
EL640.480-AM SERIES

ICEBRITE[™] EL VGA DISPLAYS

Planar Systems, Inc. © 1997

Planar and "The Definition of Quality" are registered trademarks and ICE, ICEPlus, ICEBrite and ColorBrite are trademarks of Planar Systems, Inc.

This document is subject to change without notice. Planar provides this information as reference only, and does not imply any recommendation or endorsement of other vendor's products.

Revision Control

Date	Description
September 1997	Document number OM500-01

Contents

AM SERIES 10.4" VGA FLAT PANEL DISPLAYSFeatures	
INSTALLATION AND HANDLING	
MOUNTING	
CABLE LENGTH.	
CLEANING	
Avoiding Burn-In	
SPECIFICATIONS	5
Power	5
Input Voltage Selection	<i>6</i>
CONNECTORS	
AM1 Data and Power Connector	<i>6</i>
AM8 Data and Power Connector	
Locking Power and Data Connector	8
Dimming Connector J2	
Interfacing	8
Video Input Signals	9
Self-Test Mode	11
OPTICAL PERFORMANCE	
Dimming	
Grayscale	
Reliability	
SAFETY AND EMI	
Environmental	
Mechanical Characteristics	
COMPONENT ENVELOPE	15
Figures	
FIGURE 1. AM1 DATA/POWER CONNECTOR	<i>.</i>
FIGURE 2. AM8 CONNECTOR LOCATIONS	
FIGURE 3. VIDEO INPUT TIMING DIAGRAM	
FIGURE 4. SETUP AND HOLD TIMING DIAGRAM	10
FIGURE 5. DATA FORMAT	
FIGURE 6. AM SERIES DIMENSIONS	15
Tables	
TABLE 1. DC INPUT VOLTAGE REQUIREMENTS.	4
TABLE 2. VIDEO INPUT REQUIREMENTS.	
TABLE 3. J1 CONNECTOR PINOUTS.	
TABLE 4. VIDEO INPUT TIMING.	
TABLE 5. SETUP AND HOLD TIMING.	
TABLE 6. OPTICAL CHARACTERISTICS.	
TABLE 7. ENVIRONMENTAL CHARACTERISTICS	
TABLE 9 DIMENSIONS AND WEIGHT	

AM Series 10.4" VGA Flat Panel Displays

This manual supports these Planar ICEBrite displays:

- ◆ EL640.480-AM1
- ◆ EL640.480-AM8 IN (Industrial version)
- ♦ EL640.480-AM8 ET (Extended Temperature version)

The AM series of 10.4" diagonal VGA products offers designers an affordable and easily-implemented path to incorporate flat panel solutions to meet display requirements.

Utilizing Planar's proprietary ICEBrite technology (Integrated Contrast and Brightness Enhancement), these displays excel in ambient light environments ranging from dark rooms to nearly sunlight. This proprietary technology achieves very high contrast and exceptionally clear images. These displays are easy to integrate, enabling the quick replacement of existing LCDs. This family utilizes a common 8-bit FPD-type interface compatible with most LCD video controller chips. Up to five distinct gray levels are enabled by frame rate modulation algorithms generated by the controller chips.

Through simple design and advanced manufacturing technologies, Planar's new VGA displays bring the visual performance and image quality of electroluminescence (EL), long life, and ruggedness into cost-sensitive applications.

Features

- ♦ Excellent viewing characteristics
- ♦ High brightness and contrast
- ♦ Wide viewing angle
- ♦ Long life
- ♦ Extreme ruggedness
- ♦ Designed for low EMI
- ♦ Fast response time
- ♦ Lower power

Options

Anti-glare and conformal coating options are available on this display.

The anti-glare option adds an anti-glare film to the front of the display to reduce specular reflections (see Application Note 135 for more information).

The conformal coating option adds a protective layer to the display for applications in which the display may be subjected to high humidity, dust, or salt mist (see Application Note 122 for more information).

Installation and Handling

The mechanical package consists of the display panel and electronic circuit board bonded together, plus a protective cover carrying the display mounting ears. The display is made of glass material and must be handled with care.

CAUTION: The display uses CMOS and power MOS-FET devices. These components are electrostatic sensitive. Unpack, assemble, and examine this assembly in a static-controlled area only. When shipping, use packing materials designed for protection of electrostatic-sensitive components.

Do not drop, bend, or flex the display. Do not allow objects to strike the surface of the display.

