Hamamatsu provides various types of one-dimensional PSD (Position Sensitive Detector) designed for precision distance measurement such as displacement meters. S3979 has a 1×3 mm active area sealed in a TO-5 package. S3931 and S3932 have an active area of 1×6 mm and 1×12 mm respectively, and are mounted on a compact ceramic package with a transparent resin window. Variant types (S3931-01, S3932-01) with a visible-cut resin window are also available. S1352 and S3270 offer an active area longer than 30 mm, allowing position detection at a long distance.

S3270 has a visible-cut resin window, and S3270-01 with a transparent resin window is also available.

Features
- Superior position detection ability
- High reliability
- S3931, S3932: Easy to use 4-pin small ceramic package
- Long and narrow active area

Applications
- Displacement sensing
- Distance measurement
- Proximity switching

General ratings / Absolute maximum ratings

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Package</th>
<th>Window material *1</th>
<th>Active area size (mm)</th>
<th>Reverse voltage VR Max. (V)</th>
<th>Operating temperature Topr (°C)</th>
<th>Storage temperature Tstg (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3979</td>
<td>TO-5</td>
<td>K</td>
<td>1×3</td>
<td>20</td>
<td>-10 to +60</td>
<td>-20 to +80</td>
</tr>
<tr>
<td>S3931</td>
<td>R</td>
<td>1×6</td>
<td>0.15</td>
<td>10</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>S3932</td>
<td>R</td>
<td>1×12</td>
<td>0.55</td>
<td>10</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>S1352</td>
<td>Ceramic</td>
<td>R (B)</td>
<td>2.5×34</td>
<td>10</td>
<td>15</td>
<td>2.1</td>
</tr>
<tr>
<td>S3270</td>
<td>Ceramic</td>
<td>R (B)</td>
<td>1×37</td>
<td>0.2</td>
<td>1.15</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Electrical and optical characteristics (Typ. Ta=25 °C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Spectral response range λ (nm)</th>
<th>Peak sensitivity wavelength λ_p (nm)</th>
<th>Photo sensitivity S (A/W)</th>
<th>Interelectrode resistance R_{ie} (V)</th>
<th>E $\frac{E}{Vr=5,V}$</th>
<th>Saturation photocurrent I_{sat} $\frac{I_{sat}}{Vr=5,V}$</th>
<th>Dark current I_d $\frac{I_d}{Vr=5,V}$</th>
<th>Temp. coefficient of I_d TCID</th>
<th>Rise time $\frac{t_r}{Vr=5,V}$</th>
<th>Terminal capacitance C_T $\frac{C_T}{Vr=5,V}$</th>
<th>Position resolution $\frac{\phi}{f=10,kHz}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3979</td>
<td>320 to 1100</td>
<td>920</td>
<td>0.55</td>
<td>0.55</td>
<td>100</td>
<td>140</td>
<td>180</td>
<td>1.5</td>
<td>2.5</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>S3931</td>
<td>320 to 1100</td>
<td>30</td>
<td>0.55</td>
<td>0.55</td>
<td>100</td>
<td>140</td>
<td>180</td>
<td>1.5</td>
<td>2.5</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>S3932</td>
<td>320 to 1100</td>
<td>0.6</td>
<td>0.55</td>
<td>0.55</td>
<td>100</td>
<td>140</td>
<td>180</td>
<td>1.5</td>
<td>2.5</td>
<td>20</td>
<td>0.1</td>
</tr>
<tr>
<td>S1352</td>
<td>700 to 1100</td>
<td>960</td>
<td>0.55</td>
<td>0.55</td>
<td>200</td>
<td>200</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*2: A range of 75 % of that from the center of the photosensitive surface to the edge.

*3: Works with microscopic spot light detection.

*4: Position detection error $E = \frac{E}{Vr=5\,V}$ light spot $\phi=200\,\mu m$.

*5: Position resolution ϕ.

This is the minimum detectable light spot displacement. The detection limit is indicated by the distance on the photosensitive surface. The numerical value of the resolution of a position sensor using a PSD is proportional to both the length of the PSD and the noise of the measuring system (resolution deteriorates) and inversely proportional to the photocurrent (incident energy) of the PSD (resolution improves).

Light source: LED (900 nm)
Spot light size: $\phi=200\,\mu m$
Frequency range: 1 kHz
Photocurrent: 1 µA
Circuit system input noise: 1 µV (1 kHz)
Interelectrode resistance: Typical value (refer to the specification table)
Example of position detectability (Ta=25 °C, λ=900 nm, spot light size: φ0.2 mm)

Conversion formula of spot light position on the PSD
If output signals (photocurrent) I_1 and I_2 are obtained from electrodes X1 and X2, then the light spot position (x) on the PSD can be found by the following formula.

$$\frac{I_2 - I_1}{I_1 + I_2} = \frac{2x}{L}$$

Correction for position detection error
Position detection characteristics obtained by the above formula can be corrected to reduce position detection errors. For example, the maximum position detection error (±120 µm) of S3931 can be significantly reduced to ±9 µm by using the least square method.