 Type Length Group ID Notes

CMD C0 09 06 03 None.

RSP C0 02 06 03 None.

Text info

Text name Response length Category Notes

/DRD 0x000A ACTION None.

Command arguments

Data

type
Name Text Description

uint8 conn_handle C
Connection handle to use for discovery

(Ignored in current release)

uint16 begin B Handle to begin searching

uint16 end E Handle to end searching (inclusive)

uint16 service S
Service UUID filter (0 for all)

(Ignored in current release, set to 0)

uint16 characteristic T
Characteristic UUID filter (0 for all)

(Ignored in current release, set to 0)

Response parameters

None.

Related commands

• gatts_discover_descriptors (/DLD, ID=5/8)

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

Related events:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

User guide 191 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Example usage:

See section How to discover a remote server’s GATT structure.

7.2.5.4 gattc_read_handle (/RRH, ID=6/4)

Read the value of an attribute on a remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To read a value

from the local GATT structure instead, use the gatts_read_handle (/RLH, ID=5/9) API command.

Binary header

 Type Length Group ID Notes

CMD C0 03 06 04 None.

RSP C0 02 06 04 None.

Text info

Text name Response length Category Notes

/RRH 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for the read operation

(Ignored in current release)

uint16 attr_handle H* Handle of remote attribute to read

Response parameters

None.

Related commands:

• gattc_write_handle (/WRH, ID=6/5)

Related events:

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs if the Client Read operation fails (parameters

include error code)

• gattc_data_received (D, ID=6/3) – Occurs if the Client Read operation succeeds

User guide 192 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.5.5 gattc_write_handle (/WRH, ID=6/5)

Write a new value to an attribute on a remote GATT Server.

This command performs a GATT Client operation, and requires a connection to a remote peer. To write a value
to the local GATT structure instead, use the gatts_write_handle (/WLH, ID=5/10) API command.

Binary header

 Type Length Group ID Notes

CMD C0 06 06 05 Variable-length command payload, value specified is minimum.

RSP C0 02 06 05 None.

Text info

Text name Response length Category Notes

/WRH 0x000A ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for write operation

(Ignored in current release)

uint16 attr_handle H* Handle of the remote attribute to write

uint8 type T

Type of write to perform:

0 = Simple write – acknowledged (default)

1 = Write without response – unacknowledged

longuint8a data D*

New data to write

Note: The longuint8a data type requires two prefixed “length”
bytes before binary the parameter payload. In the
current implementation, the length is 255 in MAX due to

resource limitation.

Response parameters

None.

Related commands:

• gattc_read_handle (/RRH, ID=6/4)

Related events:

• gatts_data_written (W, ID=5/2) – Occurs on the remote server after using this command on the local client

• gattc_remote_procedure_complete (RPC, ID=6/2) – Occurs once the write is acknowledged, if using
acknowledged write type

User guide 193 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.5.6 gattc_confirm_indication (/CI, ID=6/6)

Confirm an indication from a remote GATT Server.

This command confirms the receipt of indicated data from a remote server. Indicated data is pushed from a
server to a client after the client has subscribed to indications for a desired characteristic and that

characteristic’s value has changed. Indicated data will arrive via the gattc_data_received (D, ID=6/3) API event;
you must use this command to manually confirm the indication if the source parameter of that event shows

indication with manual confirmation needed. See the event documentation for details.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will automatically confirm

indications unless Bit 0 of the GATT Client behavior flags is cleared using the flags field in the

gattc_set_parameters (SGCP, ID=6/7) API command.

Note: If the indicated data arrives and requires manual confirmation, you must use this command to
confirm it before performing any other GATT operations.

Binary header

 Type Length Group ID Notes

CMD C0 03 06 06 None.

RSP C0 02 06 06 None.

Text info

Text name Response length Category Notes

/CI 0x0009 ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C
Connection handle to use for confirmation

(Ignored in current release due)

uint16 attr_handle H* Attribute handle to confirm

Response parameters:

None.

Related commands:

• gatts_indicate_handle (/IH, ID=5/12) – Used on a remote GATT Server to indicate data to a client

• gattc_set_parameters (SGCP, ID=6/7) – Configure local GATT Client parameters, including auto-confirm
behavior

Related events:

• gatts_indication_confirmed (IC, ID=5/3) – Occurs on a remote GATT Server after confirming indication on
the client

• gattc_data_received (D, ID=6/3) – Occurs on the local GATT Client when a remote server indicates data

User guide 194 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.5.7 gattc_set_parameters (SGCP, ID=6/7)

Configure new GATT Client parameters.

Binary header

 Type Length Group ID Notes

CMD C0 01 06 07 None.

RSP C0 02 06 07 None.

Text info

Text name Response length Category Notes

SGCP 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 flags F

GATT Client behavior flags bitmask:

Bit 0 (0x01) = Enable automatic confirmation of remote GATT Server

indications

Note: Factory default is 0x01 (all bits set)

Response parameters:

None.

Related commands:

• gattc_confirm_indication (/CI, ID=6/6) – Necessary to use for indicated data if flags Bit 0 is clear

• gattc_get_parameters (GGCP, ID=6/8)

User guide 195 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.5.8 gattc_get_parameters (GGCP, ID=6/8)

Get current GATT Client parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 06 08 None.

RSP C0 03 06 08 None.

Text info

Text name Response length Category Notes

GGCP 0x000F GET None.

Command arguments

None.

Response parameters:

Data type Name Text Description

uint8 Flags F

GATT Client behavior flags bitmask:

Bit 0 (0x01) = Enable automatic confirmation of remote GATT Server

indications

Note: Factory default is 0x01 (all bits set)

Related commands:

• gattc_set_parameters (SGCP, ID=6/7)

7.2.6 SMP Group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used
for working with privacy, encryption, pairing, and bonding between two devices.

Commands within this group are listed below:

• smp_query_bonds (/QB, ID=7/1)

• smp_delete_bond (/BD, ID=7/2)

• smp_pair (/P, ID=7/3)

• smp_send_passkeyreq_response (/PE, ID=7/6)

• smp_get_privacy_mode (GPRV, ID=7/10)

• smp_set_security_parameters (SSBP, ID=7/11)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

• smp_get_fixed_passkey (GFPK, ID=7/14)

Events within this group are documented in section SMP Group (ID=7).

User guide 196 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.1 smp_query_bonds (/QB, ID=7/1)

Request a list of bonded devices.

This command accesses the current bonded device list. Bonded devices are those which have previously paired
(exchanged encryption data) and bonded (stored the exchanged encryption data).

The response from this command includes the number of bonded devices, and the response are followed by

the smp_bond_entry (B, ID=7/1) API events that provide details for each device.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module currently supports a

maximum of eigth bonded devices at the same time. To bond with additional devices after all
eight bond slots are full, EZ-Serial firmware will delete the oldest one automatically.

Binary header

 Type Length Group ID Notes

CMD C0 00 07 01 None.

RSP C0 03 07 01 None.

Text info

Text name Response length Category Notes

/QB 0x000E ACTION None.

Command arguments

None.

Response parameters:

Data type Name Text Description

uint8 Count C Bond entry count

Related commands:

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

Related events

• smp_bond_entry (B, ID=7/1) – Occurs once for each bonded device after requesting bond list

User guide 197 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.2 smp_delete_bond (/BD, ID=7/2)

Remove a bonded device.

This command removes the stored encryption key data for a device that has previously paired (exchanged
encryption data) and bonded (stored the exchanged encryption data).

Binary header

 Type Length Group ID Notes

CMD C0 07 07 02 None.

RSP C0 03 07 02 None.

Text info

Text name Response length Category Notes

/BD 0x000E ACTION None.

Command arguments

Data type Name Text Description

Macaddr address A* Bluetooth® address

uint8 type T

Address type:

• 0 = Public (default)

• 1 = Random/private

Note: Address type does not affect delete operation in current
implementation.

Response parameters:

Data type Name Text Description

uint8 count C Updated bond entry count

Related commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

User guide 198 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.3 smp_pair (/P, ID=7/3)

Initiate pairing process with a connected device.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module currently supports a
maximum of 8 bonded devices at the same time. To bond with additional devices after all 8 bond

slots are full, you must delete one of the existing bonds with the smp_delete_bond (/BD, ID=7/2)
API command.

Binary header

 Type Length Group ID Notes

CMD C0 05 07 03 None.

RSP C0 02 07 03 None.

Text info

Text name Response length Category Notes

/P 0x0008 ACTION None.

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle to use for pairing

uint8 mode M Security level setting reported to peer: always 0

uint8 bonding B Bond during pairing process: not implemented, always zero

uint8 keysize K

Encryption key size (7-16), value ignored if pairing initiated by slave

device

Note: Factory default is 16 bytes (0x10)

uint8 pairprop P Pairing properties: always 0

Response parameters:

None.

Related commands

• smp_set_security_parameters (SSBP, ID=7/11) – Use to configure default security settings

Related events

• smp_pairing_requested (P, ID=7/2) – Occurs when remote device initiates pairing

• smp_pairing_result (PR, ID=7/3) – Occurs when pairing process completes (success or failure)

• smp_encryption_status (ENC, ID=7/4) – Occurs when encryption status changes during a pairing process

User guide 199 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.4 smp_send_passkeyreq_response (/PE, ID=7/6)

Sends the passkey value back to a remote device waiting for it.

Binary header

 Type Length Group ID Notes

CMD C0 05 07 06 None.

RSP C0 02 07 06 None.

Text info

Text name Response length Category Notes

/PE 0x0009 SET None.

Command arguments

Data type Name Text Description

uint8 Conn_handle C Connection handle

uint32 passkey P* Passkey value

Response parameters:

None.

Related commands:

• smp_pair (/P, ID=7/3) – Creates a new bond entry if pairing process succeeds with bonding enabled

Related events:

• smp_passkey_entry_requested (PKE, ID=7/6)

7.2.6.5 smp_set_privacy_mode (SPRV, ID=7/9)

Configure new privacy settings.

Use this command to enable or disable Peripheral or Central privacy. Enabling privacy in each mode causes the
Bluetooth® connection address used in related states to be random (private) instead of fixed (public). This can

make passive profiling by a remote observer more difficult.

Peripheral privacy affects the Bluetooth® connection address broadcast during advertisements, which the

remote Central device may log or use for a scan request or connection request. Central privacy affects the

Bluetooth® connection address used for scan requests or connection requests when scanning for or
communicating with a remote device.

Binary header

 Type Length Group ID Notes

CMD C0 03 07 09 None.

RSP C0 02 07 09 None.

User guide 200 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Category Notes

SPRV 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 mode M

Privacy mode bitmask:

• Bit 0 (0x01) = Enable Peripheral privacy

• Bit 1 (0x02) = Enable Central privacy

• Bit 2 (0x04) = Enable Random address

Note: Factory default is 0x04 (Enable Random address)

Note: Current FW does not differ Peripheral privacy and Central

privacy.

uint16 interval I Randomization interval (seconds): Not Available

Response parameters:

None.

Related commands

• smp_get_privacy_mode (GPRV, ID=7/10)

7.2.6.6 smp_get_privacy_mode (GPRV, ID=7/10)

Obtain current privacy settings.

Binary header

 Type Length Group ID Notes

CMD C0 00 07 0A None.

RSP C0 05 07 0A None.

Text info

Text name Response length Category Notes

GPRV 0x0016 GET None.

Command arguments

None.

User guide 201 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters:

Data type Name Text Description

uint8 Mode M

Privacy mode bitmask:

• Bit 0 (0x01) = Enable Peripheral privacy

• Bit 1 (0x02) = Enable Central privacy

• Bit 2 (0x04) = Enable Random address

Note: Factory default is 0x04 (Enable Random address)

uint16 interval I Randomization interval (seconds): Not Available

Related commands

• smp_send_passkeyreq_response (/PE, ID=7/6)

7.2.6.7 smp_set_security_parameters (SSBP, ID=7/11)

Configure new security and bonding parameters.

These parameters are used when the smp_pair (/P, ID=7/3) API command is used without specifying non-
default arguments. These values are reported to the remote device as part of the pairing process and affect the

type of key generation and exchange that takes place during pairing and bonding.

Note: Changing the I/O capabilities affects the command/event flow necessary to complete a pairing
and bonding process. See the related commands and events for details concerning each one’s use.
Also, MITM protection requires I/O capabilities other than “No Input + No Output” to function

correctly.

Binary header

 Type Length Group ID Notes

CMD C0 06 07 0B None.

RSP C0 02 07 0B None.

Text info

Text name Response length Category Notes

SSBP 0x000A SET None.

User guide 202 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

Data type Name Text Description

uint8 mode M

High four bits are for Bluetooth® classic:

• 0 = MITM Protection Not Required - Single Profile/non-bonding.
Numeric comparison with automatic accept allowed.

• 1 = MITM Protection Required - Single Profile/non-bonding. Use IO

Capabilities to determine authentication procedure.

• 2 = MITM Protection Not Required - All Profiles/dedicated bonding.
Numeric comparison with automatic accept allowed.

• 3 = MITM Protection Required - All Profiles/dedicated bonding. Use IO
Capabilities to determine authentication procedure.

• 4 = MITM Protection Not Required - Single Profiles/general bonding.
Numeric comparison with automatic accept allowed.

• 5 = MITM Protection Required - Single Profiles/general bonding. Use IO

Capabilities to determine authentication procedures.

Low four bits are for Bluetooth® LE:

• 0x00 = Not required - No Bond

• 0x01 = Required - General Bond

• 0x04 = MITM required - Auth Y/N

• 0x08 = LE Secure Connection, no MITM, no Bonding

• 0x08|0x01 = LE Secure Connection, no MITM, Bonding

• 0x08|0x04 = LE Secure Connection, MITM, no Bonding

• 0x08|0x04|0x01= LE Secure Connection, MITM, Bonding

uint8 bonding B Bond during pairing process: not implemented, always zero

uint8 keysize K

Encryption key size (7-16), value ignored if pairing initiated by slave

device

Note: Factory default is 16 bytes (0x10)

uint8 pairprop P Pairing properties: Don't care and always 0

uint8 io I

I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate

“yes” or “no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and
“yes” or “no”

• 3 = No Input + No Output – no ability to display or input anything
(factory default)

• 4 = Keyboard + Display – ability to provide full numeric input and
display

User guide 203 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 flags F

Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests

(Always be 1)

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

• Bit 2 (0x04) = Enable use of legacy PIN code during paring for
Bluetooth® classic device.

Note: Factory default is 0x01

Response parameters:

None.

Related commands

• smp_pair (/P, ID=7/3)

• smp_get_security_parameters (GSBP, ID=7/12)

• smp_set_fixed_passkey (SFPK, ID=7/13)

• smp_set_pin_code (SBTPIN, ID=7/15)

• smp_get_pin_code (GBTPIN, ID=7/16)

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

7.2.6.8 smp_get_security_parameters (GSBP, ID=7/12)

Obtain current security and bonding parameters.

Binary header

 Type Length Group ID Notes

CMD C0 00 07 0C None.

RSP C0 08 07 0C None.

Text info

Text name Response length Category Notes

GSBP 0x0028 GET None.

Command arguments:

None.

User guide 204 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters:

Data type Name Text Description

uint8 Mode M

Security level setting reported to peer:

High four bits are for Bluetooth® classic:

• 0 = MITM Protection Not Required - Single Profile/non-bonding.

Numeric comparison with automatic accept allowed.

• 1 = MITM Protection Required - Single Profile/non-bonding. Use IO
Capabilities to determine authentication procedure.

• 2 = MITM Protection Not Required - All Profiles/dedicated bonding.

Numeric comparison with automatic accept allowed.

• 3 = MITM Protection Required - All Profiles/dedicated bonding. Use IO

Capabilities to determine authentication procedure.

• 4 = MITM Protection Not Required - Single Profiles/general bonding.
Numeric comparison with automatic accept allowed.

• 5 = MITM Protection Required - Single Profiles/general bonding. Use IO

Capabilities to determine authentication procedures.

Low four bits are for Bluetooth® LE:

• 0x00 = Not required - No Bond

• 0x01 = Required - General Bond

• 0x04 = MITM required - Auth Y/N

• 0x08 = LE Secure Connection, no MITM, no Bonding

• 0x08|0x01 = LE Secure Connection, no MITM, Bonding

• 0x08|0x04 = LE Secure Connection, MITM, no Bonding

• 0x08|0x04|0x01= LE Secure Connection, MITM, Bonding

uint8 bonding B

Bond during pairing process:

• 0 = Do not bond (exchange keys and encrypt only)

• 1 = Bond (permanently store exchanged encryption data)

uint8 keysize K

Encryption key size (7-16), value ignored if pairing initiated by slave

device

Note: Factory default is 16 bytes (0x10)

uint8 pairprop P Pairing properties: Don't care and always 0

User guide 205 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 Io I

I/O capabilities:

• 0 = Display Only – ability to convey a 6-digit number to user

• 1 = Display + Yes/No – display and the ability to have user indicate
“yes” or “no”

• 2 = Keyboard Only – ability for the user to enter ‘0’ through ‘9’ and
“yes” or “no”

• 3 = No Input + No Output – no ability to display or input anything

(factory default)

• 4 = Keyboard + Display – ability to provide full numeric input and

display

uint8 Flags F

Security behavior flags bitmask:

• Bit 0 (0x01) = Enable auto-accept for incoming pairing requests

• Bit 1 (0x02) = Enable use of fixed passkey during pairing

• Bit 2 (0x04) = Enable use of legacy PIN code during paring for

Bluetooth® classic device.

Note: Factory default is 0x01

Related commands

• smp_set_security_parameters (SSBP, ID=7/11)

• smp_set_pin_code (SBTPIN, ID=7/15)

• smp_get_pin_code (GBTPIN, ID=7/16)

7.2.6.9 smp_set_fixed_passkey (SFPK, ID=7/13)

Configure new fixed passkey value.

While the Bluetooth® specification describes that the passkey should be randomized during pairing, you can
configure a fixed (non-random) 6-digit passkey between 000000 and 999999 using this command and

configuring the local I/O capabilities to the “Display Only” value.

Note: The fixed passkey defined here takes effect only if you enable fixed passkey use by setting Bit 1

(0x02) of the security flags parameter and set the “Display Only” I/O capabilities value (0x00) using
the smp_set_security_parameters (SSBP, ID=7/11) API command. If both conditions are not met,

then the stack will revert to the default behavior of using a random passkey.

Note: This feature is obsolete since it is not Bluetooth® spec suggest.

Binary header

 Type Length Group ID Notes

CMD C0 04 07 0D None.

RSP C0 02 07 0D None.

User guide 206 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Category Notes

SFPK 0x000A SET None.

Command arguments

Data type Name Text Description

uint32 passkey P

Fixed passkey value

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0

Response parameters:

None.

Related commands

• smp_pair (/P, ID=7/3)

• smp_get_fixed_passkey (GFPK, ID=7/14)

• smp_set_security_parameters (SSBP, ID=7/11)

Related events

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

Example Usage

See section Pairing with a fixed passkey

User guide 207 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.10 smp_get_fixed_passkey (GFPK, ID=7/14)

Obtain current fixed passkey value.

Binary header

 Type Length Group ID Notes

CMD C0 00 07 0E None.

RSP C0 06 07 0E None.

Text info

Text name Response length Category Notes

GFPK 0x0015 GET None.

Command arguments

None.

Response parameters:

Data type Name Text Description

uint32 passkey P

Fixed passkey value:

• Minimum = 0 (‘000000’ decimal entry during pairing)

• Maximum = 0xF423F (‘999999’ decimal entry during pairing)

Note: Factory default is 0

Related commands

• smp_set_fixed_passkey (SFPK, ID=7/13)

7.2.6.11 smp_set_pin_code (SBTPIN, ID=7/15)

Configure new PIN code value for Bluetooth® classic device.

Binary header

 Type Length Group ID Notes

CMD C0 02 07 0F Variable-length command payload, value specified is minimum

RSP C0 02 07 0F None.

Text info

Text name Response length Category Notes

SBTPIN 0x000C SET None.

