FSA515

5 V SPST Depletion Switch with Negative Swing

Description

The FSA515 is a high-performance single-pole single-throw (SPST) depletion switch. The depletion technology allows the device to conduct signals when there is no V_{DD} is available and to isolate signals when V_{DD} is present. The FSA515 is 5.5 V tolerant and can pass or isolate negative signal swings down to -3.0 V .

Features

- SPST Depletion Switch
- Normally Closed when $\mathrm{V}_{\mathrm{DD}}<0.5 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{SW}}:-3.0 \mathrm{~V}$ to +5.5 V
- $\mathrm{R}_{\mathrm{ON}}: 0.7 \Omega$ (Typical)
- R FLAT: $1.1 \mathrm{~m} \Omega$ (Typical)

Typical Applications

- Mobile Accessories, Adapters, and Cables
- Phones, Tablets, and Laptops
- Headsets

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

WLCSP4
CASE 567VT

MARKING DIAGRAM

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping †
FSA515UCX	WLCSP4 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN FUNCTION DESCRIPTION

Pin No. (WLCSP4)	Pin Name	
A1	GND	Ground
A2	1A	A-Port of Switch 1 (Normally Closed)
B1	VDD	Supply Voltage (Switch is closed when Low)
B2	1B	B-Port of Switch 1 (Normally Closed)

Table 2. SWITCH TRUTH TABLE

VDD	Switch State
Low	ON (Conducting)
High	OFF (Isolating)

Table 3. RECOMMENDED EXTERNAL COMPONENT

Component	Description	Vendor	Parameter	Min	Typ	Unit
$\mathrm{C}_{\text {BYP }}$	0402, 1 nF, 10\%, $6.3 \mathrm{~V}, \mathrm{X7R}$	Kemet C0402C102K9RACTU	C	0.65	1	nF
	0201, 1 nF, 10\%, $6.3 \mathrm{~V}, \mathrm{X7R}$	AVX 02016C102KAT2A				

Table 4. MAXIMUM RATINGS

Rating			Symbol	Value	Unit
Supply Voltage			$V_{D D}$	-0.5 to 6.0	V
Switch Voltage Range	DC Switch I/O Voltage (Switch Conducting)		$\mathrm{V}_{\text {SW(ON) }}$	-3.6 (AC) to 6.0	V
	DC Switch I/O Voltage (Switch Isolated)		$\mathrm{V}_{\text {SW(OFF }}$	-3.6 (AC) to 6.0	V
Maximum DC Switch I/O Current			Isw	350	mA
Maximum Peak Switch I/O Current -Pulsed at 1 ms duration, $<10 \%$ duty cycle			ISWPEAK	500	mA
Maximum Junction Temperature			$\mathrm{T}_{\mathrm{J} \text { (max) }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$
ESD Capability (Note 2)	Human Body Model		ESDHBM	4	kV
	Charged Device Model		ESDCDM	2	kV
	IEC 61000-4-2 System	Contact	ESDIEC	8	kV
		Air Gap		15	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per ANSI,ESDA,JEDEC JS-001-2012
ESD Charged Device Model tested per According to "EIA/JESD22-C101 Level III" Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78

Table 5. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WLCSP4 Thermal Resistance, Junction-to-Air (Note 3)	$R_{\text {®JA }}$	77.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3. JEDEC Standard, Still Air, 4-layer board with vias

Table 6. RECOMMENDED OPERATING RANGES

Rating		Symbol	Min	Max	Unit
Supply Voltage	Isolating	$\mathrm{V}_{\text {DD (}}$ (OFF)	2.5	5.5	V
	Conducting	$\mathrm{V}_{\mathrm{DD} \text { (} \mathrm{ON} \text {) }}$	0	0.5	V
Switch Voltage Range	Isolating	$\mathrm{V}_{\text {SW(OFF }}$	-3.0 (Vpk; AC)	4.7	V
	Isolating (requires $1 \mathrm{k} \Omega$ (typ) in series with source)		4.7	5.5	
	Conducting	$\mathrm{V}_{\text {SW(ON) }}$	-3.0 (Vpk; AC)	4.7	V
	Isolating (requires $1 \mathrm{k} \Omega$ (typ) in series with source)		4.7	5.5	
Ambient Temperature		T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 7. ELECTRICAL CHARACTERISTICS Unless otherwise specified, typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit

SWITCH DC CHARACTERISTICS

Switch Off Leakage Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & 1 \mathrm{~B}=\mathrm{GND} \end{aligned}$	$1 \mathrm{~A}=5.5 \mathrm{~V}$	lofF	0.01		$\mu \mathrm{A}$
		$1 \mathrm{~A}=-1.5 \mathrm{~V}$		-0.65		
	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ 1 \mathrm{~B}=\mathrm{GND} \end{gathered}$	$1 \mathrm{~A}=1.4 \mathrm{~V}$ (Note 5)		0.01	1.5	
Switch On Resistance	$\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=-1.5 \mathrm{~V}$ to +1.5 V		RON	0.7	1.1	Ω
	$\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V}$ to +5.5 V			0.7	1.1	
On Resistance Flatness	$\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=-1.5 \mathrm{~V}$ to +1.5 V		$\mathrm{R}_{\text {FLAt(ON) }}$	1.1		$\mathrm{m} \Omega$
	$\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V}$ to +5.5 V			1.1		

SWITCH AC CHARACTERISTICS

Total Harmonic Distortion Plus Noise	$\begin{gathered} \mathrm{V}_{\mathrm{SW}}=1 \mathrm{~V}_{\text {RMS }}, \text { Ground Centered } \\ R_{L}=32 \Omega, f=1 \mathrm{kHz} \end{gathered}$		THD+N	-93	dB
Off Isolation Rejection Ratio	$\mathrm{V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$, Ground Centered $R_{L}=32 \Omega$	$\mathrm{f}=1 \mathrm{kHz}$	OIRR	-116	dB
		$\mathrm{f}=20 \mathrm{kHz}$		-97	
Bandwidth	$\begin{gathered} \mathrm{V}_{\mathrm{SW}}=200 \mathrm{mV}_{\mathrm{PP},} \text { Ground Centered } \\ \mathrm{R}_{\mathrm{L}}=50 \Omega \end{gathered}$		BW	367	MHz

SUPPLY CURRENTS

Peak Startup Supply Current	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ to 5.5 V	$\mathrm{I}_{\mathrm{DDT}}$		3.0		mA
Quiescent Current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	I_{DD}	-	30		$\mu \mathrm{~A}$
Disable Current	$\mathrm{V}_{\mathrm{DD}} \leq 0.2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DIS}}$		0.05	0.50	$\mu \mathrm{~A}$

CONTROL LOGIC

V_{DD} Pull-Down Resistance	$\mathrm{V}_{\mathrm{DD}} \leq 0.2 \mathrm{~V}$	R_{PD}		5.8		$\mathrm{M} \Omega$
V_{DD} High Voltage		$\mathrm{V}_{\mathrm{DDH}}$	2.5			V
$\mathrm{~V}_{\mathrm{DD}}$ Low Voltage		$\mathrm{V}_{\mathrm{DDL}}$			0.5	V

TIMING

Switch Turn-off Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=0.0 \mathrm{~V}$ to 3.0 V $\mathrm{~V}_{\mathrm{SW}}=5.0 \mathrm{~V}$, Figure 1	tofF		85		$\mu \mathrm{~s}$
Switch Turn-on Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $\mathrm{Hi}-\mathrm{Z}$, $\mathrm{C}_{\mathrm{BYP}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{SW}}=5.0 \mathrm{~V}$, Figure 1	t_{ON}		250		$\mu \mathrm{~s}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $T_{J}=T_{A}=25^{\circ} \mathrm{C}$.
5. Maximum is guaranteed at $25^{\circ} \mathrm{C}$.
6. For reference only - guaranteed by design.

Table 7. ELECTRICAL CHARACTERISTICS Unless otherwise specified, typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$

| Parameter | Test Conditions | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CAPACITANCE	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	C_{ON}		14	
On Capacitance	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\mathrm{C}_{\mathrm{OFF}}$		17	
Off Capacitance	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ with $400 \mathrm{mV} \mathrm{PP}_{\mathrm{PP},} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{VDD}}$		17	pF
Supply Capacitance					

OSCILLATOR FREQUENCY

On-Chip Oscillator Frequency (Note 6)	For reference only	fosc		110		kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
5. Maximum is guaranteed at $25^{\circ} \mathrm{C}$.
6. For reference only - guaranteed by design.

Timing Diagram

Figure 1. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}} \mathrm{V}_{\mathrm{CC}}$ to Output Timing

FSA515

PACKAGE DIMENSIONS

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative

