- Photops ${ }^{\text {TM }}$

Photodiode-Amplifier Hybrids

The Photop ${ }^{\text {TM }}$ Series, combines a photodiode with an operational amplifier in the same package. Photops ${ }^{\text {TM }}$ general-purpose detectors have a spectral range from either 350 nm to 1100 nm or 200 nm to 1100 nm . They have an integrated package ensuring low noise output under a variety of operating conditions. These op-amps are specifically selected by OSI Optoelectronics engineers for compatibility to our photodiodes.

Among many of these specific parameters are low noise, low drift and capability of supporting a variety of gains and bandwidths determined by the external feedback components. Operation from DC level to several MHz is possible in an either unbiased configuration for low speed, low drift applications or biased for faster response time. LN-Series Photops ${ }^{\text {TM }}$ are to be used with OV-bias.

Any modification of the above devices is possible. The modifications can be simply adding a bandpass optical filter, integration of additional chip (hybrid) components inside the same package, utilizing a different op-amp, photodetector replacement, modified package design and / or mount on PCB or ceramic. For your specific requirements, contact one of our Applications Engineers.

- APPLICATIONS

- General Purpose Light Detection
- Laser Power Monitoring
- Medical Analysis
- Laser Communications
- Bar Code Readers
- Industrial Control Sensors
- Pollution Monitoring
- Guidance Systems
- Colorimeter

- FEATURES

- Detector/Amplifier Combined
- Adjustable Gain/Bandwidth
- Low Noise
- Wide Bandwidth
- DIP Package
- Large Active Area
- Typical Spectral Response

- Typical Gain vs. Frequency

	Active Area		Responsivity （A／W）				Capacitance(pF)		Dark Current （nA）			$\begin{gathered} \text { NEP } \\ (\mathbf{W} / \sqrt{ } \mathrm{Hz}) \end{gathered}$			Temp．＊ Range （ ${ }^{\circ} \mathrm{C}$ ）		Package Style
			254 nm		970 nm		0 V	$\stackrel{-10}{v}$	－10 V		$\begin{aligned} & -10 \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0 \text { V } \\ 254 \mathrm{~nm} \end{gathered}$	$\begin{gathered} -10 \mathrm{~V} \\ 970 \mathrm{~nm} \end{gathered}$	v	은坒응0		
				2	淢	$\dot{\lambda}$	$\dot{\lambda}$	$\frac{1}{2}$	$\grave{2}$	$\underset{\text { ® }}{\substack{\text { ® }}}$	2	2	2	$\underset{\text { ® }}{\text { ® }}$			

350－1100 nm Spectral Range

Operational Amplifier Specifications Electro－Optical Specifications at $T_{A}=23^{\circ} \mathrm{C}$

																				Input Noise Current
$\begin{aligned} & \frac{1}{あ} \\ & \frac{0}{3} \\ & \hline \end{aligned}$		ly Vo				Vo	e			Cu	ent						DC	N	\xrightarrow{N}	N N \sim
ర్ర																	nV		／ Hz	fA／$\sqrt{\mathbf{H z}}$
	E Ė	$\grave{\lambda ̇}$	® ® E	$\dot{\lambda}$	® ® E	$\grave{\lambda}$	㐅 ® E	$\dot{\lambda}$	® ® E	$\dot{2}$	® ¢ E	$\dot{\bar{E}}$	$\dot{\lambda}$	E．E．	\grave{Z}	．	д̇	$\dot{\lambda}$	2	$\stackrel{\square}{2}$
UDT－451	－－－	± 15	± 18	1.4	2.5	3.0	6.0	10	－－－	30	200	－－－	4.0	－－－	13	50	150	－－－	18	10
UDT－455																				
UDT－455UV																				
UDT－020D																				
UDT－020UV																				
OSI－515＊	－－－	± 15	± 18	6.5	7.2	1	3	10	－－－	± 15	± 40	23	26	125	140	3	6.3	－－－	12	10
UDT－455LN＊＊	± 5	± 15	± 18	0.9	1.8	0.26	1	－－－	20						3			78	27	0.22
UDT－455UV／LN＊＊										0.15	0.3	0.5	1	0.5	3	50	2500	78		
UDT－055UV	－－－	± 15	± 22	2.7	4.0	0.4	1	3	10	± 40	± 200	3.5	5.7	7.5	11	75	220	20	15	10
UDT－555D																				
UDT－555UV																				

If For mechanical drawings please refer to pages 58 thru 69.
＊＊LN－Series Devices are to be used with a OV Bias．
＊Non－Condensing temperature and Storage Range，Non－Condensing Environment．
\＃OSI－515 replaces UDT－455HS

UDT-455,
UDT-555D, 555UV, 055UV
OSI-515: pin 1 \& 5 are N/C
(No offset adjustment needed).