User guide 208 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

Data type Name Text Description

uint8a PIN code P

PIN code data (1-16 bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload.

Note: Factory default is “0000”(0x30,0x30,0x30,0x30), length 0x04.

Response parameters

None.

Related commands

• smp_get_pin_code (GBTPIN, ID=7/16)

• smp_set_security_parameters (SSBP, ID=7/11)

7.2.6.12 smp_get_pin_code (GBTPIN, ID=7/16)

Obtain current PIN code value.

Binary header

 Type Length Group ID Notes

CMD C0 00 07 10 None.

RSP C0 04 07 10 None.

Text info

Text name Response length Category Notes

GBTPIN 0x0011 GET Variable-length command payload, value specified is minimum

Command arguments

None.

Response parameters

Data type Name Text Description

uint8a16 PIN code P

PIN code data (1-16 bytes)

Note: uint8a data type requires one prefixed “length” byte before
binary parameter payload

Related commands

• smp_set_pin_code (SBTPIN, ID=7/15)

User guide 209 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.6.13 smp_send_pinreq_response (/BTPIN, ID=7/17)

Sends the PIN code value back to a remote device waiting for it.

Binary header

 Type Length Group ID Notes

CMD C0 05 07 11 None.

RSP C0 02 07 11 None.

Text info

Text name Response length Notes

/BTPIN 0x000C None.

Command arguments

Data type Name Text Description

uint8 conn_handle C Connection handle

uint32 pin_code P* PIN code value

Response parameters

None.

Related commands:

• smp_pair (/P, ID=7/3)

Related events:

• smp_passkey_entry_requested (PKE, ID=7/6)

7.2.7 GPIO Group (ID=9)

GPIO methods relate to the physical pins on the module.

Commands within this group are listed below:

• gpio_query_adc (/QADC, ID=9/2)

• gpio_set_drive (SIOD, ID=9/5)

• gpio_get_drive (GIOD, ID=9/6)

• gpio_set_logic (SIOL, ID=9/7)

• gpio_get_logic (GIOL, ID=9/8)

• gpio_set_pwm_mode (SPWM, ID=9/11)

• gpio_get_pwm_mode (GPWM, ID=9/12)

Events within this group are documented in section GPIO Group (ID=9).

User guide 210 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.7.1 gpio_query_adc (/QADC, ID=9/2)

Read the immediate analog voltage level on the selected channel.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides a single dedicated ADC
input pin (ADC0) for reading analog voltages. The ADC supports an input voltage range of 0 V minimum to VDD

(usually 3.3 V) maximum. Use this command to perform a single ADC conversion. Once the conversion
completes, the module transmits the result back in response parameters.

See section GPIO pin map for supported modules for a pin map table showing ADC pin assignment.

ADC channel is internal defined, see the following definition which copied from WICED SDK, user can check the

GPIO availablity in the models and find the right channel index:

 ADC_INPUT_P17 = 0x0, // ADC CHANNEL #1 on GPIO P17

 ADC_INPUT_P16 = 0x1, // ADC CHANNEL #2 on GPIO P16

 ADC_INPUT_P15 = 0x2, // ADC CHANNEL #3 on GPIO P15

 ADC_INPUT_P14 = 0x3, // ADC CHANNEL #4 on GPIO P14

 ADC_INPUT_P13 = 0x4, // ADC CHANNEL #5 on GPIO P13

 ADC_INPUT_P12 = 0x5, // ADC CHANNEL #6 on GPIO P12

 ADC_INPUT_P11 = 0x6, // ADC CHANNEL #7 on GPIO P11

 ADC_INPUT_P10 = 0x7, // ADC CHANNEL #8 on GPIO P10

 ADC_INPUT_P9 = 0x8, // ADC CHANNEL #9 on GPIO P9

 ADC_INPUT_P8 = 0x9, // ADC CHANNEL #10 on GPIO P8

 ADC_INPUT_P1 = 0xA, // ADC CHANNEL #11 on GPIO P1

 ADC_INPUT_P0 = 0xB, // ADC CHANNEL #12 on GPIO P0

 ADC_INPUT_VDDIO = 0xC, // ADC_INPUT_VBAT_VDDIO on Channel 13

 ADC_INPUT_VDD_CORE = 0xD, // ADC_INPUT_VDDC on Channel 14

 ADC_INPUT_ADC_BGREF = 0xE, // ADC BANDGAP REF on Channel 15

 ADC_INPUT_ADC_REFGND = 0xF, // ADC REF GND on Channel 16

 ADC_INPUT_P38 = 0x10, // ADC CHANNEL #17 on GPIO P38

 ADC_INPUT_P37 = 0x11, // ADC CHANNEL #18 on GPIO P37

 ADC_INPUT_P36 = 0x12, // ADC CHANNEL #19 on GPIO P36

 ADC_INPUT_P35 = 0x13, // ADC CHANNEL #20 on GPIO P35

 ADC_INPUT_P34 = 0x14, // ADC CHANNEL #21 on GPIO P34

 ADC_INPUT_P33 = 0x15, // ADC CHANNEL #22 on GPIO P33

 ADC_INPUT_P32 = 0x16, // ADC CHANNEL #23 on GPIO P32

 ADC_INPUT_P31 = 0x17, // ADC CHANNEL #24 on GPIO P31

 ADC_INPUT_P30 = 0x18, // ADC CHANNEL #25 on GPIO P30

 ADC_INPUT_P29 = 0x19, // ADC CHANNEL #26 on GPIO P29

 ADC_INPUT_P28 = 0x1A, // ADC CHANNEL #27 on GPIO P28

 ADC_INPUT_P23 = 0x1B, // ADC CHANNEL #28 on GPIO P23

 ADC_INPUT_P22 = 0x1C, // ADC CHANNEL #29 on GPIO P22

 ADC_INPUT_P21 = 0x1D, // ADC CHANNEL #30 on GPIO P21

 ADC_INPUT_P19 = 0x1E, // ADC CHANNEL #31 on GPIO P19

 ADC_INPUT_P18 = 0x1F, // ADC CHANNEL #32 on GPIO P18

 ADC_INPUT_CHANNEL_MASK = 0x1f,

Binary header

 Type Length Group ID Notes

CMD C0 02 09 02 None.

RSP C0 08 09 02 None.

User guide 211 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Category Notes

/QADC 0x001D ACTION None.

Command arguments

Data type Name Text Description

uint8 channel N* ADC channel (0 ~31)

uint8 reference R
Voltage reference for conversion

(Ignored in current release, set to 0 and VDD will be used)

Response parameters

Data type Name Text Description

uint16 Value A Raw ADC conversion value, 0 – 2047 (0x0 – 0x7FF)

uint32 Uvolts U Scaled ADC result in microvolts, 0 – VDD (0x0 – 0x325AA0 if VDD is 3.3V)

7.2.7.2 gpio_set_drive (SIOD, ID=9/5)

Configure a new drive mode for the selected pin.

Binary header

 Type Length Group ID Notes

CMD C0 05 09 05 None.

RSP C0 02 09 05 None.

Text info

Text name Response length Category Notes

SIOD 0x000A SET None.

Command arguments

Data

type
Name Text Description

uint8 pin P* Pin number (0-47)

Uint16 pin_config C* Pin configuration

uint8 pin_out_value L

Pin out value:

• 0 - pin will be set to 0 (default)

• non-zero - pin will be set to 1

uint8 pin_operation O

Pin operation:

• 0: immediate or start_up(default)

• 1: enter low power

• 2: exit low power

• 3: register interrupt

• 4: release this pin from operation list

User guide 212 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

None.

Related commands:

• gpio_get_drive (GIOD, ID=9/6)

7.2.7.3 gpio_get_drive (GIOD, ID=9/6)

Get current new drive mode for the selected pin.

Binary header

 Type Length Group ID Notes

CMD C0 02 09 06 None.

RSP C0 06 09 06 None.

Text info

Text name Response length Category Notes

GIOD 0x001B GET None.

Command arguments

Data type Name Text Description

uint8 pin P* Pin number (0-47)

uint8 pin_operation O

Pin operation:

• 0: immediate or start_up(default)

• 1: enter low power

• 2: exit low power

• 3: register interrupt

Response parameters

Data type Name Text Description

uint16 Pin_config C Pin configuration

uint8 Pin_out_value L

Pin out value:

• 0- pin output be set to 0

• non-zero - pin output be set to 1

uint8 Pin_operation O

Pin operation:

• 0: immediate or start_up

• 1: enter low power

• 2: exit low power

• 3: register interrupt

• 4: release this pin from operation list

User guide 213 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related Commands:

• gpio_set_drive (SIOD, ID=9/5)

7.2.7.4 gpio_set_logic (SIOL, ID=9/7)

Configure a new output logic for the selected pin.

Binary header

 Type Length Group ID Notes

CMD C0 02 09 07 None.

RSP C0 02 09 07 None.

Text info

Text name Response length Category Notes

SIOL 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 pin P* Pin number (0-47)

uint8 pin_out_value L

Pin out value:

• 0- pin output be set to 0

• non-zero - pin output be set to 1

Response parameters

None.

Related commands:

• gpio_get_logic (GIOL, ID=9/8)

User guide 214 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.7.5 gpio_get_logic (GIOL, ID=9/8)

Obtain the current output logic for the selected pin.

Binary header

 Type Length Group ID Notes

CMD C0 02 09 08 None.

RSP C0 0A 09 08 None.

Text info

Text name Response length Notes

GIOL 0x0020 None.

Command arguments

Data type Name Text Description

uint8 pin P* Pin number (0-47 or 0xFF)

uint8 direction D

Direction for get pint logic if pin is 0 -47:

• 0 - get the pin input status (default)

• 1 - get the pin output status

• 2 -get the interrupt status

Selection for get bit map of pins operation list if pin=0xFF:

• 0 - pin map (default)

• 1 - slot map

Response parameters:

Data type Name Text Description

uint32
Pin logic or

pin_map_low
L

Pin logic when pin is 0~47

Low 32 bit map when pin is 0xFF

uint32

Pin configure

or

pin_map_high

H
Pin configuration when pin is 0~47

High 32-bit map when pin is 0xFF

Related commands:

• gpio_set_logic (SIOL, ID=9/7)

User guide 215 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.7.6 gpio_set_pwm_mode (SPWM, ID=9/11)(Not implmented)

Configure new PWM output behavior for selected channel.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides four dedicated PWM
output pins (PWM0/1/2/3). Enabling PWM on the channel means you cannot use that pin for another generic

I/O. To return a PWM channel pin to standard functionality, use the gpio_set_pwm_mode (SPWM, ID=9/11) API
command to disable PWM output on that pin. See section GPIO pin map for supported modules for a pin map
table showing pin availability and default assignment.

Note: Enabling PWM output automatically prevents the CPU from entering normal sleep under any

circumstances. This happens because the high-frequency clock required to generate the PWM

signal cannot operate while the CPU is in sleep. To allow normal sleep mode again, you must
disable all PWM output. See section Managing sleep states for further detail.

Binary header

 Type Length Group ID Notes

CMD C0 08 09 0B None.

RSP C0 02 09 0B None.

Text info

Text name Response length Category Notes

SPWM 0x000A SET None.

Command arguments

Data type Name Text Description

uint8 channel N* Channel number (0~3)

uint8 enable E Enable PWM output (0 to disable, 1 to enable)

uint8 divider D

Clock divider value (24 MHz input):

• Minimum = 0 (factory default)

• Maximum = 255

Note: Divider denominator is divider+1, so “0” is “divide by

1”

User guide 216 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 prescaler S

PWM prescaler value:

• 0 = 1x (no prescaling)

• 1 = 2x

• 2 = 4x

• 3 = 8x

• 4 = 16x

• 5 = 32x

• 6 = 64x

• 7 = 128x

Note: Factory default is 0 (1x, no prescaling)

uint16 period P Period (0-1023)

uint16 compare C Compare (0-1023, must not be greater than period)

Response parameters:

None.

Related commands

• gpio_get_pwm_mode (GPWM, ID=9/12)

User guide 217 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.7.7 gpio_get_pwm_mode (GPWM, ID=9/12) (Not implmented)

Obtain current PWM output behavior for selected channel.

See section GPIO pin map for supported modules for a pin map table showing pin availability and default
assignment.

Binary header

 Type Length Group ID Notes

CMD C0 01 09 0C None.

RSP C0 09 09 0C None.

Text info

Text name Response length Category Notes

GPWM 0x0027 GET None.

Command arguments

Data type Name Text Description

uint8 channel N* Channel number (0~3)

Response parameters:

Data type Name Text Description

uint8 enable E Enable PWM output (0 to disable, 1 to enable)

uint8 divider D

Clock divider value (24 MHz input):

• Minimum = 0 (factory default)

• Maximum = 255

Note: Divider denominator is divider+1, so “0” is “divide by 1”

uint8 prescaler S

PWM prescaler value:

• 0 = 1x (no prescaling)

• 1 = 2x

• 2 = 4x

• 3 = 8x

• 4 = 16x

• 5 = 32x

• 6 = 64x

• 7 = 128x

Note: Factory default is 0 (1x, no prescaling)

uint16 period P Period (0-1023)

uint16 compare C Compare (0-1023, must not be greater than period)

User guide 218 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• gpio_set_pwm_mode (SPWM, ID=9/11)

7.2.8 CYSPP Group (ID=10)

CYSPP methods relate to the Cypress (A Infineon Technologies company) Serial Port Profile.

Commands within this group are listed below:

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

• p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

• p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Events within this group are documented in section CYSPP Group (ID=10).

You can find further details and examples concerning CYSPP operation here:

• Section Using CYSPP mode

• Section Configuring the CYSPP data mode sleep level

• Section Performing a factory reset

7.2.8.1 p_cyspp_start (.CYSPPSTART, ID=10/2)

Activate CYSPP operation.

Use this command to start CYSPP via the API protocol, rather than asserting the CYSPP pin or configuring
automatic start with the p_cyspp_set_parameters (.CYSPPSP, ID=10/3) API command.

See section CYSPP state machine for details about how CYSPP moves between different operational states.

Binary header

 Type Length Group ID Notes

CMD C0 00 0A 02 None.

RSP C0 02 0A 02 None.

Text info

Text name Response length Category Notes

.CYSPPSTART 0x0011 ACTION None.

Command arguments

None.

Response parameters

None.

User guide 219 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Related events

• p_cyspp_status (.CYSPP, ID=10/1)

7.2.8.2 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Configure new CYSPP behavior settings.

Use this command to control how CYSPP behaves. You can find example usage and practical explanations of
how these settings affect behavior in section Using CYSPP mode and section Cable replacement examples with
CYSPP.

Note: Disabling CYSPP with this API method causes EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module to hide the relevant GATT database attributes from Client discovery. All
other visible attributes remain the same and keep their original handles, but those inside the
CYSPP attribute range are hidden and are unusable by connected Clients. This remains in effect

until you enable the profile again or assert the CYSPP pin.

Binary header

 Type Length Group ID Notes

CMD C0 13 0A 03 None.

RSP C0 02 0A 03 None.

Text info

Text name Response length Category Notes

.CYSPPSP 0x000E SET None.

Command arguments

Data

type
Name Text Description

uint8 enable E

Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G

GAP role to use:

• 0 = Peripheral/Server (factory default)

• 1 = Central/Client

User guide 220 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint16 company C

Company ID value for automatic advertisement payload

Manufacturer Data:

Note: Factory default is 0x0131 (Cypress Semiconductor - A
Infineon Technologies company)

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R
Remote connection key to search for while scanning (central role) –

not applicable on AIROC™ Bluetooth® LE Module platform

uint32 remote_mask M
Bitmask for bits in remote key which must match for a central-role

connection – not applicable on AIROC™ Bluetooth® LE module

uint8 sleep_level P

Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Sleep when possible (factory default)

Note: System-wide sleep overrides this if it is set to a lower

level

uint8 server_security S

CYSPP Server security requirement to allow writing CYSPP data from

a Client:

• 0 = Not requires an authenticated link

• 1 = Requires an authenticated link

uint8 client_flags F

Client GATT usage flags while operating CYSPP in the central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only)

Response parameters:

None.

Related commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Related events

• gap_adv_state_changed (ASC, ID=4/2) – May occur if CYSPP is set to start automatically in peripheral role

• p_cyspp_status (.CYSPP, ID=10/1)

User guide 221 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Example usage

• Section Using CYSPP mode

• Section Configuring the CYSPP data mode sleep level

• Section Cable replacement examples with CYSPP

7.2.8.3 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Obtain current CYSPP behavior settings.

Binary header

 Type Length Group ID Notes

CMD C0 00 0A 04 None.

RSP C0 15 0A 04 None.

Text info

Text name Response length Category Notes

.CYSPPGP 0x004F GET None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 enable E

Enable CYSPP profile:

• 0 = Disable

• 1 = Enable

• 2 = Enable + auto-start (factory default)

uint8 role G

GAP role to use:

• 0 = Peripheral/Server (factory default)

• 1 = Central/Client

uint16 company C

Company ID value for automatic advertisement packet payload

Manufacturer Data:

Note: Factory default is 0x0131 (Cypress Semiconductor - A

Infineon Technologies company)

uint32 local_key L Local connection key to present while advertising (peripheral role)

uint32 remote_key R Remote connection key to search for while scanning (central role)

uint32 remote_mask M
Bitmask for bits in remote key which must match for a central-role

connection

User guide 222 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 sleep_level P

Maximum sleep level while connected with open CYSPP data pipe:

• 0 = Sleep disabled

• 1 = Normal sleep when possible

Note: System-wide sleep overrides this if it is set to a lower
level

uint8 server_security S

CYSPP Server security requirement for writing CYSPP data from a

Client:

• 0 = Not requires an authenticated link

• 1 = Requires an authenticated link

uint8 client_flags F

Client GATT usage flags while operating CYSPP in the Central role

• Bit 0 (0x01) = Use acknowledged data transfers

• Bit 1 (0x02) = Enable CYSPP RX flow control

Note: Factory default is 0x02 (RX flow only)

Related commands

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

7.2.8.4 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

Control how incoming serial data from an external host is packetized for CYSPP transmission.

Use this command to control whether or how incoming serial data is assembled into specific packets for

transmission to the remote peer over a CYSPP connection. Packetization does not affect the content or
ordering of serial data in any way, but only affects certain buffering and transmission timing.

Note: CYSPP packetization does not affect any outgoing UART serial data (module-to-host), nor does it

affect incoming serial data while in command mode (that is, the CYSPP data pipe is not open). It
impacts only the incoming serial data while CYSPP data mode is active.

At 115200 baud, a single byte takes about 80 microseconds to transfer. EZ-Serial firmware platform for AIROC™

Bluetooth® & Bluetooth® LE module checks for new bytes at least every 20 microseconds and processes the
available bytes. Due to this, a continuous serial byte stream from an external host may be delivered to a remote
CYSPP peer with multiple GATT transfers even if all data could fit in a single packet (for instance, two bytes sent
as two single-byte transfers). Although the data is always delivered completely and in the correct order, this

results in potentially unnecessary complexity on the receiving end, which must buffer and combine incoming

data if it does not handle it as a continuous data stream.

User guide 223 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

To address this behavior, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module provides
this API command to control incoming data packetization. There are five different modes:

• Mode 0: Immediate

This mode reads and transmits data quickly, always sending as much data as is available when the
Bluetooth® LE stack allows a new transmission. In this mode, the first byte or two bytes of a new

transmission are usually sent in a single packet even if more data is arriving at the same time.

The [wait] and [length] settings are irrelevant in this mode.

• Mode 1: Anticipate (factory default with 5 ms wait and 20-byte length)

This mode waits up to [wait] milliseconds in anticipation for at least [length] bytes to arrive from the
external host. If the target byte count is reached before the wait time expires, all available bytes are
transmitted immediately. If the configured wait time expires before reaching the target byte count, all

available bytes are transmitted at that time. Anticipate mode is suitable for most general operations and
does not negatively impact the throughput if the incoming serial data arrives fast enough to keep the UART
receive buffer full.

