AlphaMINI MIN100/120
Single and Dual Level Trip Amplifiers

Lee-Dickens Ltd

GENERAL
The MIN100 and MIN120 are 24 or 12 Volt DC or AC powered Trip Amplifiers. The MIN100 being a single level trip amplifier and the MIN120 a dual level trip amplifier.

TRIP ACTION
Trip amplifiers are supplied with relays that operate in a specified manner with regard to the analogue input signal. The terminology used, such as HIGH and LOW trip and FAILSAFE and NON-FAILSAFE operation, refer to the set-up for the relay.

HIGH and LOW TRIP refer to the section of the analogue input signal which represents the alarm condition. HIGH TRIP means that the alarm condition is above the set-point and LOW TRIP means that the alarm condition is below the set-point.

FAILSAFE OPERATION means that the relays are normally energised and will de-energise in the alarm condition, i.e. the relays FAIL to the alarm condition in the event of a power failure. Furthermore, if the input signal is a 4 to 20mA current loop, the Trip Amplifier will Fail Safe on Open Circuit / Loss of Input signal.

NONFAILSAFE OPERATION means that the relays are normally de-energised and will energise in the alarm condition.

In all cases, the state of each relay is indicated by a bi-colour RED/GREEN LED, which is visible through the fascia of the instrument.

RED = ALARM Condition and GREEN = NORMAL or SAFE Condition

The instruments, unless otherwise stated on the customer order, are factory set to:

MIN100 – HIGH NONFAILSAFE MIN120 – HIGHLOWFAILSAFE

These trip settings can be changed by relocating soldered links on the jumper pads located on the printed circuit board (pcb) within the instrument as shown later in this document.

WARNING – MAKE SURE THAT THE POWER SUPPLY IS SWITCHED OFF BEFORE EXTRACTING THE PCB FROM THE OUTER CASING.

In order to extract the pcb from the outer casing first remove the front panel (place a small screw-driver under the top or bottom lip of the front panel and lever out). The terminal blocks are secured by two lugs, which fit into recesses in the outer casing. To remove the pcb gently ease the sides of the outer casing away from the terminal blocks and pull the terminal blocks forward.
INSTALLATION
The AlphaMINI range of instruments is housed in an enclosure with mouldings for mounting the instruments onto a Top Hat DIN rail. The instrument simply clips onto the rail by placing the lower edge of the moulding under the lower edge of the DIN rail and leveraging upwards. The instrument may be removed just as simply by placing a small screw-driver into the slot on the top of the instrument and leveraging downwards.

Care should be taken when wiring the instrument to apply the correct supply voltage. Further care should also be taken to ensure that any other components already located in the terminals are not damaged or misplaced.

CALIBRATION
Each instrument is supplied factory calibrated and no further adjustment should be necessary. If it does become necessary to trim the calibration then please carry out the following procedure:

Refer to next page for location of Span and Zero Potentiometers.

First you will need the remove the instrument from its casing as detailed above.

1) Apply the specified power supply and inject an input signal equal to 0% of span.
2) Rotate RV3 (the Upper Set-point Potentiometer) fully anti-clockwise
3) Use RV1 (the Zero Potentiometer) to set the point where LE1 just turns Red
4) Set the input to 100% of span
5) Rotate RV3 fully clockwise
6) Use RV2 (the Span Potentiometer) to set the point where LE1 just turns Red
7) Repeat operations 1 to 6 until both points are as close as possible
8) Set the input to 50% of span
9) Check that LE1 changes to red when RV3 is at the 50% point

For MIN120s only

10) Rotate RV4 (the Lower Set-point Potentiometer) fully anti-clockwise
11) Check that LE2 changes to Red at an input signal of 0% of input span ±1%
12) Rotate RV4 fully clockwise
13) Check that LE2 changes to Red at an input signal of 100% of input span ±1%
14) Set the input to 50% of the input span
15) Check that LE2 changes to Red when RV4 is at the 50% point.

Having reset the potentiometers, we recommend that the pots are sealed using liquid paper.

Finally replace the instrument in its casing and re-insert the fascia window.
AlphaMINI MIN100/120
Single and Dual Level Trip Amplifiers

Position of LEDs and
Potentiometers RV3 and RV4

MIN120 Component Side Layout
(MIN100 is a sub-set of the MIN120)

MIN 100/120 Trip Action Link Pads

For MIN100s and
the top trip on the MIN120s

Trip Action	Link Pads
High Non-Fail Safe or Low Fail Safe | Link Pad P6 to P7
High Fail Safe or Low Non-Fail Safe | Link Pad P5 to P6

LED LE1 Orientation (See Diagram Above)
High Trip | Pin 1 Long or Square
Low Trip | Pin 1 Short or Curved

For MIN120 lower trip

Trip Action	Link Pads
High Non-Fail Safe or Low Fail Safe | Link Pad P1 to P3
High Fail Safe or Low Non-Fail Safe | Link Pad P1 to P2

LED LE2 Orientation (See Diagram Above)
High Trip | Pin 1 Long or Square
Low Trip | Pin 1 Short or Curved

Lee-Dickens Ltd, Rushton Road, Desborough, Kettering, Northants, NN14 2QW, U.K.
Telephone: +44-(0)1536-760156 Telefax: +44-(0)1536-762552
email: sales@lee-dickens.co.uk

3 of 4
SPECIFICATIONS

Please note that the following are typical standard ranges. We will manufacture instruments to cater for other ranges too, within certain limitations.

