MAX40108 Evaluation Kit

General Description

The MAX40108 evaluation kit (EV kit) provides a proven design to evaluate the MAX40108 precision, low-noise, low-drift dual-operational amplifier in a 6-bump wafer-level package (WLP). The EV kit circuit is preconfigured as noninverting amplifiers, but can be adapted to other topologies by changing a few components.

The EV kit comes with a MAX40108ANT+ installed.

Features

- Accommodates Multiple Op Amp Configurations
- Component Pads Allow for Sallen-Key Filter
- Accommodates Easy-to-Use Components
- Proven PCB Layout
- Fully Assembled and Tested

Quick Start

Required Equipment

- MAX40108 EV kit
- +0.9V to +3.6V, 20mA DC power supply (PS1)
- · Precision voltage source
- Digital multimeter

Ordering Information appears at end of data sheet.

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

Evaluates: MAX40108

- 1) Verify that all jumpers (JU1–JU3) are in their default positions, as shown in Table 1.
- 2) Set the power supply to 1.5V. Connect the positive terminal of the power supply to V_{CC} and the negative terminal to GND and V_{SS} .
- Connect the positive terminal of the precision voltage source to INP. Connect the negative terminal of the precision voltage source to GND. INM is already connected to GND through jumper JU1.
- 4) Connect the DMM to monitor the voltage on OUT. With the $10k\Omega$ feedback resistors and $1k\Omega$ series resistors, the gain of the noninverting amplifier is +11V/V.
- 5) Turn on the power supply.
- 6) Apply 100mV from the precision voltage sources. Observe the output at OUT on the DMM that reads approximately +1.1V.

Note: For dual-supply operation, a ± 0.45 V to ± 1.8 V supply can be applied to V_{DD} and V_{SS}, respectively. The rest of the procedure remains the same as that of the single-supply operation.

To shut down during dual-supply operation, connect JU3 (pin 2) to V_{SS} . Do not use the JU3, 2-3 jumper placement.

Evaluates: MAX40108

Detailed Description of Hardware

The MAX40108 EV kit provides a proven layout for precision, low-noise, low-drift op amp. The device is a single/dual-supply op amp with rail-to-rail inputs and outputs, available in 6-bump WLP (1.22mm x 0.92mm) space-saving package.

The default configuration for the device in the EV kit is single-supply operation in a noninverting configuration. However, the device can operate with a dual supply as long as the voltage across the V_{DD} and V_{SS} pins of the IC do not exceed the absolute maximum ratings. When operating with a single supply, short V_{SS} to GND.

Op Amp Configurations

The device is a single/dual-supply op amp that is ideal for differential sensing, noninverting amplification, buffering, and filtering. A few common op amp configurations are explained in the next few sections.

Noninverting Configuration

The EV kit comes preconfigured as a noninverting amplifier. The gain is set by the ratio of R5 and R1. The EV kit comes preconfigured for a gain of +11V/V. The output voltage for the noninverting configuration is given by the equation below:

$$V_{OUTA} = (1 + \frac{R5}{R1}) \left[V_{INAP} \pm V_{OS} \right]$$

Inverting Configuration

To configure the EV kit as an inverting amplifier, remove the shunt on jumper JU1, install a shunt on jumper JU2, and feed an input signal on the INM PCB pad.

Differential Amplifier

To configure the EV kit as a differential amplifier, replace R1–R3 and R5 with appropriate resistors. When R1 = R2 and R3 = R5, the CMRR of the differential amplifier is determined by the matching of the resistor ratios R1/R2 and R3/R5.

where:

$$GAIN = \frac{R5}{R1} = \frac{R3}{R2}$$

Sallen-Key Configuration

The Sallen-Key topology is ideal for filtering sensor signals with a second-order filter and acting as a buffer. Schematic complexity is reduced by combining the filter and buffer operations. The EV kit can be configured in a Sallen-Key topology by replacing and populating a few components. The Sallen-Key topology can be configured

as a unity-gain buffer by replacing R5 with a 0Ω resistor and removing resistor R1. The signal is noninverting and applied to INP. The filter component pads are R2–R7 and R8, where some have to be populated with resistors and others with capacitors.

