Photoresistor Sensor (000x0000 Article Number) (TS2134)

Product Details

This is the TelePort photoresistor sensor. Its working principle is that photo-sensitive elements convert light signals into electricity signals. The photo-sensitive element varies with the brightness of light. When the light brightness is stronger, the resistance will reduce; on the contrast, when the light is weaker the resistance will rise.

Features and Benefits

- Compatible with RJ11 6P6C OKdo TelePort Control boards and expansion shields.
- Easy to use, high sensitivity, fast response, and wide spectral response makes this the ideal sensor to build a photosensitive, intelligent switch design.

Technical Specifications

Sensor type	Analog input
Working voltage	3.3V-5V
Dimensions	38mm*20mm*18mm
Weight	4.3g
Sensor type	Analog input

Applications

- Light-controlled lamps
- Light-controlled toys
- Light-controlled switches
- Light-controlled music box
- Solar lawn lights

This module is compatible with the TS2180-Raspberry Pi shield, the TS2179-Micro:bit shield and the TS2178-TelePort main board.

> Arduino Application

This module is compatible with the TS2178 TelePort control board.

Test Code

```
int sensorPin =A0; //define sensor pin A0
int value = 0; //define the initial value of the variable value is 0
void setup()
{
    Serial.begin(9600);
}
void loop()
{
    value = analogRead(sensorPin); //read the sensor simulation value
    Serial.println(value, DEC); //Serial port print analog value
    delay(50); //delay 50 ms
}
```

Test Result

Wire up, upload test code, power it up, open serial monitor and set baud rate to 9600. The stronger the light intensity, the larger the analog value; on the contrary, the weaker the light intensity, the smaller the analog value. As shown below;

If you want to know more details about Arduino and the TelePort control board, you can refer to TS2178.

Micro:bit Application

It is compatible with the Micro:bit board and the TS2179 Micro:bit expansion board.

Test Code

Test Result

Wire up, insert the Micro:bit V2.0 into the shield, turn DIP switch to 3V3, upload test code and power it up. Then Micro:bit will show the analog values detected by the photoresistor.

If you want to know more details about the Micro:bit board and Micro:bit shield, you can refer to TS2179.

Raspberry Pi Application

This module is compatible with the Raspberry Pi board and the TS2180 Raspberry Pi shield.

PCF8591 A/D Conversion:

The Raspberry Pi itself does not have AD/DA function; therefore an expansion board with this function is required when connected to external analog sensors. And here we use a PCF8591 A/D converter with I2C communication.

Enable the I2C communication function of the Raspberry Pi as follows:

a. Raspberry Pi does not enable the I2C function by default. Enter sudo raspi-config in the terminal to enter the Raspberry Pi configuration interface.

pi@raspberrypi:~/python \$ sudo raspi-config

Follow the below instructions to enable the I2C function of Raspberry Pi:(press \leftarrow , \uparrow , \downarrow , \rightarrow then "Enter")

Check the address of the I2C module (PCF8591) connected to the Raspberry Pi, enter the command I2Cdetect -y 1, and then press Enter.

From the below picture, the I2C address of PCF8591 is 0x48.

Copy the test code to Raspberry Pi system to run it

(1) Save the test code in the **pi** folder of Raspberry Pi system. Then place the **Photosensor.zip** file we provide in the **pi** folder, right-click and click **Extract Here.** As shown below:

(2) Compile and run test code:

Input the following code and press"Enter"

cd /home/pi/Photosensor gcc Photosensor.c -o Photosensor-lwiringPi sudo ./Photosensor

(3) Test Result:

Insert the shield into the Raspberry Pi board. After programming finishes, the terminal will display the detected signals by the photoresistor.

Note: press Ctrl + C to exit code running

Test Code

File name: Photosensor.c

```
#include <wiringPi.h>
#include <pcf8591.h> //pcf8591 library
#include <stdio.h>
#define Address 0x48 //I2Caddress
#define BASE 64 //DAC write address
#define A0 BASE+0 //A0 analogRead address
#define A1 BASE+1 //A1 analogRead address
#define A2 BASE+2
#define A3 BASE+3
int main(void)
{
  unsigned char value;
  wiringPiSetup();
  pcf8591Setup(BASE,Address); //Initialize the pcf8591
  while(1)
    value=analogRead(A2); //Read the analog value of pin A2
    printf("A2:%d\n",value); //The terminal prints the simulated value
    delay(100);
  }
}
```

If you want to know how to utilize Raspberry Pi and the Raspberry Pi shield, you can refer to TS2180.