Mounting

The EL640.480 AM displays were designed to facilitate the mounting of optical treatments and touchscreens on the viewing side of the display. To this end, the glass extends in front of the mounting bezel by approximately 0.5 mm (0.02 in.). It is imperative that any mounting scheme apply uniform pressure at all times across the glass. Pressure applied to the corners or edge of the glass is likely to cause breakage.

Mounting should be done using the mounting ears only. Use either metric M3 screws torqued to 350 Ncm maximum, or unified #4 screws torqued to 4.7 in/lb maximum.

CAUTION: Properly mounted, this display can withstand high shock loads and severe vibration in aggressive environments. However, the glass panel used in this display will break when subjected to bending stresses, high impact, or excessive loads.

To prevent injury in the event of glass breakage, a protective overlay should be used on the viewer side of the display.

WARNING: These products generate voltages capable of causing personal injury (high voltage pulses up to 230 V_{AC}). Do not touch the display electronics during operation.

Cable Length

The maximum recommended cable length is 600 mm (24 in.). Longer cables may cause data transfer problems between the data transmitted and the display input connector. Excessive cable lengths can pick up and source unwanted EMI. There are third party products which allow this maximum cable length to be exceeded. Contact Planar Application Engineering for more information.

Cleaning

As with any glass or coated surface, care should be taken to minimize scratching. Clean the display glass with mild, water-based detergents only. Apply the cleaner sparingly to a soft cloth, then wipe the display. Disposable cleaning cloths are recommended to minimize the risk of inadvertently scratching the display with particles embedded in a re-used cloth. Particular care should be taken when cleaning displays with anti-glare and anti-reflective films.

The TAB (tape-automated bonding) leads between the electronics and the display glass are very sensitive to handling. When cleaning the edges of the display glass, special care should be taken not to damage the leads.

Avoiding Burn-In

As with other light emitting displays, displaying fixed patterns on the screen can cause burn-in, where luminance variations can be noticed. Use a screen saver or image inversion to avoid causing burn-in on the display.

Specifications

The EL panel is a matrix structure with column and row electrodes arranged in an X-Y formation. Light is emitted when an AC voltage of sufficient amplitude is applied at a row-column intersection. The display operation is based on the symmetric, line at a time data addressing scheme. Operating voltages required are provided by a DC/DC converter.

Unless otherwise specified, performance characteristics are guaranteed when measured at 25°C.

Power

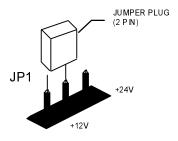
The supply voltages required for the displays are shown in Table 1. All internal high voltages are generated from display supply voltage (V_H) . The logic supply voltage (V_L) should be present whenever video input signals or V_H is applied.

Table 1. DC Input Voltage Requirements.

	AM1	AM8 IN/ET		Notes
		12 V	24 V	
$V_{\rm L}$	+5 V ±5%	+5 V ±5%	+5 V ±5%	absolute max 7.0 V
V_{H}	+12 V ±10%	+12 V ±10%	+24 V ±10%	absolute max. 15 V and 30 V respectively
I _L , max	75 mA	75 mA	75 mA	@ $V_L = +5 V$
I _H , max	2.0 A	2.0 A	1.0 A	@ $V_H = +12 V$
Ptyp, 120 Hz	11 W	11 W	11 W	3840 'E' characters
Pmax, 120 Hz	24 W	24 W	24 W	50/50 2x2 checkerboard

CAUTION: Absolute maximum ratings are those values beyond which damage to the device may occur.

Table 2. Video Input Requirements.


Description	Min	Max	Notes
Video logic high voltage	3.7 V	5.0 V	All input thresholds are CMOS
Video logic low voltage	0 V	0.9 V	Video lines have 100Ω series resistors
Video logic input current	– 10 μA	+10 μΑ	

There is no overcurrent protection on either the V_H or V_L inputs to protect against catastrophic faults. Planar recommends the use of a series fuse on the 12 volt supply. A general guideline is to rate the fuse at 1.8 to 2 times the display maximum current rating.

Input Voltage Selection

The AM8 displays feature a jumper that allows the user to choose between 12 and 24 volt supply voltage. The displays are shipped with the JP1 jumper in the pin 1/pin 2 position which sets the supply voltage at 12 volts.

To select a 24 volt supply, move the JP1 jumper to the pin2/pin3 position. Pin one is marked on the +12 V end of JP1.

Caution: Providing a 24 volt supply to the display when the jumper is in the 12 volt supply position will damage the display.