Lowpass Sallen-Key Filter: To configure the Sallen-Key as a lowpass filter, remove the shunt from jumper JU1, populate the R2 and R8 pads with resistors, and populate the R3 and R7 pads with capacitors. The corner frequency and Q are then given by:

$$f_C = \frac{1}{2\pi\sqrt{R_{R2}R_{R8}C_{R3}C_{R7}}}$$

$$Q = \frac{\sqrt{R_{R2}R_{R8}C_{R3}C_{R7}}}{C_{R3}(R_{R2} + R_{R8})}$$

Highpass Sallen-Key Filter: To configure the Sallen-Key as a highpass filter, remove the shunt from jumper JU1, populate the R3 and R7 pads with resistors, and populate the R2 and R8 pads with capacitors. The corner frequency and Q are then given by:

$$f_{C} = \frac{1}{2\pi\sqrt{R_{R3}R_{R7}C_{R2}C_{R8}}}$$

$$Q = \frac{\sqrt{R_{R3}R_{R7}C_{R2}C_{R8}}}{R_{R7}(C_{R2} + C_{R8})}$$

Bandpass Sallen-Key Filter: To configure the Sallen-Key as a bandpass filter, remove the shunt from jumper JU1, replace R8, populate the R3 and R7 pads with resistors, and populate the C8 and R2 pads with capacitors. The corner frequency and Q are then given by:

$$f_C = \frac{1}{2\pi} \sqrt{\frac{R_{R7} + R_{R8}}{C_{C8}C_{R2}R_{R8}R_{R3}R_{R7}}}$$

$$Q = \frac{\sqrt{\left(R_{R7} + R_{R8}\right)C_{C8}C_{R2}R_{R8}R_{R3}R_{R7}}}{R_{R7}R_{R8}\left(C_{C8} + C_{R2}\right) + R_{R3}C_{R2}\left(R_{R7} - \frac{R_{R5}}{R_{R1}}R_{R8}\right)}$$

www.maximintegrated.com Maxim Integrated | 2

Transimpedance Amplifier (TIA)

To configure the EV kit as a TIA, place a shunt on jumper JU2 and replace R1 with 0Ω resistors. The output voltage of the TIA is the input current multiplied by the feedback resistor:

$$V_{OUT} = -(I_{IN} + I_{BIAS}) \times R_{R5} \pm V_{OS}$$

where:

 $\ensuremath{\text{I}_{\text{IN}}}$ is the input current source applied at the INP test point

IBIAS is the input bias current

 $V_{\mbox{OS}}$ is the input offset voltage of the op amp

Use a capacitor and 0Ω resistor at location R10 or R17 (and C8, if applicable) to stabilize the op amp by rolling off high-frequency gain due to a large cable capacitance.

Capacitive Loads

Some applications require driving large capacitive loads. The EV kit provides C8 and R6 pads for an optional capacitive-load driving circuit. C8 simulates the capacitive load, while R6 acts as an isolation resistor to improve the op amp's stability at higher capacitive loads. To improve the stability of the amplifier in such cases, replace R6 with a suitable resistor value to improve amplifier phase margin

Note: To balance out input bias current effects, use R2 = R1 \mid R5 (Ω).

Table 1. Jumper Descriptions (JU1–JU3)

Evaluates: MAX40108

	•			
JUMPER	SHUNT POSITION	DESCRIPTION		
	Pin 1	Disconnects INM from GND.		
JU1	1-2*	Connects INM to GND through R1 for noninverting configuration.		
	Pin 1*	Disconnects INP from GND.		
JU2	1-2	Connects INP to GND through R2.		
JU3	1-2*	Connect SHDN to V _{DD} to place the device into normal operation.		
303	2-3	Connect SHDN to GND to place into shutdown mode.		

