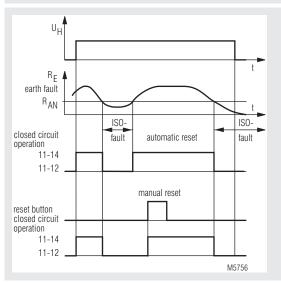
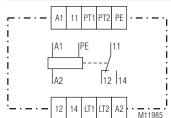
Monitoring Technique


VARIMETER Insulation Monitor AI 897



- According to IEC/EN 61 557-8
- For single- and 3-phase AC-voltage systems
- Adjustable response value $\rm R_{AN}$ from 10 ... 80 $\rm k\Omega$
- · Without auxiliary supply
- Closed circuit operation
- Programmable for:
 - Manual reset (bridge LT1-LT2)
- Automatic reset (without bridge)
- External reset button on LT1-LT2
- Test button to check the function of the device
- External test button can be connected to PT1-PT2
- 1 changeover contact
- Width 45 mm

Function Diagram

Circuit Diagram

Connection Terminals

Terminal designation	Signal description
A1, A2	AC auxiliary voltage and connection measuring circuit
PE	Connection for protective conductor
PT1, PT2	Connection for protective conductor
LT1, LT2	Connections for external reset or manual and auto reset: LT1/LT2 bridged: manual reset LT1/LT2 not bridged: hysteresis function
11, 12, 14	Alarm signal relay (1 changeover contact)

Approvals and Markings

AC

Applications

Monitoring of the resistance to earth in ungrounded single- and 3-phase-voltage systems.

Notes

When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3-phases have a low resistive connection (approx. 3 - $5\;\Omega)$ via the feeding transformer. So failures that occure in the non-connected phases will also be detected.

In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.

Technical Data

Measuring Circuit

Nominal voltage U_N: AC 24, 42, 110, 127, 230, 400, 415,

Setting R_{an}: infinite variable with screwdriver Internal test resistor: equivalent to earth resistance

 $\begin{array}{c} & \text{ of } < 10 \text{ k}\Omega \\ \text{Internal AC resistance:} & > 200 \text{ k}\Omega \\ \text{Internal DC resistance:} & > 200 \text{ k}\Omega \\ \text{Measuring voltage:} & \text{DC } 18 \text{ V} \\ \text{Max. measuring current} \end{array}$

(RE = 0): < 0.1 mA
Max. permissible noise
DC voltage: DC 242 V

Operate delay at $R_{AN} = 50 \text{ k}\Omega$, $CE = 1 \mu\text{F}$

 $\begin{array}{lll} R_{\rm h} & & & & & & \\ R_{\rm e} & & & & & & \\ Form & \infty & \text{to } 0.9 \ R_{\rm ah}. & & & & \\ R_{\rm e} & & & & & & \\ Form & \infty & \text{to } 0.0 \ k\Omega: & & & & \\ \text{Hysteresis} & & & & & \\ \text{at } & & & & & \\ \text{at } & & & & & \\ R_{\rm AN} & = 50 \ k\Omega: & & & & \\ & & & & & & \\ \end{array} \qquad \qquad \begin{array}{ll} < 4.2 \ s \\ \text{approx. 2 s} \\ \text{approx. 2 s} \\ \text{approx. 50 \%} \end{array}$

Response inaccuracy at $R_{AN} = 50 \text{ k}\Omega$:

 $_{\text{AN}}$ = 50 k Ω : \pm 15 %

ambient temperature - 5 ... 50 °C, within the permitted voltage range

Nominal consumption: approx. 2.5 VA
Phase failure bridging: > 25 ms

IEC 61557-8

Technical Data

Output

Contacts: 1 changeover contact

Max. switching voltage: AC 400 V Thermal current I ::

Switching capacity

to AC 15

NO contact: 10 A / AC 230 V IEC/EN 60 947-5-1 NC contact: 5 A / AC 230 V IEC/EN 60 947-5-1 to DC 13: 1 A / DC 24 V IEC/EN 60 947-5-1