The [wait] setting must be between 1 and 255. The [length] setting must be between 1 and 128, which is the
internal UART RX software buffer size.

• Mode 2: Fixed

This mode waits indefinitely until at least [length] bytes have been read, then transmits exactly that many

bytes. Fixed mode is best used in cases where the host sends chunks of data which are always of the same

size. Setting a [length] value that is greater than the GATT MTU payload size results in multiple

transmissions once all data has been buffered. For example, a fixed packet length of 32 bytes with the

default GATT MTU size of 23 bytes (usable payload size of 20 bytes) results in one 20-byte packet followed by
one 12-byte packet. The MTU depends on the value negotiated by the Client after connection.

The [length] setting must be between 1 and 128, which is the internal UART RX software buffer size. The
[wait] setting is irrelevant in this mode.

• Mode 3: Variable

This mode requires an additional length value from the host before each packet to indicate how many bytes

to expect. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module consumes this byte

(it is not transmitted to the remote peer), and then waits until the exact number of bytes have been read

before transmitting them. Variable mode is suitable for applications that require packets of differing lengths
and can accommodate an extra transmitted byte from the host indicating each packet’s length.

For example, the host can send [04 61 62 63 64] to transmit the 4-byte ASCII string “abcd” to the remote
peer in a single packet. Or, the host can send [05 61 62 63 64 65 03 66 67 68] to transmit “abcdefgh” in two

packets (“abcde” followed by “def”).

The prefixed packet length byte must not be greater than 128. Values greater than this will be capped at

128. The [wait] and [length] settings are irrelevant in this mode.

User guide 224 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• Mode 4: End-of-packet

This mode buffers the data until the configured end-of-packet (EOP) byte is encountered in the data stream,
or until either the MTU payload size or UART RX buffer has filled. EOP mode allows variable-length packets
without knowing in advance the length of the packet

The EOP byte defaults to 0x0D (the carriage return byte, often expressed as ‘\r’ in code). However, you can

change it to any value between 0x00 and 0xFF. When the EOP byte occurs in the data stream, all buffered
data up to that point including the EOP byte itself will be transmitted to the remote side.

In this mode, EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module will also transmit

buffered data under two other conditions:

a. If the GATT MTU payload size is less than the UART RX buffer size (128 bytes) and enough data is
buffered to fill a single GATT packet, one packet’s worth of data is transmitted. The default

GATT MTU is 23 bytes with a usable payload size of 20 bytes.

b. If the GATT MTU payload size is greater than the UART RX buffer size (128 bytes) and the RX

buffer is full, 128 bytes of data are transmitted. This can only occur in cases where the

connected client has negotiated a GATT MTU greater than 131 bytes (actual transmit payload is
MTU - 3 bytes).

For the “Anticipate” mode (1), you must consider the UART baud rate when choosing the [wait] and [length]

values. A 5-ms wait time is suitable for a 20-byte target length at 115200 baud, but this is not enough time to
read in 20 bytes at 9600 baud (for example). If you change the baud rate, be sure to choose a [wait] value that

allows the target packet length to be filled under normal operating conditions. Table 62 lists “safe” wait values

for 20-byte packets at common baud rates for reference.

Table 62 Common UART timing for 20-byte packets

Baud Rate Single Bit Duration 20 Bytes at 8/N/1 (200

Bits)

Safe Wait Value Example

9600 104 us ~21 ms 32 ms (0x20)

38400 26.1 us ~5.2 ms 10 ms (0x0A)

57600 17.4 us ~3.5 ms 5 ms (0x05)

115200 8.68 us ~1.7 ms 5 ms (0x05)

230400 4.34 us 868 us 2 ms (0x02)

460800 2.17 us 434 us 1 ms (0x01)

921600 1.09 us 217 us 1 ms (0x01)

The single-bit duration for any baud rate can be calculated in microseconds using this equation:

Bit time = 1,000,000 us / [baud]

Standard UART settings of 8 data bits, no parity, and 1 stop bit yield a total of 10 bits per byte. For a 20-byte

packet, this requires allowance for 200 bits.

Note: If the packet length used in Anticipate, Fixed, Variable, or End-of-Packet modes exceeds the GATT
MTU usable payload size (20 bytes on many platforms), the packets are broken apart to fit within

this lower-level constraint. For example, using Fixed mode with [length] set to 32 bytes results in

two transmitted packets each time the target length is reached: first a 20-byte packet and then a
12-byte packet.

User guide 225 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Binary header

 Type Length Group ID Notes

CMD C0 04 0A 07 None.

RSP C0 02 0A 07 None.

Text info

Text name Response length Category Notes

.CYSPPSK 0x000E SET None.

Command arguments

Data type Name Text Description

uint8 mode M

Packetization mode:

• 0 = Immediate: transmit incoming data as soon as possible

• 1 = Anticipate: wait a short time to attempt a minimum buffer

threshold

• 2 = Fixed: buffer and send packets of exactly one size

• 3 = Variable: specify the size of every packet with a prefixed length
byte

• 4 = End-of-packet: transmit data when specific byte occurs in stream

Note: Factory default is 1 (Anticipate)

uint8 wait W

Anticipation delay (milliseconds), used only in “Anticipate” mode:

• Minimum = 0x01 (1 millisecond)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0xA (10 milliseconds)

uint8 length L

Fixed/anticipated packet length (bytes), used only in “Anticipate” or

“Fixed” mode:

• Minimum = 0x01 (1 byte)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU)

uint8 eop E

End-of-packet byte:

Note: Factory default is 0x0D (‘\r’ carriage return)

Response parameters

None.

User guide 226 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

7.2.8.5 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

Obtain current CYSPP packetization settings.

Binary header

 Type Length Group ID Notes

CMD C0 00 0A 08 None.

RSP C0 06 0A 08 None.

Text info

Text name Response length Category Notes

.CYSPPGK 0x0022 GET None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 mode M

Packetization mode:

• 0 = Immediate: Transmit incoming data as soon as possible

• 1 = Anticipate: Wait a short time to attempt a minimum buffer

threshold

• 2 = Fixed: Buffer and send packets of exactly one size

• 3 = Variable: Specify the size of every packet with a prefixed length

byte

• 4 = End-of-packet: Transmit data when specific byte occurs in

stream

Note: Factory default is 1 (Anticipate)

uint8 wait W

Anticipation delay (milliseconds), used only in “Anticipate” mode:

• Minimum = 0x01 (1 millisecond)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0xA (10 milliseconds)

User guide 227 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 length L

Fixed/anticipated packet length (bytes), used only in “Anticipate” and

“Fixed” mode:

• Minimum = 0x01 (1 byte)

• Maximum = 0x80 (128 bytes)

Note: Factory default is 0x14 (20 bytes, standard GATT MTU)

uint8 eop E

End-of-packet byte:

Note: Factory default is 0x0D (‘\r’ carriage return)

Related commands

• p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

7.2.9 Bluetooth® group (ID=14)

Bluetooth® methods relate to the Bluetooth® Classic operation.

Commands within this group are listed below:

• bt_start_inquiry (/BTI, ID=14/1)

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

• bt_connect (/BTC, ID=14/4)

• bt_cancel_connection (/BTCX, ID=14/5)

• bt_disconnect (/BTDIS, ID=14/6)

• bt_query_connections (/BTQC, ID=14/7)

• bt_query_peer_address (/BTQPA, ID=14/8)

• bt_query_rssi (/BTQSS, ID=14/9)

• bt_set_device_class (SBTDC, ID=14/12)

• bt_get_device_class (GBTDC, ID=14/13)

Events within this group are documented in the following sub sections.

You can find further details and examples concerning SPP operation in section Bluetooth® classic SPP.

User guide 228 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.9.1 bt_start_inquiry (/BTI, ID=14/1)

Begins the discovery process to identify nearby Bluetooth® Classic devices.

Binary header

 Type Length Group ID Notes

CMD C0 02 0E 01 None.

RSP C0 02 0E 01 None.

Text info

Text name Response length Notes

/BTI 0x000A None.

Command arguments

Data type Name Text Description

uint8 duration D*
Inquiry duration in seconds: 3 - 30 seconds

uint8 flags F*

Flags

• 0 - Inquiry all (name and address)

• 1 – Inquiry name

• 2 – Inquiry address

Response parameters

None.

Command-specific result codes

None.

Related commands

• bt_cancel_inquiry (/BTIX, ID=14/2)

Related events

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

User guide 229 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.9.2 bt_cancel_inquiry (/BTIX, ID=14/2)

Cancels any ongoing Bluetooth® Classic inquiry process before it would normally end.

Binary header

 Type Length Group ID Notes

CMD C0 00 0E 02 None.

RSP C0 02 0E 02 None.

Text info

Text name Response length Notes

/BTIX 0x000B None.

Command arguments

None.

Response Parameters

None.

Command-specific result codes

None.

Related commands

• bt_start_inquiry (/BTI, ID=14/1).

Related events

• bt_inquiry_complete (BTIC, ID=14/3)

7.2.9.3 bt_query_name (/BTQN, ID=14/3)

Attempt to obtain a friendly name for a remote device.

Binary header

 Type Length Group ID Notes

CMD C0 06 0E 03 None.

RSP C0 02 0E 03 None.

Text info

Text name Response length Notes

/BTQN 0x000B None.

Command arguments

Data type Name Text Description

macaddr address A* Bluetooth® address

User guide 230 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Response parameters

None.

Command-specific result codes

None.

Related commands

None.

Related events

• bt_name_result (BTINR, ID=14/2)

7.2.9.4 bt_connect (/BTC, ID=14/4)

Opens a connection to a remote Bluetooth® Classic target device.

Binary header

 Type Length Group ID Notes

CMD C0 07 0E 04 None.

RSP C0 03 0E 04 None.

Text info

Text name Response length Notes

/BTC 0x000F None.

Command arguments

Data type Name Text Description

macaddr address A* Bluetooth® address

uint8 type T*
Type:

1: SPP

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle assigned to new pending connection

Command-specific result codes

None.

Related commands

• bt_cancel_connection (/BTCX, ID=14/5)(Not implemented)

• bt_disconnect (/BTDIS, ID=14/6)

Related events

• bt_connected (BTCON, ID=14/4)

User guide 231 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• bt_connection_failed (BTCF, ID=14/6)

7.2.9.5 bt_cancel_connection (/BTCX, ID=14/5)(Not implemented)

Cancels a pending connection attempt to a remote Bluetooth® Classic peer device, previously initiated with the
'connect' command.

Note: This command should be used only to terminate a pending connection attempt, not to close an
open connection. To close an existing connection that has already been established, use the
'disconnect' command instead.

Binary header

 Type Length Group ID Notes

CMD C0 00 0E 05 None.

RSP C0 02 0E 05 None.

Text info

Text name Response length Notes

/BTCX 0x000B None.

Command arguments

None.

Response parameters

None.

Command-specific result codes

None.

Related commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related events

• bt_connected (BTCON, ID=14/4)

User guide 232 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.9.6 bt_disconnect (/BTDIS, ID=14/6)

Closes an open Bluetooth® Classic connection to a remote device, previously initiated with the 'connect'
command. If optional connection handle argument is omitted, all open connections will be closed.

Note: This command should be used only to close an open connection, not to terminate a pending

connection attempt. To cancel a pending connection attempt that has not yet succeeded, use the
'cancel connection' command instead.

Binary header

 Type Length Group ID Notes

CMD C0 01 0E 06 None.

RSP C0 02 0E 06 None.

Text info

Text name Response length Notes

/BTDIS 0x000C None.

Command arguments

Data type Name Text Description

uint8 conn_handle C* Handle of connection to disconnect

Response parameters

None.

Command-specific result codes

None.

Related commands

• bt_connect (/BTC, ID=14/4)

Related events

• bt_disconnected (BTDIS, ID=14/7)

7.2.9.7 bt_query_connections (/BTQC, ID=14/7)

Used to query the current list of active connections.

Binary header

 Type Length Group ID Notes

CMD C0 00 0E 07 None.

RSP C0 03 0E 07 None.

User guide 233 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Notes

/BTQC 0x0010 None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 count C Count of all active connections

Command-specific result codes

None.

Related commands

None.

Related events:

• bt_connection_status (BTCS, ID=14/5)

7.2.9.8 bt_query_peer_address (/BTQPA, ID=14/8)

Used to query the Bluetooth® address of a currently connected Bluetooth® Classic remote peer. This command
will generate an error response if it is used without an active connection.

Binary header

 Type Length Group ID Notes

CMD C0 01 0E 08 None.

RSP C0 09 0E 08 None.

Text info

Text name Response length Notes

/BTQPA 0x0020 None.

Command arguments

Data type Name Text Description

uint8 conn_handle C Handle of connection for which to query remote peer address

Response parameters

Data type Name Text Description

macaddr address A Peer Bluetooth® address

uint8 address_type T Address type(Always 0 in current implementation)

User guide 234 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command-specific result codes

None.

Related commands

• bt_connect (/BTC, ID=14/4)

Related events

• bt_connected (BTCON, ID=14/4)

7.2.9.9 bt_query_rssi (/BTQSS, ID=14/9)

Used to query the remote signal strength indication (RSSI) value detected in the packet received most recently
from the currently connected remote Bluetooth® Classic peer. This command will generate an error response if
it is used without an active connection. The RSSI value returned in the response is expressed as a signed 8-bit

integer. In text mode, it will appear in two’s complement form. Positive numbers in this form fall in the range [0,

127] and are as they appear. Negative numbers fall in the range [128, 255] and should have 256 subtracted from
them to obtain the real value.

Examples:

• 0x03 = +3 dBm

• 0xFF = -1 dBm (0xFF = 255 - 256 = -1)

• 0xF0 = -16 dBm (0xF0 = 240 - 256 = -16)

• 0xC5 = -59 dBm (0xC5 = 197 - 256 = -59)

Binary header

 Type Length Group ID Notes

CMD C0 06 0E 09 None.

RSP C0 03 0E 09 None.

Text info

Text name Response length Notes

/BTQSS 0x0011 None.

Command arguments

Data type Name Text Description

macaddr address A The mac address for which to query signal strength

Response parameters

Data type Name Text Description

int8 Rssi R RSSI value

Command-specific result codes

None.

User guide 235 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands:

None.

Related events:

None.

7.2.9.10 bt_set_parameters (SBTP, ID=14/10)

Sets Bluetooth® Classic device behavior.

Binary header

 Type Length Group ID Notes

CMD C0 0A 0E 0A None.

RSP C0 02 0E 0A None.

Text info

Text name Response length Notes

SBTP 0x000A None.

Command arguments

Data

type
Name Text Description

uint16 link_super_time_out T

Bluetooth® Classic link super time out, unit is 0.625 ms

Note: Factory default is 0x7D00 (20 second)

uint8 discoverable D

Bluetooth® Classic discoverable mode:

• 0 Not discoverable

• 1 Limited Bluetooth® Classic discoverable

• 2 General Bluetooth® Classic discoverable

uint8 connectable C Bluetooth® Classic connectable mode

uint8 flags F
Bluetooth® Classic behavior flags (always set to 0 in the

current release)

uint8 scn S

Service Channel Number for SPP server

Note: Factory default is 2

uint16 active_bt_discoverability V

Active time for Bluetooth® classic discoverable, unit is

second.

Note: Factory default is 0, means always active

User guide 236 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint16 active_bt_connectability N

Active time for Bluetooth® classic connectable, unit is

second.

Note: Factory default is 0, means always active

Response parameters

None.

Command-specific result codes

None.

Related commands

None.

Related events

None.

7.2.9.11 bt_get_parameters (GBTP, ID=14/11)

Used to get the current Bluetooth® Classic configuration.

Binary header

 Type Length Group ID Notes

CMD C0 00 0E 0B None.

RSP C0 0C 0E 0B None.

Text info

Text name Response length Notes

GBTP 0x0033 None.

Command arguments

None.

Response parameters

Data

type
Name Text Description

uint16 link_super_time_out T

Bluetooth® Classic link super time out, unit is 0.625 ms

Note: Factory default is 0x7D00 (20 second)

User guide 237 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data

type
Name Text Description

uint8 discoverable D

Bluetooth® Classic discoverable mode:

• 0 Not discoverable

• 1 Limited Bluetooth® Classic discoverable

• 2 General Bluetooth® Classic discoverable

uint8 connectable C

Bluetooth® Classic connectable mode:

• 0 Not connectable

• 1 Bluetooth® Classic connectable

uint8 flags F
Bluetooth® Classic behavior flags (always set to 0 in the

current release)

uint8 scn S

Service Channel Number for SPP server

Note: Factory default is 2

uint16 active_bt_discoverability V

Active time for Bluetooth® classic discoverable, unit is

second.

Note: Factory default is 0, means always active

uint16 active_bt_connectability N

Active time for Bluetooth® classic connectable, unit is

second.

Note: Factory default is 0, means always active

Command-specific result codes

None.

Related commands

None.

Related events

None.

7.2.9.12 bt_set_device_class (SBTDC, ID=14/12)

Defines the device class value. This is a 24-bit integer value with flag bits defined by the Bluetooth® SIG,
reported to remote peers during an inquiry process.

Binary header

 Type Length Group ID Notes

CMD C0 04 0E 0C None.

RSP C0 02 0E 0C None.

User guide 238 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Response length Notes

SBTDC 0x000B None.

Command arguments

Data type Name Text Description

uint32 cod C New device appearance value

Response parameters

None.

Command-specific result codes

None.

Related commands

• bt_get_device_class (GBTDC, ID=14/13)

Related events

None.

7.2.9.13 bt_get_device_class (GBTDC, ID=14/13)

Used to get the current device class value.

Binary header

 Type Length Group ID Notes

CMD C0 00 0E 0D None.

RSP C0 06 0E 0D None.

Text info

Text name Response length Notes

GBTDC 0x0016 None.

Command arguments

None.

Response parameters

Data type Name Text Description

uint32 cod C Current device class value

Command-specific result codes

None.

User guide 239 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• bt_set_device_class (SBTDC, ID=14/12)

Related events

None.

7.2.10 Spp group (ID=19)

7.2.10.1 spp_send_command (.SPPS, ID=19/1) (Not implemented)

Sends data via an SPP connection.

Binary header

 Type Length Group ID Notes

CMD C0 04+ 13 01 Variable-length command payload, value specified is minimum.

RSP C0 03 13 01 None.

Text info

Text name Response length Notes

.SPPS 0x0010 None.

Command arguments

Data type Name Text Description

uint8 conn_handle C* Connection handle

longuint8a data D*

New data to send

Note: The longuint8a data type requires two prefixed “length”
bytes before binary the parameter payload. In the

current implementation, the length is 512 in MAX due to

resource limitation.

Response parameters

Data type Name Text Description

uint16 conn_handle C Connection handle

Command-specific result codes

None.

Related commands

None.

Related events

• SPP_data_received (.SPPD, ID=19/1)

User guide 240 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.2.10.2 spp_set_config (.SPPSC, ID=19/2) (Not implemented)

Set SPP connection configuration.

Binary header

 Type Length Group ID Notes

CMD C0 01 13 02 None.

RSP C0 02 13 02 None.

Text info

Text name Response length Notes

.SPPSC 0x000C None.

Command arguments

Data type Name Text Description

uint8 connections N

Support number of connection (1~7)

Note: HID device FW only support 1 due to ram limitation

Response parameters

None.

Command-specific result codes

None.

Related commands

• spp_get_config (.SPPGC, ID=19/3)

Related events

None.

7.2.10.3 spp_get_config (.SPPGC, ID=19/3)

Get SPP connection configuration.

Binary header

 Type Length Group ID Notes

CMD C0 00 13 03 None.

RSP C0 03 13 03 None.

Text info

Text name Response length Notes

.SPPGC 0x0011 None.

User guide 241 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Command arguments

None.

Response parameters

Data type Name Text Description

uint8 connections N Current SPP support connection number

Command-specific result codes

None.

Related commands

• spp_set_config (.SPPSC, ID=19/2)

Related events

None.

7.3 API events

All events implemented in the API protocol are described in detail below. API commands and responses are
documented separately in section API commands and responses.

