T513 Multiple Anode Low ESR COTS MnO₂ Series

Overview

The KEMET T513 Series is suitable for the Commercial Offthe-Shelf (COTS) requirements of industrial, telecom, defense and aerospace markets. This surface mount series offers very low ESR and surge robustness designed for applications that require high surge current and high ripple current capability.

These benefits are achieved via a multiple anode construction similar to KEMET's T510 Series. The T513 COTS Series also offers various options including Weibull Grading, termination finish and surge current.

Benefits

- Meets or exceeds EIA Standard 535BAAC
- Taped and reeled per EIA 481–1
- · High surge current capability
- · Termination options B, C, H, K, T
- · High ripple current capability
- · Surge testing options
- 100% steady-state accelerated aging
- Capacitance values of 15 μF to 1,000 μF
- Tolerances of ±10% and ±20%
- Voltage rating of 4 35 VDC
- · Case sizes D, E, and X
- ESR as low as 10 mΩ
- · RoHS compliant 100% Sn terminations available
- Operating temperature range of -55°C to +125°C

Applications

The T513 Series is suitable for the industrial, telecom, defense and aerospace markets. Typical applications include decoupling and filtering in radar, sonar, power supply, guidance systems and other high reliability applications.

Environmental Compliance

RoHS Compliant (6/6) according to Directive 2002/95/EC when ordered with 100% Sn solder or gold plated.

SPICE

For a detailed analysis of specific part numbers, please visit www.kemet.com for a free download of KEMET's SPICE software. The KEMET SPICE program is freeware intended to aid design engineers in analyzing the performance of these capacitors over frequency, temperature, ripple, and DC bias conditions.

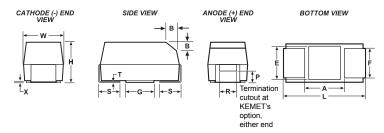
Ordering Information

T	513	X	108	K	004	В	Н	61	10
Capacitor Class	Series	Case Size	Capacitance Code (pF)	Capacitance Tolerance	Voltage	Failure Rate/ Design	Lead Material	Surge	ESR
T = Tantalum	Multiple Anode COTS	D, E, X	First two digits represent significant figures. Third digit specifies number of zeros.	K = ±10% M = ±20%	004 = 4 V 006 = 6.3 V 010 = 10 V 016 = 16 V 020 = 20 V 025 = 25 V 035 = 35 V	A = N/A B = 0.1%/1,000 hours	C = Hot Solder Dipped H = Standard Solder Coated (SnPb 5% Pb minimum) B = Gold Plated K = Solder Fused T = 100% Tin	61 = None 62 = 10 cycles, 25°C after Weibull 63 = 10 cycles, -55°C & 85°C after Weibull 64 = 10 cycles, -55°C & 85°C before Weibull	10 = Standard ESR 20 = Low ESR 30 = Ultra Low ESR

Performance Characteristics

Item	Performance Characteristics			
Operating Temperature	-55°C to 125°C			
Rated Capacitance Range	15 – 1,000 μF @ 120 Hz/25°C			
Capacitance Tolerance	K Tolerance (10%), M Tolerance (20%)			
Rated Voltage Range	4 – 35 VDC			
DF (120 Hz)	Refer to Part Number Electrical Specification Table			
ESR (100 kHz)	Refer to Part Number Electrical Specification Table			
Leakage Current	≤ 0.01 CV (µA) at rated voltage after 5 minutes			

Qualification


Test	Condition			Characteristics				
		Δ C/C	Within ±10% of initial value					
Fortunes	85°C @ rated voltage, 2,000 hours		DF	Within initial limits				
Endurance	125°C @ 2/3 rated voltage, 2,000 hours		DCL	Within 1.25	Within 1.25 x initial limit			
			ESR	Within initial	limits			
			Δ C/C	Within ±10%	of initial value			
0, 1,	40500 0 0 11 0 000 1		DF	Within initial	limits			
Storage Life	125°C @ 0 volts, 2,000 hours		DCL	Within 1.25	x initial limit			
			ESR	Within initial	limits			
			Δ C/C	Within ±5%	of initial value			
The served Oheads	MIL-STD-202, Method 107, Condition B, mount	ted, -55°C to	DF	Within initial limits				
Thermal Shock	125°C, 1,000 cycles	•	DCL	Within 1.25 x initial limit				
			ESR	Within initial limits				
			+25°C	-55°C	+85°C	+125°C		
Town areture Ctability	Extreme temperature exposure at a succession of continuous steps at +25°C,	Δ C/C	IL*	±10%	±10%	±20%		
Temperature Stability	-55°C, +25°C, +85°C, +125°C, +25°C	DF	IL	IL	1.5 x IL	1.5 x IL		
		DCL	IL	n/a	10 x IL	12 x IL		
		`	Δ C/C	Within ±5%	of initial value			
Curre Veltere	25°C and 85°C, 1.32 x rated voltage 1,000 cycle	es	DF	Within initial	limits			
Surge Voltage	(125°C, 1.2 x rated voltage)		DCL	Within initial	limits			
			ESR	Within initial limits				
	MIL-STD-202, Method 213, Condition I, 100 G	neak	Δ C/C	Within ±10 of initial value				
Mechanical Shock/Vibration	MIL-STD-202, Method 204, Condition D, 10 Hz		DF	Within initial limits				
	20 G peak	DCL	Within initial limits					
Additional Qualification Tests per MIL-PRF-55365/8	Please contact KEMET for more information.							

