RF1V Force Guided Relays / SF1V Relay Sockets

Compact and EN compliant RF1V force guided relays.

- Force guided contact mechanism (EN50205 Type A TÜV approved)
- Contact configuration

4-pole (2NO-2NC, 3NO-1NC)
6 -pole ($4 \mathrm{NO}-2 \mathrm{NC}, 5 \mathrm{NO}-1 \mathrm{NC}, 3 \mathrm{NO}-3 \mathrm{NC}$)

- Built-in LED indicator available.
- Fast response time (8 ms maximum).
- High shock resistance ($200 \mathrm{~m} / \mathrm{s}^{2}$ minimum)
-Finger-safe DIN rail mount socket and PC board mount socket.

Applicable Standard	Marking	Certification Organization / File No.
UL508 CSA C22.2 No.14	c US	UL/c-UL File No. E55996
EN50205 EN61810-1	Tuv	TÜV SÜD

Types

- Force Guided Relays

		Rated Coil Voltage	Without LED Indicator	With LED Indicator
		Rated Coil Voltage	Ordering Type No.	Ordering Type No.
		12V DC	RF1V-2A2B-D12	RF1V-2A2BL-D12
	2NO-2NC	24V DC	RF1V-2A2B-D24	RF1V-2A2BL-D24
		48 V DC	RF1V-2A2B-D48	RF1V-2A2BL-D48
4-pole		12 V DC	RF1V-3A1B-D12	RF1V-3A1BL-D12
	3NO-1NC	24V DC	RF1V-3A1B-D24	RF1V-3A1BL-D24
		48 V DC	RF1V-3A1B-D48	RF1V-3A1BL-D48
		12 V DC	RF1V-4A2B-D12	RF1V-4A2BL-D12
	4NO-2NC	24 V DC	RF1V-4A2B-D24	RF1V-4A2BL-D24
		48 V DC	RF1V-4A2B-D48	RF1V-4A2BL-D48
		12 V DC	RF1V-5A1B-D12	RF1V-5A1BL-D12
6-pole	5NO-1NC	24 V DC	RF1V-5A1B-D24	RF1V-5A1BL-D24
		48 V DC	RF1V-5A1B-D48	RF1V-5A1BL-D48
		12V DC	RF1V-3A3B-D12	RF1V-3A3BL-D12
	3NO-3NC	24 V DC	RF1V-3A3B-D24	RF1V-3A3BL-D24
		48 V DC	RF1V-3A3B-D48	RF1V-3A3BL-D48

-Sockets

Types	No. of Poles	Ordering Type No.
DIN Rail Mount Sockets	4	SF1V-4-07L
	6	SF1V-6-07L
PC Board Mount Sockets	4	SF1V-4-61
	6	SF1V-6-61

Certification for Sockets

Applicable Standard	Marking	Certification Organization / File No.
UL508 CSA C22.2 No.14	c US	

Coil Ratings

Contact		Rated Coil Voltage (V)	$\begin{aligned} & \text { Rated Current } \\ & (\mathrm{mA}) \pm 10 \% \\ & \left(\text { at } 20^{\circ} \mathrm{C}\right)(\text { Note } 1) \end{aligned}$	$\begin{gathered} \text { Coil } \\ \text { Resistance }(\Omega) \\ \pm 10 \% \text { (at } 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	Operating Characteristics (at $20^{\circ} \mathrm{C}$)			Power Consumption	
		Pickup Voltage			Dropout Voltage	Maximum Continuous Applied Voltage (Note 2)			
4-pole	2NO-2NC		12V DC	30	400	75\% maximum	10\% minimum	110\%	Approx. 0.36 W
		24V DC	15	1600					
		48 V DC	7.5	6400					
	3NO-1NC	12V DC	30	400					
		24V DC	15	1600					
		48 V DC	7.5	6400					
6-pole	4NO-2NC	12V DC	41.7	288	Approx. 0.5W				
		24 V DC	20.8	1152					
		48 V DC	10.4	4608					
	5NO-1NC	12V DC	41.7	288					
		24V DC	20.8	1152					
		48 V DC	10.4	4608					
	3NO-3NC	12 V DC	41.7	288					
		24V DC	20.8	1152					
		48 V DC	10.4	4608					