A master list of all possible error codes appearing in certain events can be found in section Error codes.

Commands and responses are broken down into the following groups:

• System Group (ID=2)

• GAP Group (ID=4)

• GATT Server Group (ID=5)

• GATT Client Group (ID=6)

• SMP Group (ID=7)

• GPIO Group (ID=9)

• Bluetooth® Classic Group (ID=14)

7.3.1 System Group (ID=2)

System methods relate to the core device, describing things like boot and device address info, and resetting to
an initial state.

Events within this group are listed below:

• system_boot (BOOT, ID=2/1)

• system_error (ERR, ID=2/2)

• system_factory_reset_complete (RFAC, ID=2/3)

• system_dump_blob (DBLOB, ID=2/5)

Commands within this group are documented in section System group (ID=2).

User guide 242 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.1.1 system_boot (BOOT, ID=2/1)

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module module has booted and is ready to
process commands.

Binary header

Type Length Group ID Notes

80 13 02 01 Variable-length event payload, value specified is minimum.

Text info

Text name Event length Notes

BOOT 0x003E+ None.

Event parameters

Data type Name Text Description

uint32 app E Application version number

uint32 stack S Bluetooth® LE stack version number

uint16 protocol P API protocol version number

uint8 hardware H

Hardware identifier:

• 0x01 = CYBLE-01201X-X0

• 0x02 = CYBLE-014008-00

• 0x03 = CYBLE-022001-00

• 0x04 = CYBLE-2X20XX-X1

• 0x05 = CYBLE-2120XX-X0

• 0x06 = CYBLE-212020-01

• 0x07 = CYBLE-214009-00

• 0x08 = CYBLE-214015-01

• 0x09 = CYBLE-222005-00

• 0x0A = CYBLE-222014-01

• 0x0B = CYBLE-224110-00

• 0x0C = CYBLE-224116-01

• 0xB1 = CYBLE-013025-00

• 0xD1 = CYBT-343026-01

• 0xD2 = CYBT-353027-02

• 0x22 = CYBT-213043-02

• 0x23 = CYBT-243053-02

• 0x24 = CYBT-223058-02

• 0x25 = CYBT-253059-02

• 0x26 = CYBT-273063-02

• 0x27 = CYBT-243068-02

• 0x31 = CYBLE-343072-02

User guide 243 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 cause C Cause of boot event: always 0

macaddr address A Public Bluetooth® address

uint8a FW F
FW description:

To release FW image, having model info, FW building data and time

Related commands

• system_reboot (/RBT, ID=2/2)

• system_factory_reset (/RFAC, ID=2/5)

7.3.1.2 system_error (ERR, ID=2/2)

System error has occurred.

This may be triggered by a malformed command, an operation that failed or could start due to an invalid
operational state, or a low-level hardware failure. See section Error codes for a list of all possible errors.

Binary header

Type Length Group ID Notes

80 02 02 02 None.

Text info

Text name Event length Notes

ERR 0x000B None.

Event parameters

Data type Name Text Description

uint16 error E Error code describing what went wrong

7.3.1.3 system_factory_reset_complete (RFAC, ID=2/3)

Factory reset is complete.

This event will occur after sending the system_factory_reset (/RFAC, ID=2/5) API command, or asserting (LOW)

the FACTORY_TR and CYSPP pins at boot time. EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®

LE module transmits this event using the originally configured host interface settings (if different from the
default). After generating this event, the module reboots immediately and the default settings take effect.

Note: If you triggered a factory reset using the GPIO method at boot time, the final reboot back into an
operational state occurs only after you de-assert one or both the pins. This safeguard prevents an
endless loop of factory resets if both pins remain asserted.

Binary header

Type Length Group ID Notes

80 00 02 03 None.

User guide 244 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Event length Notes

RFAC 0x0005 None.

Event parameters

None.

Related commands

• system_factory_reset (/RFAC, ID=2/5)

7.3.1.4 system_dump_blob (DBLOB, ID=2/5)

Single data blob of requested configuration type or system state.

Binary header

Type Length Group ID Notes

80 04-14 02 05
Variable-length event payload, minimum of 4 (0x04), maximum of 20

(0x14).

Text info

Text name Event length Notes

DBLOB 0x0015-0x0035
Variable-length event payload, minimum of 21 (0x15), maximum of

53 (0x35)

Event parameters

Data type Name Text Description

uint8 type T

Type of information being dumped:

• 0 = Runtime configuration data

• 1 = Boot-level configuration data

• 2 = Factory-level configuration data

• 3 = System state data

uint16 offset O Blob start offset

uint8a data D

Dumped blob of data

Note: uint8a data type requires one prefixed “length” byte
before binary parameter payload

Related commands

• system_dump (/DUMP, ID=2/3)

User guide 245 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.2 GAP Group (ID=4)

GAP methods relate to the Generic Access Protocol layer of the Bluetooth® stack, which includes management
of scanning, advertising, connection establishment, and connection maintenance.

Events within this group are listed below:

• gap_whitelist_entry (WL, ID=4/1)

• gap_adv_state_changed (ASC, ID=4/2)

• gap_scan_state_changed (SSC, ID=4/3)

• gap_connected (C, ID=4/5)

• gap_disconnected (DIS, ID=4/6)

• gap_connection_updated (CU, ID=4/8)

Commands within this group are documented in section GAP Group (ID=4).

7.3.2.1 gap_whitelist_entry (WL, ID=4/1)

Details about a single entry in the whitelist table.

Binary header

Type Length Group ID Notes

80 07 04 01 None.

Text info

Text name Event length Notes

WL 0x0017 None.

Event parameters

Data type Name Text Description

macaddr address A Bluetooth® address

uint8 type T

Address type:

• 0 = Public

• 1 = Random/private

Related commands

• gap_add_whitelist_entry (/WLA, ID=4/6)

• gap_query_whitelist (/QWL, ID=4/14)

User guide 246 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.2.2 gap_adv_state_changed (ASC, ID=4/2)

Indicates that the module has started or stopped advertising, due to a scheduled timeout, automated process,
or intentional action.

Binary header

Type Length Group ID Notes

80 02 04 02 None.

Text info

Text name Event length Notes

ASC 0x000E None.

Event parameters

Data type Name Text Description

uint8 state S

Advertising state:

• 0 = Stop advertising

• 1 = Directed advertisement (high duty cycle)

• 2 = Directed advertisement (low duty cycle)

• 3 = Undirected advertisement (high duty cycle)

• 4 = Undirected advertisement (low duty cycle)

• 5 = Non-connectable advertisement (high duty cycle)

• 6 = Non-connectable advertisement (low duty cycle)

• 7 = discoverable advertisement (high duty cycle)

uint8 reason R

Reason for state change:

• 0 = User command

• 1 = GAP automatic advertisement enabled

• 2 = Configured timeout expired

• 3 = CYSPP operation state change

• 6 = Disconnection

Related commands

• gap_start_adv (/A, ID=4/8)

• gap_stop_adv (/AX, ID=4/9)

• gap_set_adv_parameters (SAP, ID=4/23)

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

User guide 247 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.2.3 gap_scan_state_changed (SSC, ID=4/3)

Indicates that the module has started or stopped scanning, due to a scheduled timeout or intentional action.

Binary header

Type Length Group ID Notes

80 02 04 03 None.

Text info

Text name Event length Notes

SSC 0x000E None.

Event parameters

Data type Name Text Description

uint8 state S

Scanning state

⚫ 0 = Stopped

⚫ 1 = High Duty Scan

⚫ 2 = Low Duty scan

Unit8 Reason R

Reason for state change

⚫ 0 = User command

⚫ 1 = NOT USED

⚫ 2 = NOT USED

⚫ 3 = CYSPP operation state change

Related Commands:

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

Related Events:

None.

User guide 248 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.2.4 gap_scan_result (S, ID=4/4)

Details of an advertisement or scan response packet.

This event occurs while scanning for remote devices. If you have enabled active scanning, most peripherals will
provide two separate packets delivered via this API: one advertisement packet and one scan response packet.

Passive scanning will result in only the first of those two. Scan response packets typically contain less critical
data, such as the friendly name of the device, or its transmit power.

Binary header

Type Length Group ID Notes

80 0B-2A 04 04
Variable-length event payload, minimum of 11 (0x0B), maximum of 42

(0x2A)

Text info

Text name Event length Notes

S 0x0028-0x0047
Variable-length event payload, minimum of 40 (0x28), maximum of

71 (0x47)

Event parameters

Data type Name Text Description

uint8 result_type R

Scan result type:

• 0 = Connectable undirected advertisement packet

• 1 = Connectable directed advertisement packet

• 2 = Scannable undirected advertisement packet

• 3 = Non-connectable undirected advertisement packet

• 4 = Scan response packet

macaddr address A Bluetooth® address

uint8 address_type T

Address type:

• 0 = Public

• 1 = Random/private

int8 rssi S RSSI

uint8 bond B Bond entry (0 for no bond)

uint8a data D

Advertisement payload data (0-31 bytes)

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload

Related commands

• gap_connect (/C, ID=4/1)

• gap_start_scan (/S, ID=4/10)

• gap_stop_scan (/SX, ID=4/11)

User guide 249 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• gap_set_scan_parameters (SSP, ID=4/25)

Example usage

See section How to scan peripherals

7.3.2.5 gap_connected (C, ID=4/5)

Connection established with a remote device.

Binary header

Type Length Group ID Notes

80 0F 04 05 None.

Text info

Text name Event length Notes

C 0x0035 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth® address

uint8 type T

Address type:

• 0 = Public

• 1 = Random/private

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

uint8 bond B Bond entry (0 for no bond)

Related commands

• gap_disconnect (/DIS, ID=4/5)

Related events

• gap_disconnected (DIS, ID=4/6)

User guide 250 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.2.6 gap_disconnected (DIS, ID=4/6)

Connection to a remote device has closed.

For a list of possible disconnection reasons, see the 0x900 range of codes in section EZ-Serial firmware platform
for AIROC™ Bluetooth® & Bluetooth® LE module system error codes. These are the most common reasons:

• 0x0908 – Page timeout (unexpected loss of connectivity, no response within supervision timeout)

• 0x0913 – Remote user terminated connection (cleanly closed remotey)

• 0x0916 – Connection terminated by local host (cleanly closed locally)

• 0x093E – Connection failed to be established (connection initiated locally, but peer did not respond to

request)

Binary header

Type Length Group ID Notes

80 03 04 06 None.

Text info

Text name Event length Notes

DIS 0x0010 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R Reason for disconnection

Related commands

• gap_disconnect (/DIS, ID=4/5)

7.3.2.7 gap_connection_updated (CU, ID=4/8)

Active connection has negotiated and applied new parameters.

This event occurs on the slave side after a master requests new parameters or accepts the new parameters

requested by the slave. It also occurs on the master side after a slave requests new parameters and the master

accepts the request.

Note: A rejected connection update request sent from a slave does not result in any events indicating the
rejection. The slave must assume the original parameters are in effect until after it receives this API

event.

Binary header

Type Length Group ID Notes

80 07 04 08 None.

User guide 251 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Event length Notes

CU 0x001D None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 interval I Connection interval

uint16 slave_latency L Slave latency

uint16 supervision_timeout O Supervision timeout

Related commands

• gap_update_conn_parameters (/UCP, ID=4/3)

7.3.3 GATT Server Group (ID=5)

GATT Server methods relate to the server role of the Generic Attribute Protocol layer of the Bluetooth® stack.

These methods are used for working with the local GATT structure.

Events within this group are listed below:

• gatts_discover_result (DL, ID=5/1)

• gatts_data_written (W, ID=5/2)

• gatts_indication_confirmed (IC, ID=5/3)

• gatts_db_entry_blob (DGATT, ID=5/4)

Commands within this group are documented in section GATT Server Group (ID=5).

7.3.3.1 gatts_discover_result (DL, ID=5/1)

Details about a single entry in the local GATT database.

This event occurs while discovering local services, characteristics, or descriptors.

Binary header

Type Length Group ID Notes

80 08+ 05 01 Variable-length event payload, value specified is minimum.

Text info

Text name Event length Notes

DL 0x0020+ Variable-length event payload, value specified is minimum.

Event parameters

Data type Name Text Description

uint16 attr_handle H Attribute handle

User guide 252 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint16 attr_handle_rel R

Related attribute handle:

• If discovering services, the end handle for the service group

• If discovering characteristics, the value handle that holds the
application data

• If discovering descriptors, always 0 (not applicable)

uint16 type T

Attribute type:

• 0x2800 = Primary Service Declaration

• 0x2801 = Secondary Service Declaration

• 0x2802 = Include Declaration

• 0x2803 = Characteristic Declaration

• 0x2900 = Characteristic Extended Properties Descriptor

• 0x2901 = Characteristic User Description Descriptor

• 0x2902 = Client Characteristic Configuration Descriptor

• 0x2903 = Server Characteristic Configuration Descriptor

• 0x2904 = Characteristic Format Descriptor

• 0x2905 = Characteristic Aggregate Format Descriptor

• 0x0000 = Characteristic value attribute or user-defined structure
(see UUID)

uint8 properties P

Characteristic properties bitmask, only non-zero during

characteristic discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

uint8a uuid U

UUID

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload.

Related commands

• gatts_discover_services (/DLS, ID=5/6)

• gatts_discover_characteristics (/DLC, ID=5/7)

• gatts_discover_descriptors (/DLD, ID=5/8)

User guide 253 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.3.2 gatts_data_written (W, ID=5/2)

Remote GATT Client has written data to a local attribute.

A connected remote client can write data to a local attribute using either acknowledged unacknowledged write
operations Acknowledged writes require two full connection intervals to complete: one for the data transfer

from client to server, and one for the acknowledgement back from server to client. Unacknowledged writes
may occur multiple times within the same connection interval, and therefore provide greater throughput
potential.

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module automatically responds to

acknowledged writes except in two cases:

• You have disabled automatic responses using the

• gatts_set_parameters (SGSP, ID=5/14) API command.

• The attribute written to has the “User data management” bit set in its properties value, set during creation

with the gatts_create_attr (/CAC, ID=5/1) API command.

Binary header

Type Length Group ID Notes

80 06 05 02 Variable-length event payload, value specified is minimum.

Text info

Text name Event length Notes

W 0x0016+ Variable-length event payload, value specified is minimum.

Event parameters

Data type Name Text Description

uint8 conn_handle C Handle of connection from which write came

uint16 attr_handle H Attribute handle

uint8 type T

Write type:

• 0x00 = Simple write – acknowledged

• 0x01 = Write without response – unacknowledged

• 0x80 = Simple write requiring manual response via API command

longuint8a data D

Written data

Note: longuint8a data type requires two prefixed “length”
bytes before binary parameter payload.

Related commands

None.

User guide 254 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.3.3 gatts_indication_confirmed (IC, ID=5/3)

Remote GATT Client has confirmed receipt of indicated data.

This event occurs after a client receives and confirms data pushed using the gatts_indicate_handle (/IH,
ID=5/12) API command.

Binary header

Type Length Group ID Notes

80 03 05 03 None.

Text info

Text name Event length Notes

IC 0x000F None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Handle of connection from which confirmation came

uint16 attr_handle H Attribute handle use for indication

Related commands

• gatts_indicate_handle (/IH, ID=5/12)

Related events

None.

7.3.3.4 gatts_db_entry_blob (DGATT, ID=5/4)

Single entry from the GATT structure definition.

This event presents local dynamic GATT attribute definition in a format which simplifies reentry using the

gatts_create_attr (/CAC, ID=5/1) API command. For details about the data provided in this event, see section
Defining custom local GATT services and characteristics.

Note: This event includes the attribute handle and the absolute group end value, neither of which is part

of the data entered when creating a new custom attribute. Be sure to remove the handle and

absolute group end if you are directly copying the content from these output lines into new
commands manually.

Binary header

Type Length Group ID Notes

80 08 05 04 Variable-length response payload, value specified is minimum

Text info

Text name Event length Notes

DGATT 0x0021+ Variable-length response payload, value specified is minimum

User guide 255 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Event parameters

Data type Name Text Description

uint16 handle H Attribute handle (0x0001 – 0xFFFF)

uint8 type T*
• 0 = structure

• 1 = characteristic value

uint8 perm P*

Permission bits:

• Bit 0 (0x01) = Variable length

• Bit 1 (0x02) = Readable

• Bit 2 (0x04) = Write command (unacknowledged)

• Bit 3 (0x08) = Write request (acknowledged)

• Bit 4 (0x10) = Perm auth readable

• Bit 5 (0x20) = Reliable write (includes prepared write)

• Bit 6 (0x40) = Authenticated writable

• Bit 7 (0x80) = UUID is 128 bits

uint16 length L
Indicates how many bytes of RAM are allocated for the definition

(structure) or content (characteristic value)

longuint8a data D

Data (UUID or default attribute value where applicable)

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload.

Related commands

• gatts_dump_db (/DGDB, ID=5/5)

7.3.4 GATT Client Group (ID=6)

GATT Client methods relate to the client role of the GATT layer of the Bluetooth® stack. These methods are used
for working with the GATT structures on remote devices, and can only be used while a device is connected.

Events within this group are listed below:

• gattc_discover_result (DR, ID=6/1)

• gattc_remote_procedure_complete (RPC, ID=6/2)

• gattc_data_received (D, ID=6/3)

• gattc_write_response (WRR, ID=6/4)

Commands within this group are documented in section GATT Client Group (ID=6).

User guide 256 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.4.1 gattc_discover_result (DR, ID=6/1)

Details of a single entry in the remote GATT database.

This event occurs while you are discovering remote services, characteristics, or descriptors.

Binary header

Type Length Group ID Notes

80 09 06 01 Variable-length response payload, value specified is minimum

Text info

Text name Event length Notes

DR 0x0025+ Variable-length response payload, value specified is minimum

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 attr_handle_rel R

Related attribute handle:

• If discovering services, it is the end handle for the service group

• If discovering included services, it is the start handle of the

include service.

The value of the properties field is reused as attr_count, which
contains the number of attributes that are counted within the

included service.(Not implemented)

• If discovering characteristics, it is the value handle of the

characteristic value attribute handle

• If discovering descriptors, always 0 (not applicable)

uint8 type T

GATT discover type:

• 1 = Discovery all service

• 2 = Discovery service by UUID

• 3 = Discovery an included service within a service

• 4 = Discovery characteristics of a service with/without type

requirement

• 5 = Discovery characteristics descriptors of a characteristic.

User guide 257 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 properties P

Characteristic properties bitmask, only non-zero during

characteristic discovery:

• Bit 0 (0x01) = Broadcast

• Bit 1 (0x02) = Read

• Bit 2 (0x04) = Write without response

• Bit 3 (0x08) = Write

• Bit 4 (0x10) = Notify

• Bit 5 (0x20) = Indicate

• Bit 6 (0x40) = Signed write

• Bit 7 (0x80) = Extended properties (will have 0x2900 descriptor)

uint8a uuid U

UUID (16-bit, 32-bit, or 128-bit)

Note: uint8a data type requires one prefixed “length” byte

before binary parameter payload

Related commands

• gattc_discover_services (/DRS, ID=6/1)

• gattc_discover_characteristics (/DRC, ID=6/2)

• gattc_discover_descriptors (/DRD, ID=6/3)

Related events

• gattc_remote_procedure_complete (RPC, ID=6/2)

Example usage

See section How to discover a remote server’s GATT structure.

7.3.4.2 gattc_remote_procedure_complete (RPC, ID=6/2)

Remote GATT Client operation has completed.

This event occurs after requesting a GATT Cclient operation that may require an unknown length of time or

quantity of returned results before it is finished, such as a remote GATT descriptor discovery. Because you

cannot perform multiple GATT Client operations simultaneously, your application logic must wait for this event
and continue with additional client operations only after the event occurs.

See the Related Commands list below for specific commands which trigger this event.

Binary header

Type Length Group ID Notes

80 03 06 02 None.