The display will not function if the jumper is removed completely. Planar recommends the use of a non-conductive adhesive to secure the jumper in the desired position in environments where shock or vibration might loosen the jumper.

The minimum and maximum specifications in the manual should be met, without exception, to ensure the long-term reliability of the display. Planar does not recommend operation of the display outside these specifications.

Connectors

AM1 Data and Power Connector

The AM1 displays use the Samtec STMM-110-01-S-D or equivalent connector, and the AM8-IN displays use the Samtec STMM-110-01-T-D or equivalent connector. The mating connector for both the AM1 and AM8-IN displays is in the Samtec TCSD family of cable strips. The proper connector, user-specified cable length, and connector configuration are supplied as a single unit. Consult your Samtec representative (1 800-SAMTEC9) for the cable/connector options.

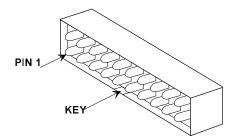


Figure 1. AM1 Data/Power Connector

AM8 Data and Power Connector

The standard data and power connector for the AM8 displays is a Samtec ASP-61606-01-M or equivalent, J1 20-pin, 2mm pitch (Figure 2. Connector Locations). The mating connector is in the Samtec TCSD family of cable strips. The proper connector, user-specified cable length, and connector configuration are supplied as a single unit. Consult your Samtec representative (1 800-SAMTEC9) for the cable/connector options.

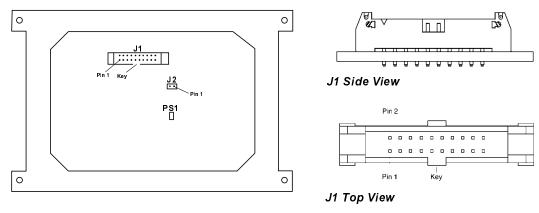
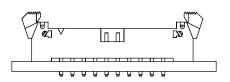
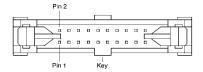


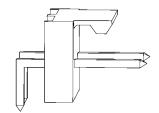
Figure 2. AM8 Connector Locations


Table 3. J1 Connector Pinouts.


Pin	Signal	Description	Pin	Signal	Description
1	UD1	Video data (upper)	2	UD0	Video data (upper)
3	UD3	Video data (upper)	4	UD2	Video data (upper)
5	LD1	Video data (lower)	6	LD0	Video data (lower)
7	LD3	Video data (lower)	8	LD2	Video data (lower)
9	CP2	Pixel clock	10	GND	Ground
11	CP1	Line pulse	12	GND	Ground
13	S	Frame pulse	14	GND	Ground
15	GND	Ground	16	GND	Ground
17	$V_{\rm L}$	+5 V logic supply	18	$V_{\rm L}$	+5 V Logic supply
19	V _H	+12/24 V Display supply	20	V _H	+12/24 V Display supply

Locking Power and Data Connector

The AM8 IN display may be ordered with an optional 20 pin, 2 mm through-hole locking male header, Samtec EHT-110-01-S-D or equivalent. **The locking connector is standard on the AM8 ET.** The locking connector adds 2.0 mm to the display depth.


The Samtec mating connector for the non-locking power and data connector on the AM1 and AM8 IN will mate with the locking connector. Compatibility with non-Samtec equivalents should be verified before use.

Dimming Connector J2

An analog dimming circuit is standard on the AM8 IN and AM8 ET. The J2 dimming connector is a Molex 2-pin, right angle locking male, part number 22-12-2024. The recommended mating connector is a Molex 22-01-3027 (housing) and 08-52-0123 (crimps, 2 per housing).

Additionally the crimp housing will need crimp terminals to connect the wires, Molex 2759 or 6459 can be used. Molex crimp terminal 41527 is recommended for applications with high vibration requirements.

For a discussion of the dimming feature, refer to the Dimming section below, under Optical Performance.

Interfacing

This dual scan LCD-type video interface provides a low cost, flexible method for controlling display brightness, grayscale generation, and power consumption.

Many different chipsets are available for interfacing to flat panel displays like the Chips and Technologies 65XXX series, the SMOS 1351F, and the Cirrus Logic 754X or 6245 series. If your application does not require chip-level integration, there are many vendors that can supply board-level solutions for serial control, PC104, ISA, and many other interfaces. Planar Application Note 116 summarizes some of the options that have been used in the past with EL VGA displays.