^{*}IL = Initial limit

Dimensions – Millimeters (Inches)

Metric will govern

Case	Size	Component												
KEMET	EIA	L*	W*	H*	F* ±0.1 ±(.004)	S* ±0.3 ±(.012)	B* ±0.15 (Ref) ±.006	X (Ref)	P (Ref)	R (Ref)	T (Ref)	A (Min)	G (Ref)	E (Ref)
Х	7343–43	7.3 ±0.3 (0.287 ±0.012)	4.3 ±0.3 (0.169 ±0.012)	4.0 ±0.3 (0.157 ±0.012)	2.4 (.094)	1.3 (.051)	0.5 (.020)	0.10 ± 0.10 (.004 ± .004)	1.7 (.067)	1.0 (.039)	0.13 (.005)	3.8 (.150)	3.5 (.138)	3.5 (.138)
1		72.02	60.02	3.6 ±0.2 (0.142 ±0.008)		1.3 (.051)	0.5 (.020)	0.10 ± 0.10 (.004 ± .004)	0.9 (.035)	1.0 (.039)	0.13 (.005)	3.8 (.150)	3.5 (.138)	3.5 (.138)

Notes: (Ref) – Dimensions provided for reference only. No dimensions are provided for B, P or R because low profile cases do not have a bevel or a notch.

Table 1 – Ratings & Part Number Reference

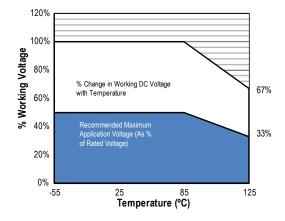
Rated Voltage	Rated Cap	Case Code/ Case Size	KEMET Part Number	DC Leakage DF		Standard ESR	Low ESR	Ultra-low ESR
VDC	μF	KEMET/EIA	(See below for part options)	μΑ @ +20°C Max/5 Min	% @ +20°C 120 Hz Max	mΩ @ +20°C 100 kHz Max	mΩ @ +20°C 100 kHz Max	mΩ @ +20°C 100 kHz Max
4	680	X/7343-43	T513X687(1)004(2)(3)(4)(5)	27.2	6.0	30	N/A	N/A
4	1000	X/7343-43	T513X108(1)004(2)(3)(4)(5)	40.0	6.0	23	18	N/A
4	1000	E/7360-38	T513E108(1)004(2)(3)(4)(5)	40.0	6.0	18	10	N/A
6.3	470	X/7343-43	T513X477(1)006(2)(3)(4)(5)	29.6	6.0	30	N/A	N/A
6.3	680	X/7343-43	T513X687(1)006(2)(3)(4)(5)	42.8	6.0	45	23	N/A
6.3	680	E/7360-38	T513E687(1)006(2)(3)(4)(5)	42.8	6.0	23	12	N/A
10	330	X/7343-43	T513X337(1)010(2)(3)(4)(5)	33.0	6.0	35	N/A	N/A
16	150	X/7343-43	T513X157(1)016(2)(3)(4)(5)	24.0	6.0	40	30	N/A
16	220	X/7343-43	T513X227(1)016(2)(3)(4)(5)	35.2	10.0	40	25	N/A
20	100	X/7343-43	T513X107(1)020(2)(3)(4)(5)	20.0	8.0	45	40	35
25	68	X/7343-43	T513X686(1)025(2)(3)(4)(5)	17.0	8.0	45	N/A	N/A
25	100	E/7360-38	T513E107(1)025(2)(3)(4)(5)	25.0	8.0	50	N/A	N/A
VDC	μF	KEMET/EIA	(See below for part options)	μΑ @ +20°C Max/5 Min	% @ +20°C 120 Hz Max	mΩ @ +20°C 100 kHz Max	mΩ @ +20°C 100 kHz Max	mΩ @ +20°C 100 kHz Max
Rated Voltage	Rated Cap	Case Code/ Case Size	KEMET Part Number	DC Leakage	DF	Standard ESR	Low ESR	Ultra-low ESR

⁽¹⁾ To complete KEMET part number, insert M for ±20%, K for ±10%. Designates Capacitance tolerance.

^{*} MIL-C-55365/8 specified dimensions

⁽²⁾ To complete KEMET part number, insert B (0.1%/1,000 hours), or A = N/A. Designates Reliability Level.

⁽³⁾ To complete KEMET part number, insert B = Gold Plated, C = Hot solder dipped, H = Solder Plated, K = Solder Fused or T = 100% Tin (Sn). Designates Termination Finish.


⁽⁴⁾ To complete KEMET part number, insert 61 = None, 62 = 10 cycles +25°C, 63 = 10 cycles -55°C +85°C after Weibull or 64 = 10 cycles -55°C +85°C before Weibull. Designates Surge current option.

⁽⁵⁾ To complete KEMET part number, insert 10 = Standard ESR, 20 = Low ESR or 30 = Ultra Low ESR. Designates ESR option. Refer to Ordering Information for additional detail.

Recommended Voltage Derating Guidelines

	-55°C to 85°C	85°C to 125°C
% Change in Working DC Voltage with Temperature		67% of V _R
Recommended Maximum Application Voltage	50% of V _R	33% of V _R

Ripple Current/Ripple Voltage

Permissible AC ripple voltage and current are related to equivalent series resistance (ESR) and the power dissipation capabilities of the device. Permissible AC ripple voltage which may be applied is limited by two criteria:

- 1. The positive peak AC voltage plus the DC bias voltage, if any, must not exceed the DC voltage rating of the capacitor.
- 2. The negative peak AC voltage in combination with bias voltage, if any, must not exceed the allowable limits specified for reverse voltage. See the Reverse Voltage section for allowable limits.

The maximum power dissipation by case size can be determined using the table at right. The maximum power dissipation rating stated in the table must be reduced with increasing environmental operating temperatures. Refer to the table below for temperature compensation requirements.

Temperature Compensation Multipliers									
for Maximum Power Dissipation									
T ≤ 25°C	T ≤ 25°C T ≤ 85°C T ≤ 125°C								
1.00 0.90 0.40									

T= Environmental Temperature

Using the P max of the device, the maximum allowable rms ripple current or voltage may be determined.

 $I(max) = \sqrt{P max/R}$ $E(max) = Z \sqrt{P max/R}$

I = rms ripple current (amperes) *E* = *rms* ripple voltage (volts)

R = ESR at specified frequency (ohms)

P max = maximum power dissipation (watts)

Z = Impedance at specified frequency (ohms)

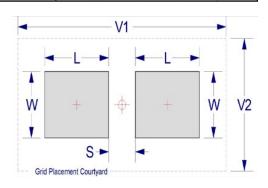
Maximum Power KEMET Dissipation (P max) EIA **Case Code** Case Code mWatts @ 25°C w/+20°C Rise 3216-18 Α 75 В 3528-21 85 С 6032-28 110 D 7343-31 150 Χ 7343-43 165 Ε 7360-38 200 S 3216-12 60 Τ 3528-12 70 U 6032-15 90 ٧ 7343-20 125 T510X 7343-43 270 T510E 7360-38 285

The maximum power dissipation rating must be reduced with increasing environmental operating temperatures. Refer to the Temperature Compensation Multiplier table for details.

Reverse Voltage

Solid tantalum capacitors are polar devices and may be permanently damaged or destroyed if connected with the wrong polarity. The positive terminal is identified on the capacitor body by a stripe, plus in some cases a beveled edge. A small degree of transient reverse voltage is permissible for short periods per the below table. The capacitors should not be operated continuously in reverse mode, even within these limits.

Temperature	Permissible Transient Reverse Voltage
25°C	15% of Rated Voltage
85°C	5% of Rated Voltage
125°C	1% of Rated Voltage