User guide 258 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Event length Notes

RPC 0x0010 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 result R

GATT result code for procedure:

• 0 = Success

• 0x01-0x7F = Error from Bluetooth® specification

• 0x80-0xFF = Error from application (user-defined)

Related commands

• gattc_discover_services (/DRS, ID=6/1) – Always triggers this event upon completion

• gattc_discover_characteristics (/DRC, ID=6/2) – Always triggers this event upon completion

• gattc_discover_descriptors (/DRD, ID=6/3) – Always triggers this event upon completion

• gattc_read_handle (/RRH, ID=6/4) – Triggers this event if read fails, otherwise triggers gattc_data_received
(D, ID=6/3)

Related events

• gattc_discover_result (DR, ID=6/1) – Occurs during a remote GATT discovery prior to this event

Example usage

See section How to discover a remote server’s GATT structure.

7.3.4.3 gattc_data_received (D, ID=6/3)

The remote GATT Server has returned or pushed a value from one of its attributes.

This event occurs after sending a read request with the gattc_read_handle (/RRH, ID=6/4) API command, or

when a remote GATT Server pushes a data update using a notification or indication after the client subscribes
to either of these transfer types on supported characteristics. The source parameter describes which

operation triggered the event.

If the data received came from a remote GATT Server indication and you have disabled automatic
confirmations by clearing the auto-confirm bit of the flags argument in the gattc_set_parameters (SGCP,

ID=6/7) API command, you must manually confirm the indication before performing any other operations. If the
source parameter of this event has the high bit (0x80) set, use the gattc_confirm_indication (/CI, ID=6/6) API

command.

Binary header

Type Length Group ID Notes

80 06-1A 06 03
Variable-length event payload, minimum of 6 (0x06), maximum of 26

(0x1A)

User guide 259 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Event length Notes

D 0x0016-0x003E
Variable-length event payload, minimum of 22 (0x16), maximum of

62 (0x3E)

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 handle H Attribute handle

uint8 source S

Transfer source:

• 0x00 = GATT Client read request

• 0x01 = GATT Server notification

• 0x02 = GATT Server indication

• 0x82 = GATT Server indication requiring manual confirmation

longuint8a data D

Received value (0-20 bytes)

Note: longuint8a data type requires two prefixed “length”

bytes before binary parameter payload

Related commands

• gatts_notify_handle (/NH, ID=5/11)

• gatts_indicate_handle (/IH, ID=5/12)

• gattc_read_handle (/RRH, ID=6/4)

• gattc_confirm_indication (/CI, ID=6/6)

7.3.4.4 gattc_write_response (WRR, ID=6/4)

The remote GATT Server acknowledged the GATT Client write operation.

This event occurs after attempting an acknowledged write operation with the gattc_write_handle (/WRH,
ID=6/5) API command. If the write is accepted by the remote server, the result value will be 0. Any non-zero

result value indicates an error.

Binary header

Type Length Group ID Notes

80 05 06 04 None.

Text info

Text name Event length Notes

WRR 0x0017 None.

User guide 260 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 attr_handle H Attribute handle

uint16 result R

GATT result code:

• 0 = Success

• 0x601-0x067F = Error from Bluetooth® specification

• 0x680-0x06FF = Error from remote server application (user-defined)

Related commands

• gattc_write_handle (/WRH, ID=6/5)

7.3.5 SMP Group (ID=7)

SMP methods relate to the Security Manager Protocol layer of the Bluetooth® stack. These methods are used

for working with encryption, pairing, and bonding between two peers.

Events within this group are listed below:

• smp_bond_entry (B, ID=7/1)

• smp_pairing_requested (P, ID=7/2)

• smp_pairing_result (PR, ID=7/3)

• smp_encryption_status (ENC, ID=7/4)

• smp_passkey_display_requested (PKD, ID=7/5)

Commands within this group are documented in section SMP Group (ID=7).

7.3.5.1 smp_bond_entry (B, ID=7/1)

Details about a single entry in the bonding table.

This event occurs once after a new bond is created as a result of the pairing process, or multiple times (based
on bond list count) after requesting the bond list with the smp_query_bonds (/QB, ID=7/1) API command.

Binary header

Type Length Group ID Notes

80 08 07 01 None.

Text info

Text name Event length Notes

B 0x001B None.

Event parameters

Data type Name Text Description

uint8 handle B Bonded device handle (1-4)

macaddr address A Bluetooth® address

User guide 261 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Data type Name Text Description

uint8 type T

Address type:

• 0 = Public

• 1 = Random/private

Related commands

• smp_query_bonds (/QB, ID=7/1)

• smp_pair (/P, ID=7/3)

7.3.5.2 smp_pairing_requested (P, ID=7/2)

Remote device has requested pairing.

Binary header

Type Length Group ID Notes

80 05 07 02 None.

Text info

Text name Event length Notes

P 0x001B None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint8 mode M

Security level setting reported to peer:

• 0x10 = Mode 1, Level 1 – No security

• 0x11 = Mode 1, Level 2 – Unauthenticated pairing with encryption

(no MITM)

• 0x12 = Mode 1, Level 3 – Authenticated pairing with encryption (with

MITM)

• 0x21 = Mode 2, Level 2 – Unauthenticated pairing with data signing
(no MITM)

• 0x22 = Mode 2, Level 3 – Authenticated pairing with data signing
(with MITM)

uint8 bonding B

Bond during pairing process:

• 0 = Do not bond (exchange keys and encrypt only)

• 1 = Bond (permanently store exchanged encryption data)

uint8 keysize K
Encryption key size (7-16), value ignored if pairing initiated by slave

device

uint8 pairprop P
Pairing properties:

Bit 0 (0x01): MITM enabled for Secure Connections (SC)

User guide 262 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• smp_pair (/P, ID=7/3)

• smp_set_security_parameters (SSBP, ID=7/11)

Related events

• smp_pairing_result (PR, ID=7/3)

7.3.5.3 smp_pairing_result (PR, ID=7/3)

Pairing process has ended.

This event indicates that the pairing process is finished, successfully or otherwise. If the result parameter is
0, then pairing has completed successfully, and the smp_bond_entry (B, ID=7/1) API event follows if bonding is

enabled. Any non-zero result value indicates failure.

Binary header

Type Length Group ID Notes

80 03 07 03 None.

Text info

Text name Event length Notes

PR 0x000F None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 result R Result

Related commands

• smp_pair (/P, ID=7/3)

Related events

• smp_encryption_status (ENC, ID=7/4)

• smp_bond_entry (B, ID=7/1)

7.3.5.4 smp_encryption_status (ENC, ID=7/4)

Encryption status has changed.

This event confirms that a link has transitioned between plaintext and encrypted status during the pairing
process.

Binary header

Type Length Group ID Notes

80 02 07 04 None.

User guide 263 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Text info

Text name Event length Notes

ENC 0x000E None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint8 status S

Encryption status:

• 0 = success

• other = error code

Related commands

• smp_pair (/P, ID=7/3)

Related events

• smp_pairing_result (PR, ID=7/3)

7.3.5.5 smp_passkey_display_requested (PKD, ID=7/5)

Remote peer requires passkey display for entry or comparison during pairing.

This event provides the local device with the passkey generated as part of the pairing process, so that the local

device may display or otherwise make it available to the user for entry or comparison on the remote device.
This type of passkey generation and display will be used if the local I/O capabilities are set to “Display Only” or
“Display + Yes/No” using the smp_set_security_parameters (SSBP, ID=7/11) API command.

Binary header

Type Length Group ID Notes

80 05 07 05 None.

Text info

Text name Event length Notes

PKD 0x0014 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint32 passkey P Passkey to display (should be displayed to user in decimal format)

Related commands

None.

Related events

• smp_pairing_requested (P, ID=7/2)

User guide 264 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• smp_pairing_result (PR, ID=7/3)

7.3.5.6 smp_passkey_entry_requested (PKE, ID=7/6)

Indicates that a remote device has generated and displayed a passkey, which must be entered locally and sent

back for comparison.

Binary header

Type Length Group ID Notes

80 01 07 06 None.

Text info

Text name Event length Notes

PKE 0x0009 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

Related commands:

• smp_send_passkeyreq_response (/PE, ID=7/6)

Related events:

None.

7.3.5.7 smp_pin_entry_requested (BTPIN, ID=7/7)

A remote device has generated and displayed a passkey which must be entered locally and sent back for

comparison.

Binary header

Type Length Group ID Notes

80 06 07 07 None.

Text info

Text name Event length Notes

BTPIN 0x0015 None.

Event parameters

Data type Name Text Description

macaddr address A macaddr address

Related commands

• smp_send_pinreq_response (/BTPIN, ID=7/17)

User guide 265 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related events

None.

7.3.6 GPIO Group (ID=9)

GPIO methods relate to the physical pins on the module.

Events within this group are listed in gpio_interrupt (INT, ID=9/1)

 Commands within this group are documented in section GPIO Group (ID=9).

7.3.6.1 gpio_interrupt (INT, ID=9/1)

A configured GPIO interrupt has occurred.

This event is generated for GPIO edge changes that have enabled interrupts via the gpio_set_drive (SIOD,

ID=9/5) API command.

Binary header

Type Length Group ID Notes

80 08 09 01 None.

Text info

Text name Event length Notes

INT 0x0020 None.

Event parameters

Data type Name Text Description

uint8 pin P Pin number

uint8 logic L pin logic state (set bit indicates HIGH)

uint32 runtime R Number of seconds since boot

uint16 fraction F Fraction of a second (units are 1/32768)

Related commands:

• gpio_set_drive (SIOD, ID=9/5)

7.3.7 CYSPP Group (ID=10)

CYSPP methods are related to the Cypress (A Infineon Technologies company) Serial Port Profile.

Events within this group are listed in p_cyspp_status (.CYSPP, ID=10/1)

Commands within this group are documented in section CYSPP Group (ID=10).

User guide 266 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.7.1 p_cyspp_status (.CYSPP, ID=10/1)

CYSPP operational status has changed.

Note: If this event occurs within EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module and data mode is active (either Bit 0 or Bit 1 set and the CYSPP GPIO pin is not externally

de-asserted), the wired serial interface is logically disconnected from the API protocol parser and
routed to CYSPP data pipe instead. For this reason, this event is never transmitted out the serial
interface with Bit 5 set (0x20), because outgoing API events are suppressed while operating in

CYSPP data mode.

Binary header

Type Length Group ID Notes

80 01 0A 01 None.

Text info

Text name Event length Notes

.CYSPP 0x000C None.

Event parameters

Data type Name Text Description

uint8 status S

CYSPP status bitmask:

• Bit 0 (0x01) = Unacknowledged data subscribed

• Bit 1 (0x02) = Acknowledged data subscribed

• Bit 2 (0x04) = RX flow subscribed

• Bit 3 (0x08) = RX flow blocked by remote Server

• Bit 4 (0x10) = CYSPP peer support verified

• Bit 5 (0x20) = Data mode active (used internally)

Related commands

• p_cyspp_start (.CYSPPSTART, ID=10/2)

• p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Example usage

See section Cable Replacement Examples with CYSPP.

User guide 267 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.8 Bluetooth® Classic Group (ID=14)

Bluetooth® methods relate to the Bluetooth® Classic of the Bluetooth® stack. These methods are used for
working with Inquiry, connection, and disconnection.

Events within this group are listed below:

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

• bt_connected (BTCON, ID=14/4)

• bt_connection_status (BTCS, ID=14/5)

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

Commands within this group are documented in section Bluetooth® group (ID=14).

7.3.8.1 bt_inquiry_result (BTIR, ID=14/1)

An ongoing inquiry process has returned a result.

Binary header

Type Length Group ID Notes

80 0B 0E 01 None.

Text info

Text name Event length Notes

BTIR 0x0024 None.

Event parameters

Data type Name Text Description

macaddr address A Bluetooth® address

uint8 bond B Bond entry

uint32 cod C Class of device

Related commands

• bt_start_inquiry (/BTI, ID=14/1)]

• bt_cancel_inquiry (/BTIX, ID=14/2)

Related events

• bt_name_result (BTINR, ID=14/2)

• bt_inquiry_complete (BTIC, ID=14/3)

User guide 268 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.8.2 bt_name_result (BTINR, ID=14/2)

An ongoing inquiry process has returned a name result.

Binary header

Type Length Group ID Notes

80 08 0E 02 Variable-length event payload, value specified is minimum.

Text info

Text name Event length Notes

BTINR 0x001D+ Variable-length response payload, value specified is minimum.

Event parameters

Data type Name Text Description

macaddr address A Bluetooth® address

uint8 bond B Bond entry

uint8a name N Device name

Related commands

• bt_start_inquiry (/BTI, ID=14/1)]

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

Related events:

• bt_inquiry_result (BTIR, ID=14/1)

• bt_inquiry_complete (BTIC, ID=14/3)

7.3.8.3 bt_inquiry_complete (BTIC, ID=14/3)

An ongoing inquiry process is complete (finished or canceled).

Binary header

Type Length Group ID Notes

80 00 0E 03 None.

Text info

Text name Event length Notes

BTIC 0x0005 None.

Event parameters

None.

Related commands

• bt_start_inquiry (/BTI, ID=14/1)]

User guide 269 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

• bt_cancel_inquiry (/BTIX, ID=14/2)

• bt_query_name (/BTQN, ID=14/3)

Related events

• bt_inquiry_result (BTIR, ID=14/1)

• bt_name_result (BTINR, ID=14/2)

7.3.8.4 bt_connected (BTCON, ID=14/4)

A connection has been established to a remote device, and may now be used for data transfers.

Binary header

Type Length Group ID Notes

80 09 0E 04 None.

Text info

Text name Event length Notes

BTCON 0x0024 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth® address

uint8 type T
Connection type

1: SPP, connection

uint8 bond B Bond entry (0 for no bond)

Related commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related events

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

User guide 270 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.8.5 bt_connection_status (BTCS, ID=14/5)

A connection has been established to a remote device, and may now be used for data transfers.

Binary header

Type Length Group ID Notes

80 0B 0E 05 None.

Text info

Text name Event length Notes

BTCS 0x002D None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

macaddr address A Bluetooth® address

uint8 type T Connection type

uint8 bond B Bond entry

uint8 role R Connection role

uint8 sniff S Sniff mode

Related commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related events

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6)

• bt_disconnected (BTDIS, ID=14/7)

User guide 271 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.3.8.6 bt_connection_failed (BTCF, ID=14/6)

A pending outgoing connection attempt has failed.

Binary header

Type Length Group ID Notes

80 03 0E 06 None.

Text info

Text name Event length Notes

BTCF 0x0011 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R

Reason for connection failure:

• 1: Unknown reason (Usually it is due to wrong address)

• 2: No SPP service

Related commands

• bt_connect (/BTC, ID=14/4)

Related events

• bt_connected (BTCON, ID=14/4)

• bt_disconnected (BTDIS, ID=14/7)

7.3.8.7 bt_disconnected (BTDIS, ID=14/7)

A previously open connection to a remote device has been closed.

Binary header

Type Length Group ID Notes

80 03 0E 07 None.

Text info

Text name Event length Notes

BTDIS 0x0012 None.

Event parameters

Data type Name Text Description

uint8 conn_handle C Connection handle

uint16 reason R Reason for disconnection (Always 0 current)

User guide 272 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Related commands

• bt_connect (/BTC, ID=14/4)

• bt_disconnect (/BTDIS, ID=14/6)

Related events

• bt_connected (BTCON, ID=14/4)

• bt_connection_failed (BTCF, ID=14/6)

7.3.9 Spp group (ID=19)

7.3.9.1 SPP_data_received (.SPPD, ID=19/1)

Remote SPP Client has written data.

A connected SPP remote client can write data to a local server.

Binary header

Type Length Group ID Notes

80 04 19 01 Variable-length event payload, value specified is minimum.

Text info

Text name Event length Notes

.SPPD 0x0010+ Variable-length event payload, value specified is minimum.

Event parameters

Data type Name Text Description

Uint8 conn_handle C Handle of connection

longuint8a data D

Received data

Note: longuint8a data type requires two prefixed “length”
bytes before binary parameter payload.

Related commands

• spp_send_command (.SPPS, ID=19/1)

• spp_set_config (.SPPSC, ID=19/2)

• spp_get_config (.SPPGC, ID=19/3)

Related events

None

User guide 273 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.4 Error codes

7.4.1 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module system error codes

The complete list of all result/error codes generated by EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module is listed in Table 63. See the command and event reference in section API commands and
responses and section API events for specific details about each result within the context of the responses and
events where they are triggered.

Table 63 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module system error
codes

Code (Hex) Name Description

0000 EZS_ERR_SUCCESS Operation successful, no error

0100 EZS_ERR_CORE Core system error category

0101 EZS_ERR_CORE_NULL_POINTER Null pointer encountered (internal

error)

0102 EZS_ERR_CORE_MALLOC_FAILED Memory allocation failed (internal

error)

0103 EZS_ERR_CORE_BUFFER_OVERFLOW Buffer overflow (internal error)

0104 EZS_ERR_CORE_FEATURE_NOT_IMPLEMENTED Unsupported feature (internal

error)

0105 EZS_ERR_CORE_TASK_SCHEDULE_OVERFLOW Task scheduling attempted but

schedule is full

0106 EZS_ERR_CORE_TASK_QUEUE_OVERFLOW Task queue attempted but queue is

full

0107 EZS_ERR_CORE_INVALID_STATE Invalid state for requested

operation

0108 EZS_ERR_CORE_OPERATION_NOT_PERMITTED Operation not permitted

0109 EZS_ERR_CORE_INSUFFICIENT_RESOURCES Insufficient resources for requested

action

010A EZS_ERR_CORE_FLASH_WRITE_NOT_PERMITTED Unable to perform flash write at

this time

010B EZS_ERR_CORE_FLASH_WRITE_FAILED Flash write operation failed during

write

010C EZS_ERR_CORE_HARDWARE_FAILURE Internal chipset hardware failure

010D EZS_ERR_CORE_BLE_INITIALIZATION_FAILED Could not initialize Bluetooth® LE

stack

010E EZS_ERR_CORE_REPEATED_ATTEMPTS Repeated attempts to initialize

Bluetooth® LE stack

010F EZS_ERR_CORE_TX_POWER_READ Could not read radio TX power

0110 EZS_ERR_CORE_DB_VERIFICATION_FAILED Verification prevented custom

attribute addition

User guide 274 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Code (Hex) Name Description

0200 EZS_ERR_PROTOCOL Protocol error category

0201 EZS_ERR_PROTOCOL_UNRECOGNIZED_PACKET_TYPE Unsupported packet type for text

parsing

(internal error)

0202 EZS_ERR_PROTOCOL_UNRECOGNIZED_ARGUMENT_TYPE Unsupported argument type for

text parsing

(internal error)

0203 EZS_ERR_PROTOCOL_UNRECOGNIZED_COMMAND Command group/method not valid

or unrecognized

0204 EZS_ERR_PROTOCOL_UNRECOGNIZED_RESPONSE Response group/method invalid or

unrecognized

(internal error)

0205 EZS_ERR_PROTOCOL_UNRECOGNIZED_EVENT Event group/method invalid or

unrecognized

(internal error)

0206 EZS_ERR_PROTOCOL_SYNTAX_ERROR Syntax error while parsing text

command

0207 EZS_ERR_PROTOCOL_COMMAND_TIMEOUT Binary command packet

transmission not completed in

required time

0208 EZS_ERR_PROTOCOL_RESPONSE_PENDING Command already sent but

response still pending

0209 EZS_ERR_PROTOCOL_INVALID_CHECKSUM Binary command packet has invalid

checksum

020A EZS_ERR_PROTOCOL_INVALID_COMMAND_LENGTH Command length is greater than

maximum

020B EZS_ERR_PROTOCOL_INVALID_PARAMETER_COUNT Incorrect number of parameters

provided

020C EZS_ERR_PROTOCOL_INVALID_PARAMETER_VALUE Command parameter outside of

acceptable range

020D EZS_ERR_PROTOCOL_MISSING_REQUIRED_ARGUMENT Text-mode command missing

required arguments

020E EZS_ERR_PROTOCOL_INVALID_HEXADECIMAL_DATA Invalid hexadecimal data provided

(not 0-9, A-F)