UDT-555UV/LN

The output voltage is proportional to the light intensity of the light and is given by:

$$
\begin{align*}
V_{\text {OUT }} & =I_{P} \times R_{F} \tag{1}\\
& =\left(P \times R_{\lambda}\right) \times R_{F}
\end{align*}
$$

Frequency Response (Photodiode/Amplifier Combination)

The frequency response of the photodiode / amplifier combination is determined by the characteristics of the photodetector, pre-amplifier as well as the feedback resistor $\left(\mathrm{R}_{\mathrm{F}}\right)$ and feedback capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$. For a known gain, $\left(\mathrm{R}_{\mathrm{F}}\right)$, the 3 dB frequency response of the detector/pre-amp combination is given by:

$$
\begin{equation*}
f_{3 d B}=\frac{1}{2 \pi C_{F} R_{F}} \tag{2}
\end{equation*}
$$

However, the desired frequency response is limited by the Gain Bandwidth Product (GBP) of the op-amp. In order to have a stable output, the values of the R_{F} and C_{F} must be chosen such that the $3 d B$ frequency response of the detector / pre-amp combination, be less than the maximum frequency of the op-amp, i.e. $f_{3 \mathrm{~dB}} \leq f_{\text {max }}$.

$$
\begin{equation*}
f_{\max }=\sqrt{\frac{G B P}{2 \pi R_{F}\left(C_{F}+C_{J}+C_{A}\right)}} \tag{3}
\end{equation*}
$$

where C_{A} is the amplifier input capacitance.

In conclusion, an example for frequency response calculations, is given below. For a gain of 10^{8}, an operating frequency of 100 Hz , and an opamp with GBP of 5 MHz :

$$
\begin{equation*}
C_{F}=\frac{1}{2 \pi f_{3 d B} R_{F}}=15.9 p F \tag{4}
\end{equation*}
$$

Thus, for $\mathrm{C}_{\mathrm{F}}=15.9 \mathrm{pF}, \mathrm{C}_{J}=15 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{A}}=7 \mathrm{pF}, \mathrm{f}_{\max }$ is about 14.5 kHz . Hence, the circuit is stable since $f_{3 d B} \leq f_{\text {max }}$.

For more detailed application specific discussions and further reading, refer to the APPLICATION NOTES INDEX in the catalog.

Note: The shaded boxes represent the Photop ${ }^{\text {TM }}$ components and their connections. The components outside the boxes are typical recommended connections and components.

1. Parameter Definitions:

$A=$ Distance from top of chip to top of glass.
a = Photodiode Anode.
$B=$ Distance from top of glass to bottom of case.
c = Photodiode Cathode
(Note: cathode is common to case in metal package products unless otherwise noted).
W = Window Diameter.
F.O.V. = Filed of View (see definition below).
2. Dimensions are in inches ($\mathbf{1}$ inch $=\mathbf{2 5 . 4} \mathbf{~ m m}$).
3. Pin diameters are $0.018 \pm 0.00 \mathbf{1}^{\prime \prime}$ unless otherwise specified.
4. Tolerances (unless otherwise noted)

General: $0 . X X \pm 0.01^{\prime \prime}$

$$
0 . X X X \pm 0.005^{\prime \prime}
$$

Chip Centering: $\pm 0.010{ }^{\prime \prime}$
Dimension ' A ': ± 0.015 "

5. Windows

All 'UV' Enhanced products are provided with QUARTZ glass windows, 0.027 ± 0.002 " thick.

All 'XUV' products are provided with removable windows.
All 'DLS' PSD products are provided with A/R coated glass windows.
All 'FIL' photoconductive and photovoltaic products are epoxy filled instead of glass windows.

For Further Assistance
Please Call One of Our Experienced Sales and Applications Engineers

310-978-0516

Mechanical Specifications

All units in inches. Pinouts are bottom view.

Mechanical Specifications

All units in inches. Pinouts are bottom view.