Video Input Signals

The end of the top line of a frame is marked by S, scan start up signal as shown in Figure 3. The end of each row of data is marked by CP1 as shown in Figure 3 and Figure 4.

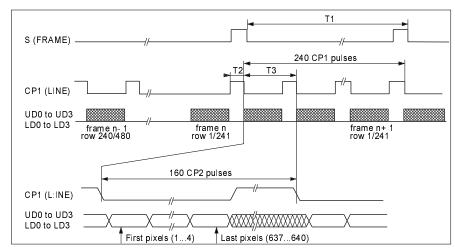


Figure 3. Video Input Timing Diagram.

Table 4. Video Input Timing.

Sym bol	Name	Min	Max	Units
T1	Frame time	8.3		ms
	Frame frequency		120	Hz
T2	CP1 High time	60		ns
Т3	CP1 Period	34.5		μs

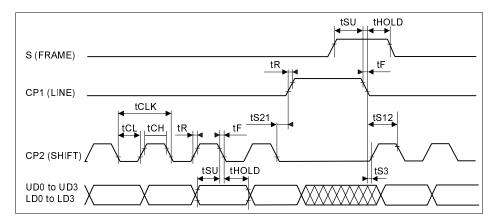


Figure 4. Setup and Hold Timing Diagram.

Table 5. Setup and Hold Timing.

Symbol	Name	Min.	Max	Unit
tS21	CP1 allowance from CP2	0		ns
tS12	CP2 allowance from CP1	200		ns
tS3	CP1 allowance to CP2	50		ns
tSU	Setup time	50		ns
tHOLD	Hold time	40		ns
tR	Rise time		30	ns
tF	Fall time		30	ns
tCLK	CP2 clock cycle	154		ns
tCL	CP2 clock low time	60		ns
tCH	CP2 clock high time	60		ns

Input signals **UD0** through **UD3** contain the video data for the upper screen and signals **LD0** through **LD3** contain the data for the lower screen. For example, four pixels (UD3:1,1–UD0:1,1) are sent to row 1 at the same time as four pixels (LD0:1,1–LD3:1,1) are sent to row 241. This results in eight pixels sent on each cycle of video clock **CP2**. Pixel information is supplied from left to right and from top to bottom. Video data for one row is latched on the fall of **CP1** (Figure 5).

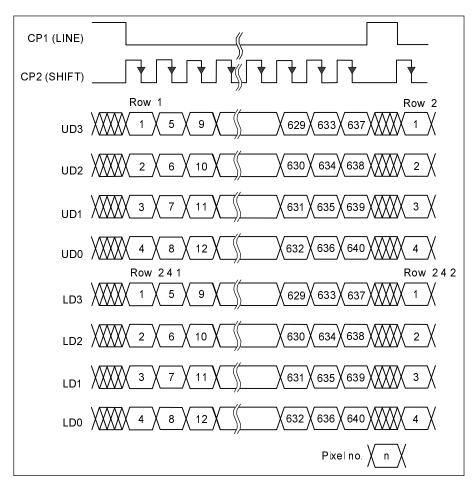


Figure 5. Data Format.

Self-Test Mode

The display incorporates a self-test mode composed of a 1x2 checkerboard pattern that inverts every few seconds. The self-test mode is entered by applying power to the display with the S signal static. The display remains in this mode until two (2) low-to-high transitions of the S signal are detected. The display then enters and remains in normal (user video driven) operation as long as power is applied. To enter self-test mode again, the display must be reset by cycling the $V_{\rm H}$ power input.

Optical Performance

Table 6. Optical Characteristics.

Luminance	L _{on} (areal), mi	n L _{on} (areal), typ	L _{off} (areal), max
AM1	40 cd/m^2	65 cd/m^2	0.3 cd/m^2
AM8 IN/ET	35 cd/m^2	49 cd/m^2	0.3 cd/m^2
	pical: Center, 120 I er and four corners,		
Non-uniformity			
AM1	35%	All pixels fully on @1	20 Hz
AM8 IN/ET	26%	Maximum difference	two of five points,
		using the formula:	
		BNU%=[1- (min_lum	/max_lum)] x 100%
Luminance Vari	ation (Temperature	∍)	
Maximum	15%	Across operating temp	perature range
Luminance Vari	ation (Time)		
Maximum			
AM1	20%	10,000 hours at 25°C	ambient
AM8 IN/ET	10%	10,000 hours at 25°C	ambient
Viewing Angle			
Minimum	160°		
Contrast Ratio	Minimum	Typical	
AM1	19:1	40:1	
AM8 IN/ET	35:1	70:1	
Minimum: @ 500	0 lux ambient, @ 12	20 Hz frame rate	

Dimming

There are two standard methods for dimming the AM displays. Frame rate dimming allows the brightness of the display to be lowered proportionally by reducing the frame rate. Analog dimming allows the brightness to be reduced with an external, user supplied potentiometer or electronic circuitry. The brightness range for analog dimming is from 100% to nearly 5% of the full brightness.