020F EZS_ERR_PROTOCOL_INVALID_ESCAPE_SEQUENCE Invalid escape sequence

0210 EZS_ERR_PROTOCOL_INVALID_MACRO_SEQUENCE Invalid macro sequence

0211 EZS_ERR_PROTOCOL_FLASH_SETTINGS_PROTECTED Attempted direct flash write of

protected setting

0300 EZS_ERR_GPIO GPIO error category

0301 EZS_ERR_GPIO_PORT_NOT_SUPPORTED Selected port in GPIO command

not supported

User guide 275 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Code (Hex) Name Description

0400 EZS_ERR_LL Link layer error category

0401 EZS_ERR_LL_CONTROLLER_BUSY Link layer controller busy

0402 EZS_ERR_LL_NO_DEVICE_ENTITY Device entity not available

0403 EZS_ERR_LL_NOT_IN_BOND_LIST Device not found in bond list

0404 EZS_ERR_LL_DEVICE_ALREADY_EXISTS Device already exists

0500 EZS_ERR_GAP GAP error category

0501 EZS_ERR_GAP_INVALID_CONNECTION_HANDLE Invalid connection handle specified

0502 EZS_ERR_GAP_CONNECTION_REQUIRED Connection required, but none is

available

0503 EZS_ERR_GAP_ROLE Incorrect GAP role for this

operation

0504 EZS_ERR_GAP_ADV_QUEUE_OVERFLOW Advertisement queue attempted

but queue is full

0600 EZS_ERR_GATT GATT error category

0601 EZS_ERR_GATT_INVALID_ATTRIBUTE_HANDLE Invalid attribute handle for GATT

operation

0602 EZS_ERR_GATT_READ_NOT_PERMITTED Read not permitted on this

attribute

0603 EZS_ERR_GATT_WRITE_NOT_PERMITTED Write not permitted on this

attribute

0604 EZS_ERR_GATT_INVALID_PDU Invalid PDU for requested

operation

0605 EZS_ERR_GATT_INSUFFICIENT_AUTHENTICATION Insufficient authentication for

requested operation

0606 EZS_ERR_GATT_REQUEST_NOT_SUPPORTED Request not supported

0607 EZS_ERR_GATT_INVALID_OFFSET Invalid offset specified for

requested operation

0608 EZS_ERR_GATT_INSUFFICIENT_AUTHORIZATION Insufficient authorization for

requested operation

0609 EZS_ERR_GATT_PREPARE_WRITE_QUEUE_FULL Prepare write queue full, cannot

prepare new write

060A EZS_ERR_GATT_ATTRIBUTE_NOT_FOUND Attribute not found in database

060B EZS_ERR_GATT_ATTRIBUTE_NOT_LONG Attribute not long when long

operation requested

060C EZS_ERR_GATT_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size

060D EZS_ERR_GATT_INVALID_ATTRIBUTE_LENGTH Invalid attribute length

060E EZS_ERR_GATT_UNLIKELY_ERROR Unlikely error occurred, unknown

cause

060F EZS_ERR_GATT_INSUFFICIENT_ENCRYPTION Insufficient encryption for

requested operation

User guide 276 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Code (Hex) Name Description

0610 EZS_ERR_GATT_UNSUPPORTED_GROUP_TYPE Unsupported group type specified

in Read By Group Type operation

0611 EZS_ERR_GATT_INSUFFICIENT_RESOURCES Insufficient resources to perform

operation

0680 EZS_ERR_GATT_CLIENT_NOT_SUBSCRIBED Client has not subscribed to
updates on characteristic (local
error code when sending

notifications or indications)

0800 EZS_ERR_SMP SMP error category

0801 EZS_ERR_SMP_OOB_NOT_AVAILABLE Out-of-band pairing data not

available

0802 EZS_ERR_SMP_SECURITY_OPERATION_FAILED Security operation failed

0803 EZS_ERR_SMP_MIC_AUTH_FAILED Message integrity check

authentication failed

0900 EZS_ERR_SPEC Bluetooth® Core Specification error

category

0901 EZS_ERR_SPEC_UNKNOWN_HCI_COMMAND Unknown HCI command

0902 EZS_ERR_SPEC_UNKNOWN_CONNECTION_IDENTIFIER Unknown connection identifier

0903 EZS_ERR_SPEC_HARDWARE_FAILURE Hardware failure

0904 EZS_ERR_SPEC_PAGE_TIMEOUT Page timeout

0905 EZS_ERR_SPEC_AUTHENTICATION_FAILURE Authentication Failure

0906 EZS_ERR_SPEC_PIN_OR_KEY_MISSING PIN or Key Missing

0907 EZS_ERR_SPEC_MEMORY_CAPACITY_EXCEEDED Memory capacity exceeded

0908 EZS_ERR_SPEC_CONNECTION_TIMEOUT Connection Timeout

0909 EZS_ERR_SPEC_CONNECTION_LIMIT_EXCEEDED Connection limit exceeded

090A EZS_ERR_SPEC_SYNCHRONOUS_CONN_LIMIT

_DEVICE_EXCEEDED

Synchronous connection limit to a

device exceeded

090B EZS_ERR_SPEC_ACL_CONNECTION_ALREADY_EXISTS ACL connection already exists

090C EZS_ERR_SPEC_COMMAND_DISALLOWED Command disallowed

090D EZS_ERR_SPEC_CONNECTION_REJECTED

_LIMITED_RESOURCES

Connection rejected due to limited

resources

090E EZS_ERR_SPEC_CONNECTION_REJECTED

_SECURITY_REASONS

Connection rejected due to security

reasons

090F EZS_ERR_SPEC_CONNECTION_REJECTED

_UNACCEPTABLE_BDADDR

Connection rejected due to

unacceptable BD_ADDR

0910 EZS_ERR_SPEC_CONNECTION_ACCEPT

_TIMEOUT_EXCEEDED

Connection Accept Timeout

exceeded

0911 EZS_ERR_SPEC_UNSUPPORTED_FEATURE

_OR_PARAMETER_VALUE

Unsupported feature or parameter

value

0912 EZS_ERR_SPEC_INVALID_HCI_COMMAND_PARAMETERS Invalid HCI command parameters

User guide 277 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Code (Hex) Name Description

0913 EZS_ERR_SPEC_REMOTE_USER_TERMINATED

_CONNECTION

Remote User Terminated

Connection

0914 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED

_LOW_RESOURCES

Remote device terminated

connection due to low resources

0915 EZS_ERR_SPEC_REMOTE_DEVICE_TERMINATED

_POWER_OFF

Remote device terminated

connection due to power off

0916 EZS_ERR_SPEC_CONNECTION_TERMINATED

_BY_LOCAL_HOST

Connection Terminated by Local

Host

0917 EZS_ERR_SPEC_REPEATED_ATTEMPTS Repeated attempts

0918 EZS_ERR_SPEC_PAIRING_NOT_ALLOWED Pairing Not Allowed

0919 EZS_ERR_SPEC_UNKNOWN_LMP_PDU Unknown LMP PDU

091A EZS_ERR_SPEC_UNSUPPORTED_REMOTE

_LMP_FEATURE

Unsupported remote feature /

unsupported LMP feature

091B EZS_ERR_SPEC_SCO_OFFSET_REJECTED SCO offset rejected

091C EZS_ERR_SPEC_SCO_INTERVAL_REJECTED SCO interval rejected

091D EZS_ERR_SPEC_SCO_AIR_MODE_REJECTED SCO air mode rejected

091E EZS_ERR_SPEC_INVALID_LMP_LL_PARAMETERS Invalid LMP parameters / invalid LL

parameters

091F EZS_ERR_SPEC_UNSPECIFIED_ERROR Unspecified error

0920 EZS_ERR_SPEC_UNSUPPORTED_LMP_LL

PARAMTER_VALUE

Unsupported LMP parameter value

/ Unsupported LL parameter value

0921 EZS_ERR_SPEC_ROLE_CHANGE_NOT_ALLOWED Role change not allowed

0922 EZS_ERR_SPEC_LMP_LL_RESPONSE_TIMEOUT LMP Response Timeout / LL

Response Timeout

0923 EZS_ERR_SPEC_LMP_ERROR_TRANSACTION_COLLISION LMP error transaction collision

0924 EZS_ERR_SPEC_LMP_PDU_NOT_ALLOWED LMP PDU not allowed

0925 EZS_ERR_SPEC_ENCRYPTION_MODE_NOT_ACCEPTABLE Encryption mode not acceptable

0926 EZS_ERR_SPEC_LINK_KEY_CANNOT_BE_CHANGED Link key cannot be changed

0927 EZS_ERR_SPEC_REQUESTED_QOS_NOT_SUPPORTED Requested QoS not supported

0928 EZS_ERR_SPEC_INSTANT_PASSED Instant passed

0929 EZS_ERR_SPEC_PAIRING_WITH_UNIT_KEY

_NOT_SUPPORTED

Pairing with unit key not supported

092A EZS_ERR_SPEC_DIFFERENT_TRANSACTION_COLLISION Different transaction collision

092B /* 0x2B reserved */ Reserved

092C EZS_ERR_SPEC_QOS_UNACCEPTABLE_PARAMETER =

0x092C

QoS unacceptable parameter

092D EZS_ERR_SPEC_QOS_REJECTED QoS rejected

092E EZS_ERR_SPEC_CHANNEL_CLASSIFICATION

NOT_SUPPORTED

Channel classification not

supported

092F EZS_ERR_SPEC_INSUFFICIENT_SECURITY Insufficient security

User guide 278 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

Code (Hex) Name Description

0930 EZS_ERR_SPEC_PARAMETER_OUT_OF

MANDATORY_RANGE

Parameter out of mandatory range

0931 /* 0x31 reserved */ Reserved

0932 EZS_ERR_SPEC_ROLE_SWITCH_PENDING = 0x0932 Role switch pending

0933 /* 0x33 reserved */ Reserved

0934 EZS_ERR_SPEC_RESERVED_SLOT_VIOLATION = 0x0934 Reserved slot violation

0935 EZS_ERR_SPEC_ROLE_SWITCH_FAILED Role switch failed

0936 EZS_ERR_SPEC_EXTENDED_INQUIRY_RSP_TOO_LARGE Extended inquiry response too

large

0937 EZS_ERR_SPEC_SSP_NOT_SUPPORTED_BY_HOST Secure simple pairing not

supported by host

0938 EZS_ERR_SPEC_HOST_BUSY_PAIRING Host busy - pairing

0939 EZS_ERR_SPEC_CONNECTION_REJECTED

_NO_SUITABLE_CHANNEL

Connection rejected due to no

suitable channel found

093A EZS_ERR_SPEC_CONTROLLER_BUSY Controller busy

093B EZS_ERR_SPEC_UNACCEPTABLE

_CONNECTION_PARAMETERS

Unacceptable connection

parameters

093C EZS_ERR_SPEC_DIRECTED_ADVERTISING_TIMEOUT Directed advertising timeout

093D EZS_ERR_SPEC_CONNECTION_TERMINATED

_MIC_FAILURE

Connection terminated due to MIC

failure

093E EZS_ERR_SPEC_CONNECTION_FAILED

_TO_BE_ESTABLISHED

Connection Failed to be Established

093F EZS_ERR_SPEC_MAC_CONNECTION_FAILED MAC connection failed

0940 EZS_ERR_SPEC_COARSE_CLOCK_ADJ_REJECTED Coarse clock adjustment rejected
but will try to adjust using clock

dragging

EEEE EZS_ERR_UNKNOWN Unknown problem

(Internal error)

User guide 279 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.4.2 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE

module GATT database validation error codes

The complete list of result/error codes generated by EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module during dynamic GATT database validation is listed in Table 64 . See section Defining
custom local GATT services and characteristics and the documentation for the related GATT Server Group

(ID=5) API command methods for detail.

Table 64 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module GATT
validation error codes

Code (Hex) Name Description

0000 GATTS_DB_VALID_OK Validation passed with no warnings

or errors

0001 GATTS_DB_VALID_WARNING_NOT_ENOUGH_ATTRIBUTES Structure is valid, but more

attributes are required

0002 GATTS_DB_VALID_ERROR_ATTRIBUTE_LIMIT_EXCEEDED Attribute count limit exceeded

0003 GATTS_DB_VALID_ERROR_ATTRIBUTE_DATA_EXCEEDED Runtime attribute value data byte

limit exceeded

0004 GATTS_DB_VALID_ERROR_CONSTANT_DATA_EXCEEDED Constant default data byte limit

exceeded

0005 GATTS_DB_VALID_ERROR_CCCD_LIMIT_EXCEEDED CCCD attribute limit exceeded

0006 GATTS_DB_VALID_ERROR_SVC_DECL_REQUIRED Service declaration required

0007 GATTS_DB_VALID_ERROR_UNEXPECTED_SVC_DECL Unexpected service declaration

0008 GATTS_DB_VALID_ERROR_CHAR_DECL_REQUIRED Characteristic declaration required

0009 GATTS_DB_VALID_ERROR_UNEXPECTED_CHAR_DECL Unexpected characteristic

declaration

000A GATTS_DB_VALID_ERROR_CHAR_VALUE_REQUIRED Characteristic value attribute

required

000B GATTS_DB_VALID_ERROR_UNEXPECTED_DESCRIPTOR Specified descriptor not allowed at

this position

000C GATTS_DB_VALID_ERROR_INVALID_ATT_PROPERTIES Attribute properties not

compatible with type

000D GATTS_DB_VALID_ERROR_INVALID_ATT_LENGTH Invalid attribute length

000E GATTS_DB_VALID_ERROR_INVALID_ATT_DATA Attribute data not compatible with

type

User guide 280 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

API protocol reference

7.5 Macro definitions

Macros in EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module are simple codes that
result in text substitution within the parser. Macros may be used in either text mode or binary mode. Macros

always begin with the ‘%’ character and are followed by one or more alphanumeric characters (A-Z, 0-9).

Macros are not case-sensitive.

Table 65 Macro code table

Code Description Example Input Example Output Notes

%M1 Byte #1 of local

public MAC

address

MyDevice %M1 MyDevice 00 Examples assume that the

local device has a public
MAC address of

00:A0:50:E3:83:5F. %M2 Byte #2 of local
public MAC

address

MyDevice %M2 MyDevice A0

%M3 Byte #3 of local
public MAC

address

MyDevice %M3 MyDevice 50

%M4 Byte #4 of local
public MAC

address

MyDevice %M4 MyDevice E3

%M5 Byte #5 of local

public MAC

address

MyDevice %M5 MyDevice 83

%M6 Byte #6 of local
public MAC

address

MyDevice %M6 MyDevice 5F

Macros may be used in series with or without special separators, if the entire macro code (including the ‘%’
byte) remains intact. For example, to use the last three bytes of the MAC address in the same string, separated

by the ‘:’ byte, use the following:

 MyDevice %M4:%M5:%M6

This string is particularly useful for setting a module-specific device name using the gap_set_device_name

(SDN, ID=4/15) API command without needing to query or track the MAC address separately by hand.

User guide 281 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GPIO reference

8 GPIO reference

This section describes the various GPIO connections provided by the EZ-Serial firmware platform for AIROC™
Bluetooth® & Bluetooth® LE module firmware on supported modules. It also provides details on the default

boot state and the expected behavior in different operational modes.

8.1 GPIO pin map for supported modules

The assignment of special functions for supported modules is described in Table 66.

Each pin is shown with its assigned module pin and the effective header pin when using the CYBT-243053-EVAL

and CYBT-213043-EVAL board.

Note: User need check and do not use pins which have pre-configured by AIROC™ Bluetooth® &
Bluetooth® LE module.

Table 66 GPIO pin map on supported AIROC™ Bluetooth® LE module

Pin of Modules with

EVAL board

CYBT-243053-02 CYBT-213043-02 Note

P13 CYSPP/SPP CYSPP/SPP

EZ-Serial firmware platform
for AIROC™ Bluetooth® &

Bluetooth® LE module pre-

configured

P10 CTS of PUART CTS of PUART

EZ-Serial firmware platform
for AIROC™ Bluetooth® &
Bluetooth® LE module pre-

configured

P1 CP_ROLE CP_ROLE

EZ-Serial firmware platform
for AIROC™ Bluetooth® &

Bluetooth® LE module pre-

configured

P0 Button Button

P28 I2C I2C

P37 RXD of PUART RXD of PUART

P27 Connection Connection

EZ-Serial firmware platform
for AIROC™ Bluetooth® &
Bluetooth® LE module pre-

configured

P32 TXD of PUART TXD of PUART

EZ-Serial firmware platform
for AIROC™ Bluetooth® &
Bluetooth® LE module pre-

configured

P29 I2C I2C

P26 Available in J4 Available in J4

DEV_WAKE

HOST_WAKE

User guide 282 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GPIO reference

Pin of Modules with

EVAL board

CYBT-243053-02 CYBT-213043-02 Note

HCI_UART(4)

P8 Available in J6 Available in J6

P15 For SPI For SPI

P3 Available in J7 Available in J7

P2 Available in J7 Available in J7

P4 Available in J7 Available in J7

p6 For SPI For SPI

P5 Available in J7 Available in J7

P17 For SPI For SPI

P14 Available in J4 Available in J4

P9 For SPI For SPI

P11 RTS of PUART RTS of PUART

EZ-Serial firmware platform
for AIROC™ Bluetooth® &

Bluetooth® LE module pre-

configured

P12 LP_MODE LP_MODE

EZ-Serial firmware platform

for AIROC™ Bluetooth® &
Bluetooth® LE module pre-

configured

User guide 283 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GPIO reference

8.2 GPIO pin functionality

AIROC™ Bluetooth® LE module provides GPIO pins, optional PWM output pins for generating flexible PWM
signals, and optional analog input pins for ADC read operation.

8.2.1 Digital special-function pins

Table 67 details the functionality of each digital function GPIO pin.

Table 67 GPIO pin functionality details

Pin Name Direction Details

HCI_UART_RX Input UART Communication RX signal for incoming HCI commands or firmware

from external host device

HCI_UART_TX Output UART Communication TX signal for outgoing HCI commands or firmware to

external host device

HCI_UART_RTS Output UART Communication RTS signal signifying local receive permission (flow

control) for incoming HCI commands or firmware from external host device

HCI_UART_CTS Input UART Communication CTS signal detecting remote receive permission (flow

control) for outgoing HCI commands or firmware to external host device

PUART_RX Input UART Communication RX signal for incoming data from external host device

PUART_TX Output UART Communication TX signal for outgoing data to external host device

PUART_RTS Output UART Communication RTS signal signifying local receive permission (flow

control)

PUART_CTS Input UART Communication CTS signal detecting remote receive permission (flow

control)

CONNECTION Output Description:

Bluetooth® LE connection or CYSPP data pipe readiness status. When the
CYSPP pin is asserted, the external host can use this pin to detect whether
the data sent to module will be transmitted to the remote peer device

directly.

Status indicator logic (active-low):

• When CYSPP pin is de-asserted (API command mode active)

− LOW – Remote Bluetooth® LE peer device is connected.

− HIGH – No remote Bluetooth® LE peer device is connected

• When CYSPP pin is asserted (CYSPP mode active)

− LOW – CYSPP data stream fully available (connected and ready)

− HIGH – CYSPP data stream not available (disconnected or not ready)

Default boot state:

• HIGH (no connection)

User guide 284 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GPIO reference

Pin Name Direction Details

CYSPP Input/Output Description:

CYSPP mode control. The external host can use this pin to begin automatic
CYSPP operation without the need for any API commands. This pin is also
internally pulled HIGH or LOW based on software-triggered entry or exit to

and from CYSPP data mode.

SPP mode control: The external host can use this pin to indicate that SPP is

connected or as a control signal to exit SPP connection.

Control signal logic (active-low):

• LOW – Module enters CYSPP data mode.

• HIGH – Module exits CYSPP data mode and returns to API command
mode.

Module exits SPP connection and returns to API command mode.