INPUTS:

- **D C Current**
 - 0-1mA into 100 ohms
 - 0-10mA into 10 ohms
 - 4-20mA into 10 ohms
 - 10-50mA into 10 ohms
 - Other current inputs as required.

 Minimum current 10mA
 Maximum current 100mA

- **D C Voltage**
 Between -250 to +250 Volt DC
 Minimum voltage span 5mV
 Maximum voltage span 500V

- **Input Impedance**
 1M ohms or greater

- **Resistance (2 wire)**
 Between 0 and 20K ohms
 Minimum span 5 ohms
 Maximum span 20K ohms

- **Potentiometers (3 wire)**
 Type B, E, J, K, N, R, S & T
 Temperatures covered:
 - Type Range Min Temp Change
 - B 600 to 1800°C 400°C
 - E -260 to 1000°C 65°C
 - J -200 to 1200°C 80°C
 - K -260 to 1370°C 100°C
 - N 0 to 1300°C 150°C
 - R 50 to 1760°C 400°C
 - S 80 to 1760°C 400°C
 - T -260 to 400°C 100°C

- **Resistance Thermometers**
 Automatic cold junction compensation
 Open circuit thermocouple monitoring upscale or downscales drive

- **Thermocouples**
 Type B, E, J, K, N, R, S & T
 Temperatures covered:
 - Type Range Min Temp Change
 - B 600 to 1800°C 400°C
 - E -260 to 1000°C 65°C
 - J -200 to 1200°C 80°C
 - K -260 to 1370°C 100°C
 - N 0 to 1300°C 150°C
 - R 50 to 1760°C 400°C
 - S 80 to 1760°C 400°C
 - T -260 to 400°C 100°C

- **Resistance Thermometer**
 2 or 3 wire, 100 ohms at 0°C or 130 ohms at 0°C
 Minimum temperature span 10°C
 Maximum temperature span 600°C
 Input is linearised

- **Input is linearised**

OUTPUTS:

- **Relay - Contacts**
 - MIN100 - One SPCO contact
 - MIN120 - One SPCO relay contact per level

 Contact Ratings
 - Maximum current 2A
 - Maximum voltage 250V
 - Maximum load 60W 500VA

 Switching Differential
 - 0.5% of span approx

 Switching Mode
 - Relay energises or de-energises on rising or falling signal as required

 Set Point
 - 270° screw driver operated potentiometer through front panel

 Relay State Indication
 - Bi-colour red/green LED
 - Green = Stable State
 - Red = Alarm State

SUPPLY:

- **Power Supplies**
 - 18 to 30 Volt AC or DC, or
 - 10 to 15 Volt AC or DC
 - with inverter to maintain signal to power supply isolation

- **Power Required**
 - 1.5 Watts Maximum

GENERAL:

- **Temperature Coefficient**
 ±0.1% of span/_ 10°C
 + Cold junction error, for thermocouple inputs

 Operating Temperature Range
 0 to +45°C

 Storage Temperature Range
 -20 to +60°C

 Operating Humidity Range
 0 to 95% RH non-condensing

 Storage Humidity Range
 0 to 95% RH non-condensing

Weights

- MIN100 115 gms
- MIN120 120 gms

MECHANICAL DETAILS

TERMINAL DETAILS

ORDERING DETAILS

- **a)** Give identification code, i.e. MIN120
- **b)** Give power supply voltage, i.e. 24 Volt DC
- **c)** Give details of input signal, i.e. Chromel/Alumel thermocouple, span 0 to 250°C. (If thermocouple input please specify upscale or downscales burnout drive)
- **d)** Give details of trip action required, i.e.

 For MIN100
 - HNF = High Non Fail Safe
 - HFS = High Fail Safe
 - LNF = Low Fail Safe
 - LFS = Low Non Fail Safe

 For MIN120
 - HHNF = High High Non Fail Safe
 - HLNF = High Low Non Fail Safe
 - HHFS = High High Fail Safe
 - HLFS = High Low Fail Safe
 - LLNF = Low Low Non Fail Safe
 - LLFS = Low Low Fail Safe

 H = High Trip = Alarm condition above the set point
 L = Low Trip = Alarm condition below the set point
 FS = Fail Safe = Relay normally energised to de-energise in the alarm condition
 NF = Non Fail Safe = Relay normally de-energised to energise in the alarm condition