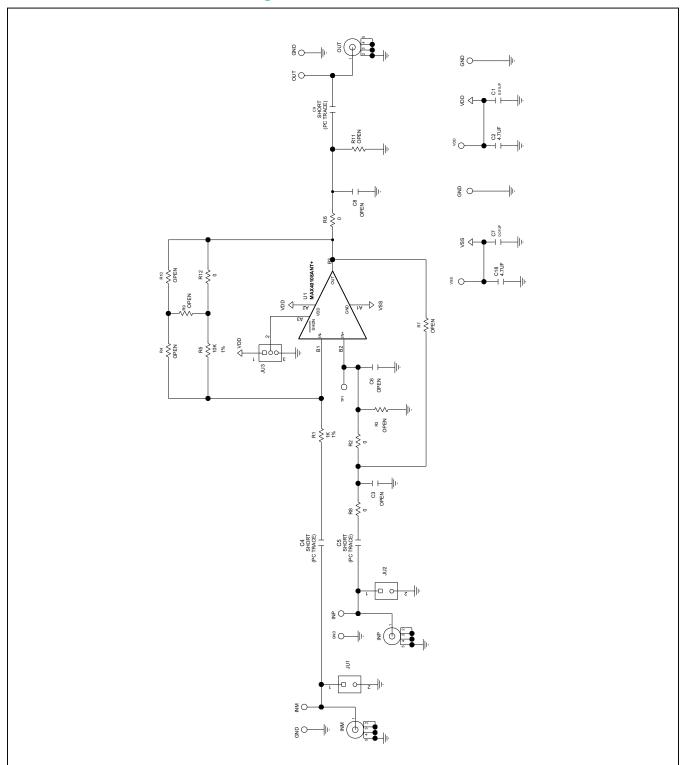
^{*}Default position.

Ordering Information

PART	TYPE
MAX40108EVKIT#	EV Kit

#Denotes RoHS compliant.