Status indicator logic (internally pulled, may be overridden by external

signals):

• LOW – API commands or remote Bluetooth® LE Client GATT Client
transactions have entered CYSPP data mode.

SPP is connected and enter to SPP data mode.

• HIGH – API commands or remote Bluetooth® LE peer GATT Client
transactions have exited CYSPP data mode.

Default boot state:

Internally pulled HIGH (command mode active, CYSPP data mode

inactive.SPP is not connected)

LP_MODE Input Description:

Low-power status control. The external host can use this pin to affect the
sleep behavior of the module, specifically by either preventing or allowing

entry into sleep modes.

Control signal logic (active LOW):

• LOW – CPU is allowed to sleep.

• HIGH – CPU is kept in active mode.

Default boot state:

• Internally pulled HIGH (sleep not allowed)

Note: LP_MODE should not be left floating. Otherwise, firmware will

exhibit unexpected behavior.

User guide 285 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GPIO reference

Pin Name Direction Details

CP_ROLE Input Description:

Central or peripheral GAP role selection for CSYPP operation. The external
host can use this pin to select which role the module should use for CYSPP
behavior. This pin is also internally pulled high or low based on software-

triggered GAP behavioral state. If connected to a high-impedance input pin

(weaker than 5.6k pull), this pin may be used as a status indicator for
software-based GAP role changes. Otherwise, it should be driven externally

to the desired state.

Control signal logic (active-low):

• LOW – CYSPP mode will operate as a GAP central device (scan and

connect)

• HIGH – CYSPP mode will operate as a GAP peripheral device (advertise
and wait)

Status indicator logic (internally pulled, may be overridden by external

signals):

• LOW – Connected as a GAP central device if CONNECTION pin is also LOW.

• HIGH – Connected as a GAP peripheral device if CONNECTION pin is also
LOW.

• Default boot state:

• Internally pulled HIGH (peripheral role selection for CYSPP operation)

8.2.2 PWM output pins (Not implemented)

The AIROC™ Bluetooth® LE module provides up to four PWM output pins (PWM0/1/2/3) on the AIROC™
Bluetooth® LE module. You can enable PWM output on these channels using the gpio_set_pwm_mode (SPWM,
ID=9/11) API command. PWM channels are controlled via an independent 24-MHz clock, and can use divider,
prescaler, period, and compare settings for complete flexibility.

Note: Enabling PWM output automatically prevents the CPU from entering normal sleep under any
circumstances. This happens because the high-frequency clock required to generate the PWM
signal cannot operate while the CPU is in sleep. To allow sleep mode again, you must disable all
PWM output. See section Managing sleep states.

8.2.3 Analog input pins (ADC)

The AIROC™ Bluetooth® LE module provides up to eight ADC input pins (ADC0~31) for reading analog voltages.
The ADC supports an input voltage range of 0 V minimum to VDD (usually 3.3 V) maximum. To perform a single

ADC conversion, use the gpio_query_adc (/QADC, ID=9/2) API command. Once the conversion completes, the
module transmits the result in the response to this command.

User guide 286 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

GATT profile

9 GATT profile

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module makes use of a few custom
GATT profiles defined by Cypress(A Infineon Technologies company) Semiconductor. The service UUIDs,

characteristic UUIDs, special permissions, and overall structure are outlined here for quick reference. For
detailed reference materials, visit the Infineon website.

9.1 CYSPP Profile

The Cypress(A Infineon Technologies company) Serial Port Profile (CYSPP) provides bidirectional serial data

transfer between two remote devices, each of which passes data in through a single local hardware serial

interface. It supports both acknowledged transfers and unacknowledged transfers, and provides a mechanism
for virtual flow control in both the RX and TX direction.

The profile contains a single service (“CYSPP”), which contains three characteristics for data transfer and flow

control (“Acknowledged Data”, “Unacknowledged Data”, and “RX Flow”). The structural outline of this profile is
as follows:

• CYSPP Service: UUID 65333333-A115-11E2-9E9A-0800200CA100

− Acknowledged Data Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA101

(Write, Indicate)

The Acknowledged Data Characteristic is used to send and receive data in an acknowledged fashion. The

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module can fully track every transfer

in both directions. This characteristic has a variable length, supporting transfers in each direction of up to
20 bytes per packet.

Configuration Descriptor: UUID 0x2902

− Unacknowledged Data Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA102

(Write without response, Notify)

The Unacknowledged Data Characteristic is used to send and receive data in an unacknowledged

fashion. The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module cannot track
transfers using this mode once they have been accepted by the Bluetooth® LE stack. This provides less
control, but the lack of acknowledgements also allows for greater maximum throughput. This
characteristic has a variable length, supporting transfers in each direction of up to 20 bytes per packet.

Configuration Descriptor: UUID 0x2902

− RX Flow Characteristic: UUID 65333333-A115-11E2-9E9A-0800200CA103 (Obsolete, not
implemented)
(Indicate)

The RX Flow Characteristic is used to indicate to the client that the server can no longer safely receive
new data. If the client subscribes to indications from this characteristic, the server will assume that the
client obeys flow control signals. This characteristic is one byte in length. An indicated value of “0” means

that it is safe for the client to send data, while a value of “1” means that the client must refrain from
sending data.

Configuration Descriptor: UUID 0x2902

https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/

User guide 287 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Configuration example reference

10 Configuration example reference

The configuration examples provided in this section are each designed to work independently, assuming in
each case that the platform is initially configured using factory default settings. Applying all commands in one

example and then immediately following this with the commands from another example may result in changes
to the first set of behavior that are no longer in line with the expected results.

You can return a module to factory defaults as a baseline configuration at any time by using the
system_factory_reset (/RFAC, ID=2/5) API command. This reset command is not explicitly included in any of the
configuration snippets within this section.

10.1 Factory default settings

While you can return to the factory default settings on the module by performing a factory reset, it is also
helpful to know those settings for comparison or to explicitly change one or more individual settings to the

default value without reverting all customizations at once. Table 68 provides a comprehensive list of
commands that will return the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module to

default behavior.

Table 68 List of commands

Text content Binary content

SPPM,M=00 C0 01 01 01 01 5D

SSLP,L=01,T=0000 C0 03 02 13 01 00 00 70

STXP,P=07,D=F8FAFCFE00020404F8FAFCFE00020404F8FAFCFE00020404 C0 1A 02 15 07 18 F8 FA FC
FE 00 02 04 04 F8 FA FC FE 00

02 04 04 F8 FA FC FE 00 02 04

04 8B

STXP,P=0,D=F8FAFCFE00020404F8FAFCFE00020404F8FAFCFE00020404 C0 1A 02 15 00 18 F8 FA FC

FE 00 02 04 04 F8 FA FC FE 00

02 04 04 F8 FA FC FE 00 02 04

04 84

STU,B=0001C200,A=00,C=00,F=00,D=08,P=00,S=01,T=0 [C0 0B 02 19 00 C2 01 00 00

00 00 08 00 01 00 4B

SDN,T=0,N=EZ-Serial %M4:%M5:%M6 C0 17 04 0F 00 15 45 5A 2D
53 65 72 69 61 6C 20 25 4D 34

3A 25 4D 35 3A 25 4D 36 4D

SDA,A=0000 C0 02 04 11 00 00 70

SAD,D= C0 01 04 13 00 71

SSRD,D= C0 01 04 15 00 73

SAP, M=02,T=03,C=07,H=0030,D=001E,L=0800,O=003C,

F=00,A=000000000000,Y=00

C0 13 04 17 02 03 07 30 00 1E
00 00 08 3C 00 00 00 00 00 00

00 00 00 25

SGSP,F=01 C0 01 05 0E 01 6E

SPRV,M=04,I=012C C0 03 07 09 04 2C 01 9D

SSBP,M=41,B=01,K=10,P=00,I=03,F=01 C0 06 07 0B 11 01 10 00 03 01

97

User guide 288 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Configuration example reference

Text content Binary content

.CYSPPSP,E=02,G=00,C=0131,L=00000000,R=00000000,

M=00000000,P=01,S=00,F=02

C0 13 0A 03 02 00 31 01 00 00
00 00 00 00 00 00 00 00 00 00

01 00 02 B0

.CYSPPSK,M=01,W=0A,L=14,E=0D C0 04 0A 07 01 0A 14 0D 9A

Remember that the commands in Table 68 affect only RAM. To make these command values permanent, apply
all settings to flash using the system_store_config (/SCFG, ID=2/4) API command.

10.2 Adopted bluetooth SIG GATT profile structure snippets

The snippets below demonstrate how to add various GATT service and characteristic structural elements to
support official profiles defined by the Bluetooth® SIG, and some other common services.

Note: These database structures concern only the GATT Server side of the profiles in question. GATT

Client operations depend on the client device.

Note: The information provided in this section only covers the basic GATT structure, but does not include

any specific values which may be necessary or helpful for specific functionality. Many
characteristics also have flexible length values which depend on application design. See the

official Bluetooth® SIG documentation or other related resources linked under each service for
further detail.

10.2.1 Generic access service (0x1800)

Official documentation for this service can be found on the Bluetooth® SIG Developer website.

Note: This service is included in the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module. It is always present in the fixed, non-removable part of the GATT structure. Do not add

another instance of this service to the EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module.

/CAC,T=0,P=02,L=04,D=00280018

/CAC,T=0,P=02,L=07,D=0328020300002A

/CAC,T=1,P=0B,L=40,D=

/CAC,T=0,P=02,L=07,D=0328020500012A

/CAC,T=1,P=02,L=02,D=

/CAC,T=0,P=02,L=07,D=0328020700042A

/CAC,T=1,P=02,L=08,D=

/CAC,T=0,P=02,L=07,D=0328020900A62A

/CAC,T=1,P=02,L=01,D=

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module assumes that the
attribute handle is starting from 1. Data item of characteristic attribute include the attribute
handle (0x0003, 0x0005, 0x0007 and 0x0009 respectively in this example) which corresponding to
the characteristic value attribute.

https://www.bluetooth.com/develop-with-bluetooth/

User guide 289 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Configuration example reference

10.2.2 Generic Attribute Service (0x1801)

Official documentation for this service can be found on the Bluetooth® SIG Developer website.

Note: This service is included in the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE
module. It is always present in the fixed, non-removable part of the GATT structure. Do not add

another instance of this service to the EZ-Serial firmware platform for AIROC™ Bluetooth® &
Bluetooth® LE module.

/CAC,T=0,P=02,L=04,D=00280118

/CAC,T=0,P=02,L=07,D=0328200300052A

/CAC,T=1,P=02,L=04,D=

/CAC,T=0,P=0A,L=04,D=0229

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module assumes that the
attribute is handled starting from 1. Attribute handle (0x0003) corresponding to the value
attribute.

10.2.3 Immediate alert service (0x1802)

Official documentation for this service can be found on the Bluetooth® SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280218

/CAC,T=0,P=02,L=07,D=0328041800062A

/CAC,T=1,P=0A,L=01,D=

10.2.4 Link loss service (0x1803)

Official documentation for this service can be found on the Bluetooth® SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280318

/CAC,T=0,P=02,L=07,D=03280A1800062A

/CAC,T=1,P=0A,L=01,D=

10.2.5 TX power service (0x1804)

Official documentation for this service can be found on the Bluetooth® SIG Developer website.

/CAC,T=0,P=02,L=04,D=00280418

/CAC,T=0,P=02,L=07,D=0328021800072A

/CAC,T=1,P=02,L=01,D=

/CAC,T=0,P=0A,L=04,D=0229

https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/
https://www.bluetooth.com/develop-with-bluetooth/

User guide 290 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module MAC
address

11 EZ-Serial firmware platform for AIROC™ Bluetooth® &

Bluetooth® LE module MAC address

The EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module includes a static random MAC

address when they are shipped from Infineon. The static random MAC address is configured during Infineon
manufacturing programming process, and this address does not change for the life of the programmed
image(Exception command /RFAC which will regenerate static random address).

During the Infineon programming process, the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®

LE module generates a static random address and stores it in flash. The address format follows the Bluetooth®
Core Specification 5.0 Volume 6, part B, Section 1.3.2.1 Static Device Address. This address is persistent during

module power cycle or reset operations.

Note: EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module internally controls the

address type by using smp_send_passkeyreq_response (/PE, ID=7/6). If this mode bit 2 is set to 0, it
advertises as a public address type. If this mode bit 2 set to 1, it advertises as a static random

address type. The default for the EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth®

LE module address is 1 (static random address).

In all cases, you should be familiar with the rules set forth by the Bluetooth® SIG for MAC address generation,
format and usage as documented in the Bluetooth® Core Specification 5.0, Volume 6, section 1.3.

If you want to use your own public address (using an assigned IEEE OUI), use the

system_set_bluetooth_address (SBA, ID=2/13) command to configure the address to your OUI plus three
additional random bytes, and then use the smp_send_passkeyreq_response (/PE, ID=7/6) command to change

the address type to public.

If you modify the type and format of the address and then want to revert to the EZ-Serial firmware platform for
AIROC™ Bluetooth® & Bluetooth® LE module initial static random address, use the

system_set_bluetooth_address (SBA, ID=2/13) command with the parameter address equal to 0. Using this
command reverts the advertising address to the factory-provided static random address.

In all cases, you should be familiar with the rules set forth by the Bluetooth® SIG for MAC address generation,
format and usage as documented in the Bluetooth® Core Specification 5.0, Volume 6, section 1.3.

User guide 291 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

References

References

Infineon provides customer access to a wide range of information, including technical documentation,
schematic diagrams, product bill of materials, PCB layout information, and software updates. Customers can
acquire technical documentation and software from the Infineon Community website.

https://community.infineon.com/

User guide 292 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Glossary

Glossary

Acronym/Abbreviation Expanded Form

ADC Analog-to-Digital Converter

API Application Program Interface

Bluetooth® LE Bluetooth Low Energy

BR Basic Rate

CCCD Client Characteristic Configuration Descriptor

CPU Central Processing Unit

CTS Clear to Send,

CYSPP Cypress Serial Port Profile

Note: Cypress is an Infineon Technologies Company.

EDR Enhanced Data Rate

EVAL Evaluation

GAP Generic Access Protocol

GATT Generic Attribute Profile

GCC GNU Compiler Collection

GND Ground

GPIO General Purpose Input/Output.

HCI Host Controller Interface

HID Human Interface Device

JSON JavaScript Object Notation

LL Link Layer

MAC Media Access Control

MCU Microcontroller

MITM Man In The Middle

MSb Most Significant bit

MSB Most Significant Byte

MTU Maximum Transmission Unit

OTA Over-the-Air programming

PUART Peripheral UART

PWM Pulse Width Modulation

RAM Random Access Memory

RSSI Received Signal Strength Indicator

RTS Request to Send

RXD Receive Data

SDK Software Development Kit

SIG Special Interest Group

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group

User guide 293 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Glossary

Acronym/Abbreviation Expanded Form

SMP Security Manager Protocol

SPP Serial Port Profile

TXD Transmit Data

UART Universal Asynchronous Receiver Transmitter

UTF-8 Unicode Transformation Format 8

UUID Universally Unique Identifier

VDD Voltage Drain Drain

WCO Watch Crystal Oscillator

WICED Wireless Internet Connectivity for Embedded Devices

Click or tap here to enter text.

https://techterms.com/definition/unicode

User guide 294 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Revision history

Revision history

Document

revision

Date Description of changes

** 2023-07-17 Initial release

*A 2024-11-25 Updated bit content for serial communication parameters examples in Table 15

and Table 16.

Updated current range for power states in Table 21.

Updated GATT services information in Table 50 and Table 51.

Updated GATT descriptors information in Table 52.

Updated 3.10.2 Updating firmware locally using Bluetooth®LE connection

Updated 7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)

Updated 7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)

Updated 7.2.2.8 system_write_user_data (/WUD, ID=2/11)

Updated 7.2.2.9 system_read_user_data (/RUD, ID=2/12)

Updated 7.2.2.13 system_get_sleep_parameters (GSLP, ID=2/20)

Updated 7.2.2.16 system_set_transport (ST, ID=2/23)

Updated 7.2.2.17 system_get_transport (GT, ID=2/24)

Updated 7.2.2.18 system_set_uart_parameters (STU, ID=2/25)

Updated 7.2.3.1 gap_connect (/C, ID=4/1)

Updated 7.2.4.5 gatts_dump_db (/DGDB, ID=5/5)

Updated 7.2.4.13 gatts_send_writereq_response (/WRR, ID=5/13) - Not

implemented

Updated 7.2.4.14 gatts_set_parameters (SGSP, ID=5/14) - Not implemented

Updated 7.2.4.15 gatts_get_parameters (GGSP, ID=5/15) - Not implemented

Updated 7.2.6.1 smp_query_bonds (/QB, ID=7/1)

Added 7.2.6.4 smp_send_passkeyreq_response (/PE, ID=7/6)

Updated 7.2.6.8 smp_get_security_parameters (GSBP, ID=7/12)

Updated 7.2.6.10 smp_get_fixed_passkey (GFPK, ID=7/14)

Updated 7.2.6.12 smp_get_pin_code (GBTPIN, ID=7/16)

Updated 7.2.7.7 gpio_get_pwm_mode (GPWM, ID=9/12) - Not

implemented

Updated 7.2.8.2 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)

Updated 7.2.8.3 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)

Updated 7.2.8.4 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)

Updated 7.2.9.8 bt_query_peer_address (/BTQPA, ID=14/8)

Updated 7.2.10.1 spp_send_command (.SPPS, ID=19/1) (Not implemented)

Updated 7.3.1.1 system_boot (BOOT, ID=2/1)

Updated 7.3.2.3 gap_scan_state_changed (SSC, ID=4/3)

Updated 7.3.3.4 gatts_db_entry_blob (DGATT, ID=5/4)

Updated 7.3.4.1 gattc_discover_result (DR, ID=6/1)

Updated 7.3.4.2 gattc_remote_procedure_complete (RPC, ID=6/2)

Updated 7.3.4.3 gattc_data_received (D, ID=6/3)

User guide 295 002-37528 Rev. *A

 2024-11-25

EZ-Serial firmware platform user guide for AIROC™ CYW208xx-

based modules

Revision history

Document

revision

Date Description of changes

Updated 7.3.4.4 gattc_write_response (WRR, ID=6/4)

Updated 7.3.5.2 smp_pairing_requested (P, ID=7/2)

Added 7.3.5.6 smp_passkey_entry_requested (PKE, ID=7/6)

Updated 7.3.6.1 gpio_interrupt (INT, ID=9/1)

Updated 7.3.9.1 SPP_data_received (.SPPD, ID=19/1)

Updated 9.1 CYSPP Profile

Updated 10.1 Factory default settings

 Important notice Warnings

Edition 2024-11-25

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-37528 Rev. *A

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”)

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaim er

mailto:erratum@infineon.com

	Table of contents
	1 Introduction
	1.1 How to use this guide
	1.2 Block diagram
	1.3 Functional overview
	1.3.1 Bluetooth® communication features
	1.3.2 Hardware and communication features
	1.3.3 Firmware overwrite

	1.4 Infineon AIROC™ Bluetooth® LE module support

	2 Getting started
	2.1 Prerequisites
	2.2 Factory default behavior
	2.3 Connecting a Host device
	2.3.1 Connecting the Evaluation board
	2.3.2 Connecting the Serial interface
	2.3.2.1 Connecting GPIO pins

	2.4 Communicating with a Host device
	2.4.1 Using the API protocol in text mode
	2.4.1.1 Text mode protocol characteristics
	2.4.1.2 Text mode API command categories
	2.4.1.3 Text mode API example

	2.4.2 Using the API protocol in binary mode
	2.4.2.1 Binary mode protocol characteristics
	2.4.2.2 Binary Mode API Example

	2.4.3 Key similarities and differences between text and binary command mode
	2.4.4 API protocol format auto-detection
	2.4.5 Using CYSPP mode
	2.4.5.1 Starting CYSPP operation
	2.4.5.2 Sending and receiving data in CYSPP data mode
	2.4.5.3 Exiting CYSPP mode
	2.4.5.4 Customizing CYSPP behavior for specific needs
	2.4.5.5 Understanding CYSPP connection keys
	2.4.5.6 Using the CYSPP peripheral connection key
	2.4.5.7 Using the CYSPP Central Connection key and mask
	2.4.5.8 CYSPP configuration and pin states
	2.4.5.9 CYSPP state machine