Frame rate dimming is performed within the application by lowering the frame rate of the video input signals. Because brightness is proportional to refresh rate, the display can be dimmed by adding pauses between every horizontal period.

The lowest possible frame rate (brightness) is dependent on the perceived flicker of the displayed image, but will most likely be around 60 Hz. For more information on frame rate dimming please see Planar Application Note 120.

The analog dimming feature utilizes a 50k ohm logarithmic external potentiometer, allowing manual control of the display's brightness. Analog dimming is standard on the AM8 IN and AM8 ET displays. The typical current for minimum brightness is $220~\mu A$.

Grayscale

Using the display's higher frame rate frequency, combined with flat panel controllers, it is possible to generate a wider range of usable grayscales through frame rate control and dithering.

Frame Rate Control generates true grayscales by turning pixels on and off over several frames of time. The user's eye sees each individual pixel as gray. The potential problems with this method are brightness-profile and shadowing, especially when used to shade larger areas.

Dithering generates grayscales by patterning the area to be shaded. The tested C&T controllers use a pattern of 4 (2x2) pixels to generate the dithered grayscales. When the area is viewed from a distance, it appears to the user's eye as gray. When viewed up close, the different brightness of the individual pixels can be observed.

Many of the grayscales that can be generated may flicker or swim. Through careful selection however, several grayscale patterns are available for most applications, particularly when the display is driven at its maximum frame rate frequency. Planar Application Note 119 is available for more information on generating grayscale images.

Reliability

The MTBF (mean time between failures) is a minimum of 50,000 hours at 25°C ambient, except for performance characteristics with an otherwise specified life expectancy.

Safety and EMI

The AM1 has been approved under UL1950. The specifications for the AM8 IN and AM8 ET have been submitted for review under UL 1950. The AM displays will not inhibit the end product from obtaining these certifications:

Safety: UL544, IEC950

EMI: FCC Part 15/J, Class B

EN55022 Level B

Environmental

Table 7. Environmental Characteristics.

Temperature	AM1	AM8 IN	AM8 ET	
Operating	-5 to +55°C	-25 to +65°C	-40 to +65°C	
Non-Operating	-40 to +75°C	-40 to +75°C	-40 to +75°C	
Operating Survival	-20 to +65°C	-40 to +70°C	-40 to +70°C	
Humidity				
Non-condensing	93% I	RH max +40°C per	IEC 68-2-3.	
Altitude	AM1	AM8 IN	AM8 ET	
Operating	0 to 5 km	0 to 18 km	0 to 18 km	
	(16k ft)	(58k ft)	(58k ft)	
Non-Operating	0 to 18 km (58k ft) per IEC 68-2-13			
Vibration				
Random	$0.02 g^2/Hz$			
	ASD level, 20-500 Hz per IEC 68-2-36, test Fdb			
Shock				
Half sine wave	100 g, 4 ms 18			
	(3 each, 6 surfa	(3 each, 6 surfaces) per IEC 68-2-27, test Ea		

Mechanical Characteristics

Figures 6 and 7 illustrate the mechanical dimensions of each display.

Table 8. Dimensions and Weight.

Display Size	266.0 x 192.0 (W x H)
Display Depth	20.0 (AM1), 15.8 (AM8 IN), 17.8 (AM8 ET)
Active Area	211.1 x 158.3 (W x H)
Fill Factor	57%
Pixel Pitch	0.33 x 0.33
Pixel Size	0.25 x 0.25
Weight (typical)	650 g

All dimensions are in millimeters, unless otherwise noted.

Component Envelope

Figure 6 illustrates the distance components extend behind the display. Tall components do not necessarily fill this area. Planar reserves the right to relocate components within the constraints of the component's envelope without prior customer notification. For this reason, Planar advises users to design enclosure components to be outside the component envelope.

