Yellow LED Module (000x0000 Article Number) (TS2163) ## **Product Details** This is the TelePort yellow LED module which has a light emitting diode. Its RJ11 port integrates G, V and S(Signal). When S is at high level, the LED will light up; when at low level, LED will go off. In addition, the output high/low levels or PWM signals from IO port of the control board also can determine the state and brightness of the LED. #### **Features and Benefits** - Compatible with RJ11 6P6C OKdo TelePort Control boards and expansion shields. - 5mm LED emits yellow light. - Comes with a fixing hole to make it easy to attach to projects. # **Technical Specifications** | Sensor type | Digital output | |-----------------|----------------| | Working voltage | 3.3V-5V | | LED color | Yellow | | Dimensions | 34mm*20mm*18mm | | Weight | 3.8g | ### **Applications** - Breathing lights - SOS signal lights - Festival color lights This module is compatible with the TS2180-Raspberry Pi shield, the TS2179-Micro:bit shield and the TS2178-TelePort main board. # > Arduino Application This module is compatible with the TS2178 TelePort control board. # **Test Code** ``` int led = 9; void setup() { pinMode(led, OUTPUT);//Set Pin9 as output } void loop() { digitalWrite(led, HIGH);//Turn led on delay(1000); digitalWrite(led, LOW);//Turn led off delay(1000); } ``` ### **Test Result** Wire up, upload test code and power it up. LED will flash, on for 1s and off for 1s; circularly. If you want to know more details about Arduino and the TelePort control board, you can refer to TS2178. # Micro:bit Application It is compatible with the Micro:bit board and the TS2179 Micro:bit expansion board. # **Test Code** **Test Result** Wire up, upload test code and power it i If you want to know more details about the Micro:bit board and Micro:bit shield, you can refer to TS2179. # **Raspberry Pi Application** This module is compatible with the Raspberry Pi board and the TS2180 aspberry Pi shield. # Copy the test code to Raspberry Pi system to run it (1) Save the test code in the **pi** folder of Raspberry Pi system. Then place the **LED.zip** file we provide in the **pi** folder, right-click and click **Extract Here.** As shown below: # (2) Compile and run test code: Input the following code and press"Enter" cd /home/pi/LED gcc LED.c -o LED -lwiringPi sudo ./LED ### (3) Test Result: Insert the shield into the Raspberry Pi board. After programming finishes, LED will flash, on for 1s and off for 1s; circularly. Note: press Ctrl + C to exit code running ``` File Edit Tabs Help pi@raspberrypi:~ $ cd /home/pi/LED pi@raspberrypi:~/LED $ pi@raspberrypi:~/LED $ gcc LED.c -o LED -lwiringPi pi@raspberrypi:~/LED $ pi@raspberrypi:~/LED $ sudo ./LED turn on the LED turn off the LED ``` #### **Test Code** File Name: LED.c ``` #include <wiringPi.h> #include <stdio.h> #include <stdlib.h> #include <stdint.h> #define LEDPIN 23 //BCM GPIO 13 int main(){ wiringPiSetup(); //Initialize wiringPi pinMode(LEDPIN,OUTPUT); while(1){ digitalWrite(LEDPIN,HIGH); //turn on led printf("turn on the LED\n"); delay(500); //delay 500ms digitalWrite(LEDPIN,LOW); //turn off led printf("turn off the LED\n"); delay(500); } } ``` If you want to know how to utilize Raspberry Pi and the Raspberry Pi shield, you can refer to TS2180. ***END***