

Functional Description

The 'ACQ/'ACTQ573 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are enabled. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Outputs
$\overline{\mathbf{O E}}$	LE	\mathbf{D}	$\mathbf{O}_{\boldsymbol{n}}$
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

H = HIGH Voltage
L = LOW Voltage
Z = High Impedance
X = Immaterial
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Logic Diagram

TL/F/10633-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Rating (Note 1)	Recommended Operating
If Military/Aerospace specified devices are required,	Conditions
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	Supply Voltage (V_{CC}) 'ACQ 2.0 V to 6.0 V
Supply Voltage (V_{CC}) $\quad-0.5 \mathrm{~V}$ to +7.0 V	'ACTQ 4.5 V to 5.5 V
DC Input Diode Current ($\mathrm{I}_{1 \mathrm{~K}}$)	Input Voltage (V_{l}) $\mathrm{OV}^{\text {to } \mathrm{V}_{\mathrm{CC}}}$
$\begin{array}{ll}V_{1}=-0.5 \mathrm{~V} & \\ V_{1}=V_{C c}+0.5 \mathrm{~V} & -20 \mathrm{~mA} \\ \end{array}$	Output Voltage (V_{O}) 0 V to V_{CC}
$\begin{array}{lr}\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} & +20 \mathrm{~mA} \\ \mathrm{DC} \text { Input Voltage }\left(\mathrm{V}_{\mathrm{l}}\right) & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\text {cc }}+0.5 \mathrm{~V}\end{array}$	Operating Temperature (T_{A})
DC Input Voltage (V_{1}) $\quad-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	74ACQ/ACTQ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Diode Current (lok)	54ACQ/ACTQ $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\begin{array}{ll}\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} & -20 \mathrm{~mA}\end{array}$	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	'ACQ Devices
DC Output Voltage (V_{O}) $\quad-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
DC Output Source	V_{CC} @ 3.0V, $4.5 \mathrm{~V}, 5.5 \mathrm{~V} \quad 125 \mathrm{mV} / \mathrm{ns}$
or Sink Current (l) $\pm 50 \mathrm{~mA}$	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
DC V $\mathrm{CC}^{\text {or Ground Current }}$	'ACTQ Devices
per Output Pin (ICC or $\mathrm{I}_{\mathrm{GND}}$) $\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
Storage Temperature (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CC }}$ @ 4.5V, 5.5 V
DC Latchup Source or Sink Current $\pm 300 \mathrm{~mA}$	Note: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Junction Temperature (J_{J})	
CDIP $175^{\circ} \mathrm{C}$	
PDIP $140^{\circ} \mathrm{C}$	
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.	

DC Characteristics for 'ACQ Family Devices

Symbol	Parameter	V_{Cc} (V)			54ACQ	74ACQ	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{A}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 2.99 \\ 4.49 \\ 5.49 \\ \hline \end{array}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} { }^{*} \mathrm{~V}_{\mathrm{IN}}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & -12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} \quad & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$
VOL	Maximum Low Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	I OUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{gathered} { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \\ \\ \hline \mathrm{I} \mathrm{~mA} \\ \\ \hline \mathrm{OL} \\ \\ 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \end{gathered}$

[^0]DC Characteristics for 'ACQ Family Devices (Continued)

Symbol	Parameter	V_{CC} (V)	74ACQ		54ACQ	74ACQ	Units	Conditions
			$\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{\mathbf{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
IIN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text {, GND } \\ & (\text { Note 1) } \end{aligned}$
IOLD	\dagger Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\mathrm{OLD}}=1.65 \mathrm{~V}_{\mathrm{Max}}$
${ }^{\text {IOHD }}$		5.5			-50	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}_{\text {Min }}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current	5.5		4.0	80.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND (Note 1) } \end{aligned}$
loz	Maximum TRI-STATE Leakage Curent	5.5		± 0.25	± 5.0	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{I}}(O E)=V_{I L}, V_{I H} \\ & V_{I}=V_{C C}, G N D \\ & V_{O}=V_{C C}, G N D \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5			V	Figures 2-12, 13 (Note 2, 3)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.6	-1.2			V	Figures 2-12, 13 (Notes 2, 3)
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage	5.0	3.1	3.5			V	(Notes 2, 4)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	5.0	1.9	1.5			V	(Notes 2, 4)

*All outputs loaded; thresholds on input associated with output under test.
\dagger Maximum test duration 2.0 ms , one output loaded at a time.
Note 1: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ICC for 54 ACQ @ $25^{\circ} \mathrm{C}$ is identical to $74 \mathrm{ACQ} @ 25^{\circ} \mathrm{C}$.
Note 2: Plastic DIP package.
Note 3: Max number of outputs defined as (n). Data Inputs are driven 0 V to 5 V . One output @ GND.
Note 4: Max number of Data Inputs (n) switching. ($n-1$) Inputs switching $0 V$ to $5 V$ ('ACQ). Input-under-test switching: 5 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

DC Characteristics for 'ACTQ Family Devices

Symbol	Parameter	V_{Cc} (V)	$\begin{gathered} \text { 74ACTQ } \\ \hline \mathrm{T}_{\mathrm{A}}= \\ +25^{\circ} \mathrm{C} \end{gathered}$		54ACTQ	74ACTQ	Units	Conditions
					$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} T_{\mathbf{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	${ }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $\begin{array}{ll}\mathrm{I} \mathrm{OH} & -24 \mathrm{~mA} \\ -24 \mathrm{~mA}\end{array}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	I OUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & { }^{*} \mathrm{~V}_{\text {IN }}=V_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ & 24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}} \quad 24 \mathrm{~mA} \end{aligned}$