Electrical life

at 10 A, AC 250 V: \geq 3 x 10⁵ switch. cycl. IEC/EN 60 947-5-1 Short circuit strength

max. fuse rating: 5 A gG/gL IEC/EN 60 947-5-1 Mechanical life: ≥ 30 x 10⁶ switching cycles

General Data

Operating mode: Continuous operation

Temperature range

Operation: - 20 ... + 60 °C - 25 ... + 70 °C Storage: Altitude: < 2,000 m

Clearance and creepage

distances

rated impulse voltage / 4 kV / 2 pollution degree: IEC 60 664-1 Insulation test voltage

Routine test: AC 2.5 kV; 1 s

EMC

Electrostatic discharge: IEC/EN 61 000-4-2 8 kV (air)

HF irradiation

80 MHz ... 1 GHz: 10 V / m IEC/EN 61 000-4-3 IEC/EN 61 000-4-3 1 GHz ... 2.5 GHz: 10 V / m 10 V / m 2.5 GHz ... 2.7 GHz: IEC/EN 61 000-4-3 Fast transients: 2 kV IEC/EN 61 000-4-4

Surge voltages

between

wires for power supply: 2 kV IEC/EN 61 000-4-5 between wire and ground: 4 kV IEC/EN 61 000-4-5 HF wire guided: 10 V IEC/EN 61 000-4-6

Interference suppression: Degree of protection

IP 40 Housing: IEC/EN 60 529 IP 20 Terminals: IEC/EN 60 529 Thermoplastic with V0 behaviour Housing:

according to UL subject 94

Limit value class B

Vibration resistance: Amplitude 0.35 mm

frequency 10...55Hz IEC/EN 60 068-2-6 Climate resistance: 20 / 060 / 04 IEC/EN 60 068-1

Terminal designation: EN 50 005

Wire connection: DIN 46 228-1/-2/-3/-4 2 x 2.5 mm² solid or Cross section: 2 x 1.5 mm² stranded wire Stripping length: 10 mm

Wire fixing: Flat terminals with self-lifting IEC/EN 60 999-1

clamping piece Fixing torque: 0.8 Nm

Mounting: DIN rail IEC/EN 60 715

220 g Weight:

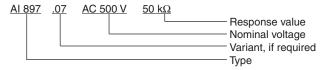
Dimensions

Width x height x depth: 45 x 77 x 115 mm

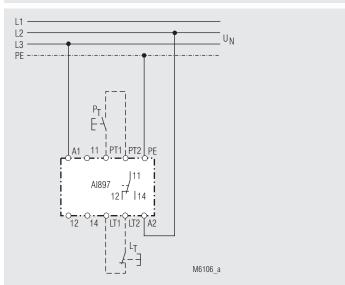
Standard Type

AI 897 AC 230 V

Article number: 0001037 Nominal voltage U_N: AC 230 V Settable response value R_{AN}: $10 \dots 80 \text{ k}\Omega$ Width: 45 mm


Variant

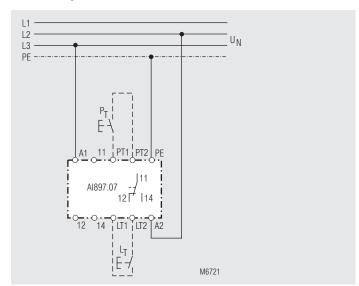
AI 897.07: fixed response value between 10 and


80 k Ω , with internal test and reset button,

LED indicator for earth fault

Ordering example for variant

Connection Examples


Connection Example AI 897

A1/A2: $U_N = U_H$

EN 55 011

Bridge LT1/LT2: manual reset

Without Bridge LT1/LT2: automatic reset

Connection Example AI 897.07

 $A1/A2: U_{N} = U_{H}$

Bridge LT1/LT2: automatic reset Without Bridge LT1/LT2: manual reset