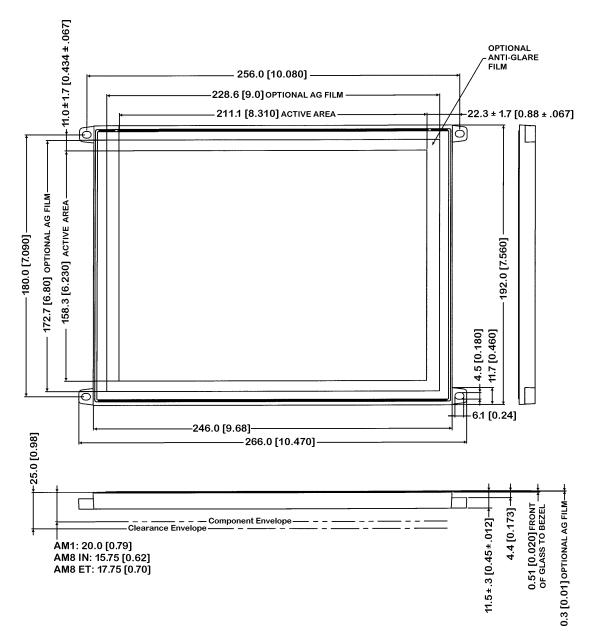


Figure 6. AM Series Dimensions

Dimensions are in millimeters, brackets are in inches. *Tolerances, unless otherwise stated, are ± 0.2 mm.*

EL640.480-AM Series

Description of Warranty

This description is not the full warranty, and should not be construed as a substitute for the full warranty. A copy of the full warranty is available upon request.

Planar warrants that the goods it sells will be free of defects in materials and workmanship, and that these goods will substantially conform to the specifications furnished by Planar, and to any drawings or specifications furnished to the Seller by the Buyer if approved by the Seller. This warranty is effective only if Planar receives notice of such defect or non-conformance during the period of warranty, which begins the day of delivery.

The goods Planar sells are warranted for a period of one year unless otherwise agreed to by Planar and the Buyer. The Buyer must return the defective or non-conforming goods, upon request, to Planar not later than 30 days after Planar's receipt of notice of the alleged defect or non-compliance. Buyer shall prepay transportation charges, and Planar shall pay for return of the goods to the Buyer. No goods are to be returned to Planar without prior permission.

The warranty does not apply in cases of improper or inadequate maintenance by the Buyer, unauthorized modification of the goods, operation of the goods outside their environmental specifications, neglect or abuse of the goods, or modification or integration with other goods not covered by a Planar warranty when such modification or integration increases the likelihood of damage of the goods.

Ordering Information

Product	Part Number	Description
EL640.480-AM1	996-0268-00	10.4" diagonal, 640x480 VGA display 0 to 55°C operating temperature
EL640.480-AM8 IN	996-0268-18	10.4" diagonal, 640x480 VGA display -25 to 65°C operating temperature, analog dimming, low profile, optional 24 V supply
EL640.480-AM8 ET	996-0268-16	10.4" (mm) diagonal, 640x480 VGA display -40 to 65°C operating temperature, analog dimming, low profile, optional 24 V supply, locking data and power connector.

Design and specifications are subject to change without notice.

Planar Systems continues to provide optional, and in many cases custom, features to address the specific customer requirements. Consult Planar Sales for pricing, lead time and minimum quantity requirements.

Support and Service

Planar Systems, Inc. is a US company based in Beaverton, Oregon and Espoo, Finland, with a world-wide sales distribution network. Full application engineering support and service are available to make the integration of Planar displays as simple and quick as possible for our customers.

RMA Procedure: For a *Returned Material Authorization* number, please contact Planar International Ltd., or Planar America, Inc. with the model number(s) and serial number(s). When returning goods for repair, please include a brief description of the problem, and mark the outside of the shipping container with the RMA number.

North & South America OEM Sales	Europe & Asia-Pacific OEM Sales	Federal & End-User System Sales
Planar America, Inc.	Planar International Ltd.	Planar Advance, Inc.
1400 NW Compton Drive	P.O. Box 46	P.O. Box 4001
Beaverton, OR 97006-1992	Olarinluoma 9	13950 Karl Braun Drive
Telephone (503) 690-6967	FIN-02201 Espoo, Finland	Beaverton, OR 97076-4001
FAX (503) 690-1493	Telephone +358-9-42 001	Telephone (503) 614-4111
sales@planar.com	FAX +358-9-422 143	FAX (503) 614-4101
Ŭi —	intlsales@planar.com	display_solutions@planar.com

Visit the Planar web site: http://www.planar.com