[^1]| DC Characteristics for'ACTQ Family Devices (Continued) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | V_{CC}
 (V) | 74ACTQ | | 54ACTQ | 74ACTQ | Units | Conditions |
| | | | $\mathbf{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$ | | $\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{\mathbf{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ | | |
| | | | Typ | Guaranteed Limits | | | | |
| IIN | Maximum Input Leakage Current | 5.5 | | ± 0.1 | ± 1.0 | ± 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$ |
| l OZ | Maximum TRI-STATE Leakage Current | 5.5 | | ± 0.25 | ± 5.0 | ± 2.5 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I}=V_{I L}, V_{I H} \\ & V_{O}=V_{C C}, G N D \end{aligned}$ |
| $\mathrm{I}_{\text {CCT }}$ | Maximum ICC/Input | 5.5 | 0.6 | | 1.6 | 1.5 | mA | $V_{I}=V_{C C}-2.1 \mathrm{~V}$ |
| loLD | \dagger Minimum Dynamic Output Current | 5.5 | | | 50 | 75 | mA | $\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max |
| lohD | | 5.5 | | | -50 | -75 | mA | $\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min |
| I_{CC} | Maximum Quiescent Supply Current | 5.5 | | 4.0 | 80.0 | 40.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND (Note 1) } \end{aligned}$ |
| V ${ }_{\text {OLP }}$ | Quiet Output Maximum Dynamic V $_{\text {OL }}$ | 5.0 | 1.1 | 1.5 | | | V | Figures 2-12, 13
 (Notes 2, 3) |
| V ${ }_{\text {OLV }}$ | Quiet Output Minimum Dynamic V_{OL} | 5.0 | -0.6 | -1.2 | | | V | Figures 2-12, 13 (Notes 2, 3) |
| $\mathrm{V}_{\text {IHD }}$ | Minimum High Level Dynamic Input Voltage | 5.0 | 1.9 | 2.2 | | | V | (Notes 2, 4) |
| $\mathrm{V}_{\text {ILD }}$ | Maximum Low Level Dynamic Input Voltage | 5.0 | 1.2 | 0.8 | | | V | (Notes 2, 4) |
| \dagger Maximum
 Note 1:
 Note 2:
 Note 3:
 Note 4:
 ($\mathrm{V}_{\mathrm{IHD}}$), f | test duration 2.0 ms , one outp for 54ACTQ @ $25^{\circ} \mathrm{C}$ is identic lastic DIP package.
 Max number of outputs defined Max number of data inputs (n) $=1 \mathrm{MHz}$. | t loade l to 74 (n). Da tching. | at a time. TQ @ 25 Inputs a - 1) inp | driven OV switchin | o 3V. One output @ GND. OV to 3V ('ACTQ). Input-u | der-test switching: 3 V to | threshold | (VILD), OV to threshold |

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}{ }^{*}$ (V)	74ACQ			54ACQ		74ACQ		Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	Min	Max	
${ }_{\mathrm{t}}^{\mathrm{PHL}}$, tple	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZLL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns
toshl, tosth	Output to Output Skew** $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$				$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
**Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OHL}}$ or LOW to HIGH (t OSLH). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathbf{V}_{\mathrm{CC}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$			54ACQ	74ACQ	Units
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	
			Typ	Guaranteed Minimum			
ts	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
tw	LE Pulse Width, HIGH	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathbf{V}_{\mathbf{C c}}{ }^{*} \\ (\mathbf{V}) \end{gathered}$	74ACTQ			54ACTQ		74ACTQ		Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{PHL}},$ tPLH	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	5.0	2.0	6.5	7.5	1.5	10.0	2.0	8.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LE to O_{n}	5.0	2.5	7.0	8.5	1.5	11.0	2.5	9.0	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	7.0	9.0	1.5	11.0	2.0	9.5	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	5.0	1.0	8.0	10.0	1.5	11.0	1.0	10.5	ns
toshl tosLh	Output to Output Skew** $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	5.0		0.5	1.0				1.0	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
**Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OSHL}}$ or LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathbf{V}_{\mathbf{C c}}{ }^{*} \\ (\mathbf{V}) \end{gathered}$			54ACTQ	74ACTQ	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$	
			Typ	Guaranteed Minimum			
ts	Setup Time, HIGH or LOW D_{n} to LE	5.0	0	3.0	3.5	3.0	ns
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time, HIGH or LOW D_{n} to LE	5.0	0	1.5	1.5	1.5	ns
t_{W}	LE Pulse Width, HIGH	5.0	2.0	4.0	5.0	4.0	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	42.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope

Procedure:

1. Verify Test Fixture Loading: Standard Load $50 \mathrm{pF}, 500 \Omega$.
2. Deskew the word generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. Swap out the channels that have more than 150 ps of skew until all channels being used are within 150 ps . It is important to deskew the word generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are the correct voltage.
4. Set V_{CC} to 5.0 V .
5. Set the word generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and affect the results of the measurement.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note $A: V_{\text {OHV }}$ and $V_{\text {OLP }}$ are measured with respect to ground reference.
Note B: Input pulses have the following characteristics: $f=1 \mathrm{MHz}$, $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
6. Set the word generator input levels at OV LOW and 3 V HIGH for ACT devices and 0 V LOW and 5 V HIGH for AC devices. Verify levels with a digital volt meter.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $V_{\text {OLP }}$ and $V_{\text {OLV }}$ on the quiet output durnig the HL transition. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the LH transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $V_{I H D}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, $\mathrm{V}_{\text {IL }}$, until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$.
- Next increase the input HIGH voltage level on the word generator, V_{IH} until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: All outputs loaded; thresholds on input associated with output under test

[^1]: *All outputs loaded; thresholds on input associated with output under test.