Table 2 - Land Dimensions/Courtyard

KEMET	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)			Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)							
Case	EIA	W	L	S	V1	V2	W	L	S	V1	V2	W	L	S	V1	V2
Α	3216–18	1.35	2.20	0.62	6.02	2.80	1.23	1.80	0.82	4.92	2.30	1.13	1.42	0.98	4.06	2.04
В	3528–21	2.35	2.21	0.92	6.32	4.00	2.23	1.80	1.12	5.22	3.50	2.13	1.42	1.28	4.36	3.24
С	6032–25	2.35	2.77	2.37	8.92	4.50	2.23	2.37	2.57	7.82	4.00	2.13	1.99	2.73	6.96	3.74
D	7343–31	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
L	6032-19	2.35	2.77	2.37	8.92	4.50	2.23	2.37	2.57	7.82	4.00	2.13	1.99	2.73	6.96	3.74
М	3528-15	2.35	2.20	0.92	6.32	4.00	2.23	1.80	1.12	5.22	3.50	2.13	1.42	1.28	4.36	3.24
Н	7360-20	4.25	2.77	3.67	10.22	7.30	4.13	2.37	3.87	9.12	6.80	4.03	1.99	4.03	8.26	6.54
E1	7360–38	4.25	2.77	3.67	10.22	7.30	4.13	2.37	3.87	9.12	6.80	4.03	1.99	4.03	8.26	6.54
Q	7343-12	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
R ²	2012-12	1.05	1.83	0.15	4.82	2.50	0.93	1.50	0.22	3.72	2.00	0.83	1.12	0.38	2.86	1.74
S ²	3216–12	1.35	2.20	0.62	6.02	2.80	1.23	1.80	0.82	4.92	2.30	1.13	1.42	0.98	4.06	2.04
Т	3528–12	2.35	2.20	0.92	6.32	4.00	2.23	1.80	1.12	5.22	3.50	2.13	1.42	1.28	4.36	3.24
U	6032–15	2.35	2.77	2.37	8.92	4.50	2.23	2.37	2.57	7.82	4.00	2.13	1.99	2.73	6.96	3.74
V	7343–20	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
W	7343–15	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
X ¹	7343–43	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
Y ¹	7343–40	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.

Density Level C: For high component desity product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC standard 7351 (IPC–7351).

¹ Height of these chips may create problems in wave soldering.

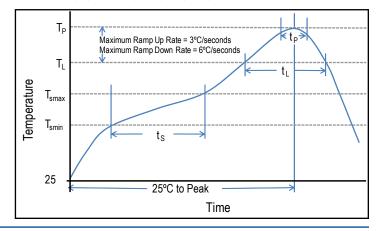
² Land pattern geometry is too small for silkscreen outline.

Soldering Process

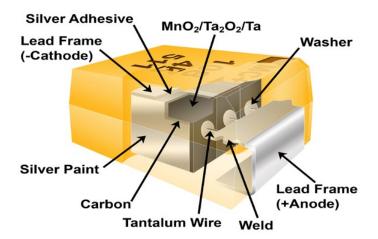
KEMET's families of surface mount capacitors are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020D standard for moisture sensitivity testing. The devices can safely withstand a maximum of three reflow passes at these conditions.

Note that although the X/7343–43 case size can withstand wave soldering, the tall profile (4.3 mm maximum) dictates care in wave process development.

Hand soldering should be performed with care due to the difficulty in process control. If performed, care should be taken to avoid contact of the soldering iron to the molded case. The iron should be used to heat the solder pad, applying solder between the pad and the termination, until reflow occurs. Once reflow occurs, the iron should be removed immediately. "Wiping" the edges of a chip and heating the top surface is not recommended.

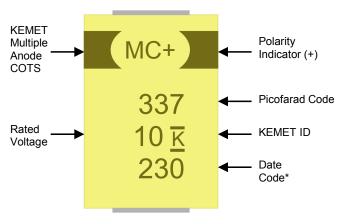

During typical reflow operations, a slight darkening of the gold-colored epoxy may be observed. This slight darkening is normal and is not harmful to the product. Marking permanency is not affected by this change.

Profile Feature	SnPb Assembly	Pb-Free Assembly
Preheat/Soak		
Temperature Minimum (T _{Smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{smin} to T_{smax})	60-120 seconds	60-120 seconds
Ramp-up Rate (T _L to T _P)	3°C/seconds maximum	3°C/seconds maximum
Liquidous Temperature (T _L)	183°C	217°C
Time Above Liquidous (t _L)	60-150 seconds	60-150 seconds
Peak Temperature (T _P)	220°C* 235°C**	250°C* 260°C**
Time within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum
Ramp-down Rate (T _P to T _L)	6°C/seconds maximum	6°C/seconds maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum


Note: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow.

*Case Size D. E. P. Y and X

**Case Size A, B, C, H, I, K, M, R, S, T, U, V, W and Z



Construction

Capacitor Marking

* 230 = 30th week of 2012

Date Code *								
1 st digit = Last number of Year	9 = 2009 0 = 2010 1 = 2011 2 = 2012 3 = 2013 4 = 2014							
2 nd and 3 rd digit = Week of the Year	01 = 1 st week of the Year to 52 = 52 nd week of the Year							

Storage

Tantalum chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature—reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 60% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulphur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within three years of receipt.