[^0]Relay Specifications

Number of Poles		4-pole		6-pole		
Contact Configuration		2NO-2NC	3NO-1NC	4NO-2NC	5NO-1NC	3NO-3NC
Contact Resistance (initial value) (Note 1)		$100 \mathrm{~m} \Omega$ maximum				
Contact Material		AgSnO_{2} (Au flashed)				
Rated Load (resistive load)		6 A 250 V AC, 6A 30V DC				
Allowable Switching Power (resistive load)		1500 VA, 180 W				
Allowable Switching Voltage		250 V AC, 30V DC				
Allowable Switching Current		6A				
Minimum Applicable Load (Note 2)		5 V DC, 1 mA (reference value)				
Power Consumption (approx.)		0.36W		0.5W		
Insulation Resistance		$1000 \mathrm{M} \Omega$ minimum (500V DC megger, same measurement positions as the dielectric strength)				
Dielectric Strength	Between contact and coil	4000 V AC, 1 minute				
	Between contacts of different poles	2500V AC, 1 minute Between contacts 7-8 and 9-10		2500V AC, 1 minute Between contacts 7-8 and 11-12 Between contacts 9-10 and 13-14 Between contacts 11-12 and 13-14		
		4000 V AC, 1 min . Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10		4000 V AC, 1 min . Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10 Between contacts 7-8 and 9-10		
	Between contacts of the same pole	1500 V AC, 1 minute				
Operate Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Response Time (at $20^{\circ} \mathrm{C}$) (Note 3)		8 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Release Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.75 mm				
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm				
Shock Resistance	Operating Extremes (half sine-wave pulse: 11 ms)	$200 \mathrm{~m} / \mathrm{s}^{2}$, when mounted on DIN rail mount socket: $150 \mathrm{~m} / \mathrm{s}^{2}$				
	Damage Limits (half sine-wave pulse: 6 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$				
Electrical Life		250V AC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) 30V DC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) 250V AC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) 30V DC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) [AC 15] 240V AC 2A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, $\cos \varnothing=0.3$) [DC 13] 24V DC 1A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, L/R = 48 ms)				
Mechanical Life		10 million operations minimum (operating frequency 10,800 operations per hour)				
Operating Temperature (Note 4)		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Operating Humidity		5 to 85\%RH (no condensation)				
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$				
Operating Frequency (rated load)		1200 operations per hour				
Weight (approx.)		20 g		23g		

Note 1: Measured using 6V DC, 1 A voltage drop method.
Note 2: Failure rate level P (reference value)
Note 3: Response time is the time until NO contact opens, after the coil voltage is turned off.
Note 4: When using at 70 to $85^{\circ} \mathrm{C}$, reduce the switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Socket Specifications

Type	SF1V-4-07L	SF1V-6-07L	SF1V-4-61	SF1V-6-61
Rated Current	6A			
Rated Voltage	250V AC/DC			
Insulation Resistance	$1000 \mathrm{M} \Omega$ minimum (500V DC megger, between terminals)			
Dielectric Strength	2500 V AC, 1 minute (between terminals)			
Screw Terminal Style	M3 slotted Phillips screw		-	
Applicable Wire	$\begin{aligned} & 0.7 \text { to } 1.65 \mathrm{~mm}^{2} \\ & \text { (} 18 \mathrm{AWG} \text { to } 14 \text { AWG) } \\ & \hline \end{aligned}$		-	
Recommended Screw Tightening Torque	0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$		-	
Terminal Strength	Wire tensile strength: 50 N min.		-	
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.75 mm Resonance: 10 to 55 Hz , amplitude 0.75 mm			
Shock Resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$			
Operating Temperature (Note)	-40 to $+85^{\circ} \mathrm{C}$ (no freezing)			
Operating Humidity	5 to 85\% RH (no condensation)			
Storage Humidity	-40 to $+85^{\circ} \mathrm{C}$			
Degree of Protection	$\begin{aligned} & \text { IP20 } \\ & \text { (finger-safe screw terminals) } \end{aligned}$		-	
Weight (approx.)	40 g	55 g	9 g	10 g

Note: When using at 70 to $85^{\circ} \mathrm{C}$, reduce the switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Applicable Crimping Terminals

Note: Ring tongue terminals cannot be used.

Accessories

Item	Appearance	Specifications	Type No.	Ordering Type No.	Package Quantity	Remarks
DIN Rail		Aluminum Weight: Approx. 200g	BAA1000	BAA1000PN10	10	Length: 1 m Width: 35 mm
		Steel Weight: Approx. 320g	BAP1000	BAP1000PN10	10	
		Aluminum Weight: Approx. 250g	BNDN1000	BNDN1000	1	North American standard product Length: 1 m Width: 35 mm
End Clip		Metal (zinc plated steel) Weight: Approx. 15g	BNL5	BNL5PN10	10	-
			BNL6	BNL6PN10	10	

Characteristics

- Maximum Switching Capacity •Electrical Life Curve

Notes on Contact Gaps except Welded Contacts
Example: RF1V-2A2B-D24

- If the NO contact (7-8 or 9-10) welds, the NC contact (3-4 or $5-6)$ remains open even when the relay coil is de-energized, maintaining a gap of 0.5 mm . The remaining unwelded NO contact (9-10 or 7-8) is either open or closed.
- If the NC contact (3-4 or 5-6) welds, the NO contact (7-8 or $9-10)$ remains open even when the relay coil is energized, maintaining a gap of 0.5 mm . The remaining unwelded NC contact (5-6 or 3-4) is either open or closed.
-RF1V (6-pole)

PC Board Terminal Type Mounting Hole Layout (Bottom View)

Internal Connection (Bottom View)
-RF1V (4-pole)
Without LED Indicator

With LED Indicator

2NO-2NC Contact

-RF1V (6-pole)
Without LED Indicator

With LED Indicator

SF1V DIN Rail Mount Socket Dimensions

-SF1V-4-07L (4-pole)

(Top View)

(Panel Mounting Hole Layout)

SF1V PC Board Mount Sockets

-SF1V-4-61 (4-pole)

- PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)

-SF1V-6-07L (6-pole)
(Internal Connection)

(Panel Mounting Hole Layout)

(Top View)

-SF1V-6-61 (6-pole)

- PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)
3-ø3.2 holes for M3 self-tapping screws

[^0]: Note 1: For relays with LED indicator, the rated current increases by approx. 2 mA .
 Note 2: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.