	2.4.6 Bluetooth® classic SPP

	2.5 Configuration settings, storage, and protection
	2.5.1 Factory, boot, and runtime settings
	2.5.2 Saving runtime settings in flash
	2.5.3 Protected configuration settings

	2.6 Finding related material
	2.6.1 Latest EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module image
	2.6.2 Latest host API protocol library
	2.6.3 Comprehensive API reference

	3 Operational examples
	3.1 System setup examples
	3.1.1 Identifying the running firmware and Bluetooth® LE stack version
	3.1.1.1 Getting version details from boot event
	3.1.1.2 Getting version details on demand

	3.1.2 Changing the serial communication parameters
	3.1.3 Changing device name and appearance
	3.1.4 Changing output power
	3.1.5 Managing sleep states
	3.1.5.1 Configuring the system-wide sleep level
	3.1.5.2 Configuring the CYSPP data mode sleep level
	3.1.5.3 Preventing sleep with the LP_MODE pin
	3.1.5.4 Managing host and module sleep simultaneously

	3.1.6 Performing a factory reset

	3.2 Cable replacement examples with CYSPP
	3.2.1 Getting started in CYSPP mode with zero custom configuration
	3.2.1.1 Starting CYSPP out of the box in peripheral mode
	3.2.1.2 How to start CYSPP out of the box in central mode

	3.3 Cable replacement examples with SPP
	3.3.1 Connecting SPP service with an Android smartphone
	3.3.2 Connecting to SPP service using a computer (Window 7)
	3.3.3 Connecting SPP service of a WICED module to another Bluetooth® device
	3.3.4 Disconnecting SPP

	3.4 GAP peripheral examples
	3.4.1 Advertising as peripheral device
	3.4.2 Stopping advertising as a peripheral device
	3.4.3 Customizing advertisement and scanning response data

	3.5 GAP central examples
	3.5.1 How to scan peripherals
	3.5.2 How to stop scanning for peripheral devices
	3.5.3 How to connect to a peripheral device
	3.5.4 How to cancel a pending connection to a peripheral device
	3.5.5 How to disconnect from a peripheral device

	3.6 GATT server examples
	3.6.1 Defining custom local GATT services and characteristics
	3.6.1.1 Understanding custom GATT limitations
	3.6.1.2 Building custom services and characteristics
	3.6.1.3 Choosing correct GATT permissions

	3.6.2 Listing local GATT services, characteristics, and descriptors
	3.6.2.1 Discovering local GATT services
	3.6.2.2 Discovering local GATT characteristics
	3.6.2.3 Discovering local GATT descriptors

	3.6.3 Reading and writing local GATT attribute values
	3.6.3.1 Reading local GATT data
	3.6.3.2 Writing local GATT data

	3.6.4 Notifying and indicating data to a remote client
	3.6.4.1 Notifying data to a remote client
	3.6.4.2 Indicating data to a remote client

	3.6.5 Detecting and processing written data from a remote client

	3.7 GATT client examples
	3.7.1 How to discover a remote server’s GATT structure
	3.7.1.1 Discovering remote GATT services
	3.7.1.2 Discovering remote GATT characteristics
	3.7.1.3 Discovering remote GATT descriptors

	3.7.2 How to read and write remote GATT attribute values
	3.7.3 How to detect notified or indicated values from a remote GATT server

	3.8 Security and encryption examples
	3.8.1 Bonding with or without MITM protection
	3.8.1.1 Pairing in “Just Works” mode without MITM protection (Bluetooth® LE)
	3.8.1.2 Pairing with a fixed passkey(Bluetooth® LE) (Obsolete, not supported)
	3.8.1.3 Pairing with a random passkey (Bluetooth® LE)
	3.8.1.4 Pairing with a random passkey (Bluetooth® classic)

	3.9 Performance testing examples
	3.9.1 Maximizing throughput to a remote peer
	3.9.1.1 Maximizing throughput to an iOS device
	3.9.1.2 Maximizing throughput to an Android device
	3.9.1.3 Minimizing power consumption
	3.9.1.4 Minimizing power consumption while broadcasting
	3.9.1.5 Minimizing power consumption while connected

	3.10 Device firmware update examples
	3.10.1 Updating firmware locally using UART
	3.10.2 Updating firmware locally using Bluetooth® LE connection

	3.11 GPIO operation examples
	3.11.1 Get current GPIO status
	3.11.2 GPIO configuration when entering or exiting Low-Power state
	3.11.3 GPIO interrupt configuration
	3.11.4 Remove GPIO operation
	3.11.5 GPIO pin configuration

	3.12 Init command examples
	3.12.1 Add Init command
	3.12.2 Display current Init commands
	3.12.3 Check Init command is executed at system start up
	3.12.4 Delete Init command
	3.12.5 Enable/disable Init command

	4 Application design examples
	4.1 Smart MCU host with 4-Wire UART and full GPIO connections
	4.1.1 Hardware design
	4.1.2 Module configuration
	4.1.3 Host configuration

	4.2 Dumb terminal host with CYSPP and simple GPIO state indication
	4.2.1 Hardware design
	4.2.2 Module configuration
	4.2.3 Host configuration

	4.3 Module-Only application with Beacon functionality
	4.3.1 Hardware design
	4.3.2 Module configuration
	4.3.3 Host configuration

	5 Host API library
	5.1 Host API library overview
	5.1.1 High level architecture
	5.1.2 Host library design

	5.2 Implementing a project using the Host API library
	5.2.1 Basic application architecture
	5.2.2 Exposed API functions
	5.2.3 Command macros
	5.2.4 Convenience macros

	5.3 Porting the Host API library to different platforms
	5.4 Using the API definition JSON file to create a custom library

	6 Troubleshooting
	6.1 UART communication issues
	6.2 Bluetooth® LE connection issues
	6.3 GPIO signal issues

	7 API protocol reference
	7.1 Protocol structure and communication flow
	7.1.1 API protocol formats
	7.1.1.1 Text format overview
	7.1.1.2 Binary format overview

	7.1.2 API protocol data types
	7.1.3 Binary format details
	7.1.3.1 Byte ordering and structure packing
	7.1.3.2 Binary packet header

	7.2 API commands and responses
	7.2.1 Protocol group (ID=1)
	7.2.1.1 protocol_set_parse_mode (SPPM, ID=1/1)
	7.2.1.2 protocol_get_parse_mode (GPPM, ID=1/2)
	7.2.1.3 protocol_set_echo_mode (SPEM, ID=1/3)
	7.2.1.4 protocol_get_echo_mode (GPEM, ID=1/4)

	7.2.2 System group (ID=2)
	7.2.2.1 system_ping (/PING, ID=2/1)
	7.2.2.2 system_reboot (/RBT, ID=2/2)
	7.2.2.3 system_dump (/DUMP, ID=2/3)
	7.2.2.4 system_store_config (/SCFG, ID=2/4)
	7.2.2.5 system_factory_reset (/RFAC, ID=2/5)
	7.2.2.6 system_query_firmware_version (/QFV, ID=2/6)
	7.2.2.7 system_query_random_number (/QRND, ID=2/8)
	7.2.2.8 system_write_user_data (/WUD, ID=2/11)
	7.2.2.9 system_read_user_data (/RUD, ID=2/12)
	7.2.2.10 system_set_bluetooth_address (SBA, ID=2/13)
	7.2.2.11 system_get_bluetooth_address (GBA, ID=2/14)
	7.2.2.12 system_set_sleep_parameters (SSLP, ID=2/19)
	7.2.2.13 system_get_sleep_parameters (GSLP, ID=2/20)
	7.2.2.14 system_set_tx_power (STXP, ID=2/21)
	7.2.2.15 system_get_tx_power (GTXP, ID=2/22)
	7.2.2.16 system_set_transport (ST, ID=2/23)
	7.2.2.17 system_get_transport (GT, ID=2/24)
	7.2.2.18 system_set_uart_parameters (STU, ID=2/25)
	7.2.2.19 system_get_uart_parameters (GTU, ID=2/26)

	7.2.3 GAP Group (ID=4)
	7.2.3.1 gap_connect (/C, ID=4/1)
	7.2.3.2 gap_cancel_connection (/CX, ID=4/2)
	7.2.3.3 gap_update_conn_parameters (/UCP, ID=4/3)
	7.2.3.4 gap_disconnect (/DIS, ID=4/5)
	7.2.3.5 gap_add_whitelist_entry (/WLA, ID=4/6)(Not implemented)
	7.2.3.6 gap_delete_whitelist_entry (/WLD, ID=4/7) (Not implemented)
	7.2.3.7 gap_start_adv (/A, ID=4/8)
	7.2.3.8 gap_stop_adv (/AX, ID=4/9)
	7.2.3.9 gap_start_scan (/S, ID=4/10)
	7.2.3.10 gap_stop_scan (/SX, ID=4/11)
	7.2.3.11 gap_query_peer_address (/QPA, ID=4/12)
	7.2.3.12 gap_query_rssi (/QSS, ID=4/13)
	7.2.3.13 gap_query_whitelist (/QWL, ID=4/14)(Not implemented)
	7.2.3.14 gap_set_device_name (SDN, ID=4/15)
	7.2.3.15 gap_get_device_name (GDN, ID=4/16)
	7.2.3.16 gap_set_device_appearance (SDA, ID=4/17)
	7.2.3.17 gap_get_device_appearance (GDA, ID=4/18)
	7.2.3.18 gap_set_adv_data (SAD, ID=4/19)
	7.2.3.19 gap_get_adv_data (GAD, ID=4/20)
	7.2.3.20 gap_set_sr_data (SSRD, ID=4/21)
	7.2.3.21 gap_get_sr_data (GSRD, ID=4/22)
	7.2.3.22 gap_set_adv_parameters (SAP, ID=4/23)
	7.2.3.23 gap_get_adv_parameters (GAP, ID=4/24)
	7.2.3.24 gap_set_scan_parameters (SSP, ID=4/25)
	7.2.3.25 gap_get_scan_parameters (GSP, ID=4/26)
	7.2.3.26 gap_set_conn_parameters (SCP, ID=4/27)
	7.2.3.27 gap_get_conn_parameters (GCP, ID=4/28)

	7.2.4 GATT Server Group (ID=5)
	7.2.4.1 gatts_create_attr (/CAC, ID=5/1)
	7.2.4.2 gatts_delete_attr (/CAD, ID=5/2)
	7.2.4.3 gatts_validate_db (/VGDB, ID=5/3)
	7.2.4.4 gatts_store_db (/SGDB, ID=5/4) – Not implemented
	7.2.4.5 gatts_dump_db (/DGDB, ID=5/5)
	7.2.4.6 gatts_discover_services (/DLS, ID=5/6)
	7.2.4.7 gatts_discover_characteristics (/DLC, ID=5/7)
	7.2.4.8 gatts_discover_descriptors (/DLD, ID=5/8)
	7.2.4.9 gatts_read_handle (/RLH, ID=5/9)
	7.2.4.10 gatts_write_handle (/WLH, ID=5/10)
	7.2.4.11 gatts_notify_handle (/NH, ID=5/11)
	7.2.4.12 gatts_indicate_handle (/IH, ID=5/12)
	7.2.4.13 gatts_send_writereq_response (/WRR, ID=5/13) ---Not implemented
	7.2.4.14 gatts_set_parameters (SGSP, ID=5/14) - Not implemented
	7.2.4.15 gatts_get_parameters (GGSP, ID=5/15) - Not implemented

	7.2.5 GATT Client Group (ID=6)
	7.2.5.1 gattc_discover_services (/DRS, ID=6/1)
	7.2.5.2 gattc_discover_characteristics (/DRC, ID=6/2)
	7.2.5.3 gattc_discover_descriptors (/DRD, ID=6/3)
	7.2.5.4 gattc_read_handle (/RRH, ID=6/4)
	7.2.5.5 gattc_write_handle (/WRH, ID=6/5)
	7.2.5.6 gattc_confirm_indication (/CI, ID=6/6)
	7.2.5.7 gattc_set_parameters (SGCP, ID=6/7)
	7.2.5.8 gattc_get_parameters (GGCP, ID=6/8)

	7.2.6 SMP Group (ID=7)
	7.2.6.1 smp_query_bonds (/QB, ID=7/1)
	7.2.6.2 smp_delete_bond (/BD, ID=7/2)
	7.2.6.3 smp_pair (/P, ID=7/3)
	7.2.6.4 smp_send_passkeyreq_response (/PE, ID=7/6)
	7.2.6.5 smp_set_privacy_mode (SPRV, ID=7/9)
	7.2.6.6 smp_get_privacy_mode (GPRV, ID=7/10)
	7.2.6.7 smp_set_security_parameters (SSBP, ID=7/11)
	7.2.6.8 smp_get_security_parameters (GSBP, ID=7/12)
	7.2.6.9 smp_set_fixed_passkey (SFPK, ID=7/13)
	7.2.6.10 smp_get_fixed_passkey (GFPK, ID=7/14)
	7.2.6.11 smp_set_pin_code (SBTPIN, ID=7/15)
	7.2.6.12 smp_get_pin_code (GBTPIN, ID=7/16)
	7.2.6.13 smp_send_pinreq_response (/BTPIN, ID=7/17)

	7.2.7 GPIO Group (ID=9)
	7.2.7.1 gpio_query_adc (/QADC, ID=9/2)
	7.2.7.2 gpio_set_drive (SIOD, ID=9/5)
	7.2.7.3 gpio_get_drive (GIOD, ID=9/6)
	7.2.7.4 gpio_set_logic (SIOL, ID=9/7)
	7.2.7.5 gpio_get_logic (GIOL, ID=9/8)
	7.2.7.6 gpio_set_pwm_mode (SPWM, ID=9/11)(Not implmented)
	7.2.7.7 gpio_get_pwm_mode (GPWM, ID=9/12) (Not implmented)

	7.2.8 CYSPP Group (ID=10)
	7.2.8.1 p_cyspp_start (.CYSPPSTART, ID=10/2)
	7.2.8.2 p_cyspp_set_parameters (.CYSPPSP, ID=10/3)
	7.2.8.3 p_cyspp_get_parameters (.CYSPPGP, ID=10/4)
	7.2.8.4 p_cyspp_set_packetization (.CYSPPSK, ID=10/7)
	7.2.8.5 p_cyspp_get_packetization (.CYSPPGK, ID=10/8)

	7.2.9 Bluetooth® group (ID=14)
	7.2.9.1 bt_start_inquiry (/BTI, ID=14/1)
	7.2.9.2 bt_cancel_inquiry (/BTIX, ID=14/2)
	7.2.9.3 bt_query_name (/BTQN, ID=14/3)
	7.2.9.4 bt_connect (/BTC, ID=14/4)
	7.2.9.5 bt_cancel_connection (/BTCX, ID=14/5)(Not implemented)
	7.2.9.6 bt_disconnect (/BTDIS, ID=14/6)
	7.2.9.7 bt_query_connections (/BTQC, ID=14/7)
	7.2.9.8 bt_query_peer_address (/BTQPA, ID=14/8)
	7.2.9.9 bt_query_rssi (/BTQSS, ID=14/9)
	7.2.9.10 bt_set_parameters (SBTP, ID=14/10)
	7.2.9.11 bt_get_parameters (GBTP, ID=14/11)
	7.2.9.12 bt_set_device_class (SBTDC, ID=14/12)
	7.2.9.13 bt_get_device_class (GBTDC, ID=14/13)

	7.2.10 Spp group (ID=19)
	7.2.10.1 spp_send_command (.SPPS, ID=19/1) (Not implemented)
	7.2.10.2 spp_set_config (.SPPSC, ID=19/2) (Not implemented)
	7.2.10.3 spp_get_config (.SPPGC, ID=19/3)

	7.3 API events
	7.3.1 System Group (ID=2)
	7.3.1.1 system_boot (BOOT, ID=2/1)
	7.3.1.2 system_error (ERR, ID=2/2)
	7.3.1.3 system_factory_reset_complete (RFAC, ID=2/3)
	7.3.1.4 system_dump_blob (DBLOB, ID=2/5)

	7.3.2 GAP Group (ID=4)
	7.3.2.1 gap_whitelist_entry (WL, ID=4/1)
	7.3.2.2 gap_adv_state_changed (ASC, ID=4/2)
	7.3.2.3 gap_scan_state_changed (SSC, ID=4/3)
	7.3.2.4 gap_scan_result (S, ID=4/4)
	7.3.2.5 gap_connected (C, ID=4/5)
	7.3.2.6 gap_disconnected (DIS, ID=4/6)
	7.3.2.7 gap_connection_updated (CU, ID=4/8)

	7.3.3 GATT Server Group (ID=5)
	7.3.3.1 gatts_discover_result (DL, ID=5/1)
	7.3.3.2 gatts_data_written (W, ID=5/2)
	7.3.3.3 gatts_indication_confirmed (IC, ID=5/3)
	7.3.3.4 gatts_db_entry_blob (DGATT, ID=5/4)

	7.3.4 GATT Client Group (ID=6)
	7.3.4.1 gattc_discover_result (DR, ID=6/1)
	7.3.4.2 gattc_remote_procedure_complete (RPC, ID=6/2)
	7.3.4.3 gattc_data_received (D, ID=6/3)
	7.3.4.4 gattc_write_response (WRR, ID=6/4)

	7.3.5 SMP Group (ID=7)
	7.3.5.1 smp_bond_entry (B, ID=7/1)
	7.3.5.2 smp_pairing_requested (P, ID=7/2)
	7.3.5.3 smp_pairing_result (PR, ID=7/3)
	7.3.5.4 smp_encryption_status (ENC, ID=7/4)
	7.3.5.5 smp_passkey_display_requested (PKD, ID=7/5)
	7.3.5.6 smp_passkey_entry_requested (PKE, ID=7/6)
	7.3.5.7 smp_pin_entry_requested (BTPIN, ID=7/7)

	7.3.6 GPIO Group (ID=9)
	7.3.6.1 gpio_interrupt (INT, ID=9/1)

	7.3.7 CYSPP Group (ID=10)
	7.3.7.1 p_cyspp_status (.CYSPP, ID=10/1)

	7.3.8 Bluetooth® Classic Group (ID=14)
	7.3.8.1 bt_inquiry_result (BTIR, ID=14/1)
	7.3.8.2 bt_name_result (BTINR, ID=14/2)
	7.3.8.3 bt_inquiry_complete (BTIC, ID=14/3)
	7.3.8.4 bt_connected (BTCON, ID=14/4)
	7.3.8.5 bt_connection_status (BTCS, ID=14/5)
	7.3.8.6 bt_connection_failed (BTCF, ID=14/6)
	7.3.8.7 bt_disconnected (BTDIS, ID=14/7)

	7.3.9 Spp group (ID=19)
	7.3.9.1 SPP_data_received (.SPPD, ID=19/1)

	7.4 Error codes
	7.4.1 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module system error codes
	7.4.2 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module GATT database validation error codes

	7.5 Macro definitions

	8 GPIO reference
	8.1 GPIO pin map for supported modules
	8.2 GPIO pin functionality
	8.2.1 Digital special-function pins
	8.2.2 PWM output pins (Not implemented)
	8.2.3 Analog input pins (ADC)

	9 GATT profile
	9.1 CYSPP Profile

	10 Configuration example reference
	10.1 Factory default settings
	10.2 Adopted bluetooth SIG GATT profile structure snippets
	10.2.1 Generic access service (0x1800)
	10.2.2 Generic Attribute Service (0x1801)
	10.2.3 Immediate alert service (0x1802)
	10.2.4 Link loss service (0x1803)
	10.2.5 TX power service (0x1804)

	11 EZ-Serial firmware platform for AIROC™ Bluetooth® & Bluetooth® LE module MAC address
	References
	Glossary
	Revision history
	Disclaimer