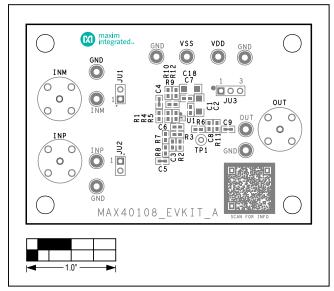
MAX40108 EV Kit Bill of Materials

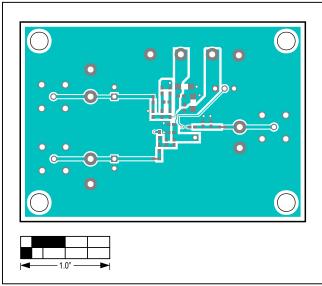

ITEM	REF_DES	DNI/DNP	QTY	MFG PART#	MANUFACTURER	VALUE	DESCRIPTION	
1	C1, C7	_	2	C0603X7R500103JNP; C0603C103J5RAC	VENKEL LTD; KEMET	0.01µF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.01µF; 50V; TOL = 5%; MODEL = X7R; TG = -55°C TO +125°C; TC=+/	
2	C2, C18	-	2	GRM31CR71H475KA12; GRJ31CR71H475KE11; GXM31CR71H475KA10	MURATA; MURATA; MURATA	4.7µF	CAPACITOR; SMT (1206); CERAMIC CHIP; 4.7μ F; $50V$; TOL = 10% ; MODEL =; TG = $.55^{\circ}$ C TO $+125^{\circ}$ C; TC = X7R	
3	GND, TP0_GND, TP4_GND-TP6_GND	-	5	5011	KEYSTONE	N/A	TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH =0.445IN; BOARD HOLE = 0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
4	JU1, JU2	-	2	PCC02SAAN	SULLINS	PCC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65°C TO +125°C	
5	JU3	-	1	PCC03SAAN	SULLINS	PCC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 3PINS; -65°C TO +125°C	
6	R1	-	1	CRCW06031K00FK; ERJ-3EKF1001	VISHAY DALE; PANASONIC	1K	RESISTOR; 0603; 1K; 1%; 100PPM; 0.10W; THICK FILM	
7	R2, R6, R8, R12	-	4	RC1608J000CS; CR0603-J/-000ELF; RC0603JR-070RL	SAMSUNG ELECTRONICS; BOURNS; YAGEO PH	0	RESISTOR; 0603; 0Ω ; 5%; JUMPER; 0.10W; THICK FILM	
8	R5	-	1	CRCW060310K0FK; ERJ-3EKF1002	VISHAY DALE; PANASONIC	10K	RESISTOR; 0603; 10K; 1%; 100PPM; 0.10W; THICK FILM	
9	S1-S3	-	3	S1100-B;SX1100-B; STC02SYAN	KYCON;KYCON; SULLINS ELECTRONICS CORP.	SX1100-B	TEST POINT; JUMPER; STR; TOTAL LENGTH = 0.24IN; BLACK; INSULATION = PBT; PHOSPHOR BRONZE CONTACT = GOLD PLATED	
10	TP1	-	1	5000	KEYSTONE	N/A	TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH = 0.3IN; BOARD HOLE = 0.04IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
11	TP_INAP, TP_INM, TP_OUT	-	3	5012	KEYSTONE	N/A	TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.445IN; BOARD HOLE = 0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
12	U1	_	1	MAX40108ANT+	MAXIM	MAX40108ANT+	EVKIT PART - IC; MAX40108ANT+; 1V LOW-POWER PRECISION OPERATIONAL AMPLIFIER; PACKAGE OUTLINE DRAWING: 21-100427; PACKAGE CODE: N60M1+1	
13	VDD, VSS	-	2	5010	KEYSTONE	N/A	TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.445IN; BOARD HOLE = 0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;	
14	PCB	_	1	MAX40108	MAXIM	PCB	PCB:MAX40108	
15	C3, C6, C8	DNP	0	N/A	N/A	OPEN	PACKAGE OUTLINE 0603 NON-POLAR CAPACITOR	
16	C4, C5, C9	DNP	0	N/A	N/A	SHORT	PACKAGE OUTLINE 0603 NON-POLAR CAPACITOR	
17	INM, INP, OUT	DNP	0	CN-BNC-011PG	FIRST TECH ELECTRONICS, CO.	CN-BNC-011PG	CONNECTOR; FEMALE; THROUGH HOLE; BNC JACK; STRAIGHT; 5PINS	
18	R3, R4, R7, R9-R11	DNP	0	N/A	N/A	OPEN	PACKAGE OUTLINE 0603 RESISTOR	

Evaluates: MAX40108

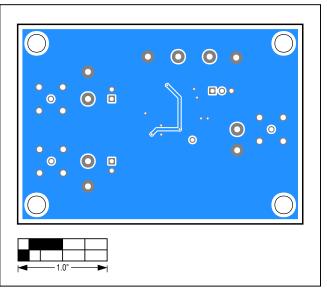
www.maximintegrated.com Maxim Integrated | 4

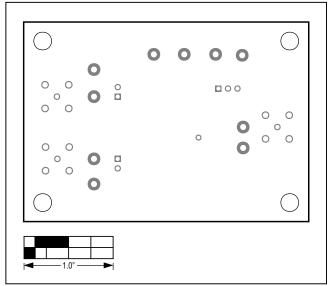
Evaluates: MAX40108


MAX40108 EV Kit Schematic Diagram


www.maximintegrated.com Maxim Integrated | 5

Evaluates: MAX40108


MAX40108 EV Kit PCB Layout Diagrams


MAX40108 EV Kit—Top Silkscreen

MAX40108 EV Kit—Top View

MAX40108 EV Kit—Bottom View

MAX40108 EV Kit—Bottom Silkscreen

MAX40108 Evaluation Kit

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/20	Initial release	_

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

Evaluates: MAX40108