

EVAL_6EDL7141_FOC_3SH 1 kW user manual

Three-phase motor inverter board using MOTIX[™] 6EDL7141

Author: Sergey Voskanyan

About this document

Scope and purpose

This user manual presents a detailed description of the functionalities of the Infineon EVAL_6EDL7141_FOC_3SH evaluation power board for battery-powered brushless direct current (BLDC) motor drives. This board is used to drive three-phase BLDC motors using field-oriented control (FOC) with sensorless feedback on an XMC[™] series microcontroller. The inverter portion uses an OptiMOS[™] 5 power MOSFET 60 V technology (sTOLL) 7 x 8 mm² power MOS package for each phase of the three-phase inverter. An onboard XMC[™] microcontroller provides easy-to-use control firmware, and an onboard debugger (OBD) using **SEGGER J-Link** technology provides an easy-to-use interface from PC to board with Infineon motor control GUI.

Intended audience

This document is intended for manufacturers of battery-powered power tools, engineers familiar with three-phase motor drive systems and motor controls, and users wanting three-phase motor control with FOC.

Infineon components featured

- MOTIX[™] 6EDL7141 three-phase motor control gate driver IC for battery-supplied BLDC motor control
- XMC1404-Q064X0064 32-bit microcontrollers with Arm[®] Cortex[®]-M0 with 64 kB Flash
- IST011N06NM5 60 V, 1.1 mΩ sTOLL N-channel power MOSFET
- XMC4200-Q48K256 32-bit microcontrollers with Arm[®] Cortex[®]-M4 with 256 kB Flash
- IFX54441LD V33 micropower, low-noise, 3.3 V fixed low-dropout voltage regulator
- ESD5V3U2U-03F, ultralow capacitance ESD diode array

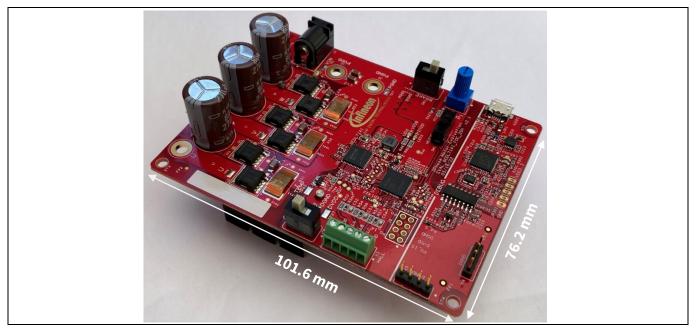


Figure 1 Isometric image of evaluation power board (EVAL_6EDL7141_FOC_3SH)

Important notice

Important notice

"Evaluation boards and reference boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "reference boards").

Environmental conditions have been considered in the design of the evaluation boards and reference boards provided by Infineon Technologies. The design of the evaluation boards and reference boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The evaluation boards and reference boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation boards and reference boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation boards and reference boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The evaluation boards and reference boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all evaluation boards and reference boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The evaluation boards and reference boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective evaluation board or reference board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the evaluation boards and reference boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the evaluation boards and reference boards does not cause any harm to persons or third-party property.

The evaluation boards and reference boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the evaluation boards and reference boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Safety precautions

Safety precautions

Note:

Please note the following warnings regarding the hazards associated with development systems.

Table 1	Safety precautions
	Warning: The DC-link potential of this board is up to 100 V DC. Ensure the polarity is correct, otherwise the board will be damaged!
	When measuring voltage waveforms by oscilloscope, high-voltage differential probes are required. Failure to use correct probes may result in damage, personal injury or death.
	Warning: The evaluation or reference board contains DC bus capacitors, which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
	Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.
4	Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.
<u></u>	Caution: The heatsink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.
	Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.
	Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.
	Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.
	Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

Table of contents

Abou	t this document	1
Impo	rtant notice	2
Safet	y precautions	3
Table	e of contents	4
1	Introduction	5
1.1	Overview	
1.2	Board parameters and technical data	.6
1.3	Main features	.6
1.4	Block diagram	.7
2	Hardware description	8
2.1	Power supplies	.8
2.2	Gate drivers	.9
3	Control and firmware	LO
3.1	Field-oriented control	10
3.2	PID tuning	10
4	System operation	12
4.1	System start-up	12
4.1.1	Operating waveforms	12
4.1.2	Power measurements	15
4.1.3	Thermal measurements	16
5	Schematics and PCB layout	17
5.1	EVAL_6EDL7141_FOC_3SH schematic	
5.2	Layout	
5.3	Bill of materials	<u>2</u> 9
Refer	ences	32
Revis	ion history	33

1 Introduction

1.1 Overview

The EVAL_6EDL7141_FOC_3SH evaluation board is powered with a MOTIX[™] 6EDL7141 three-phase motor control gate driver IC for BLDC motor control with onboard XMC[™], OBD and IST011N06NM5 OptiMOS[™] 5 60 V power MOSFET for battery-powered applications. The MOTIX[™] 6EDL7141 has an integrated buck converter to supply 3.3 V or 5 V for digital logic. The evaluation board is populated with a low-side 0.5 mΩ shunt resistor for each bridge inverter section for sensorless FOC operation. The board has also a Hall sensor connection for customers who will develop their own motor control code using the Hall sensor for FOC-sensored applications. The evaluation board is a full system solution board ready to be plugged in to the motor. The only items needed are the motor, power supply and PC for GUI control. The board is populated with a fuse for inverter overcurrent protection (OCP) and also has reverse polarity protection components. The leg overcurrent sensing using MOTIX[™] 6EDL7141 could be configured using Infineon motor control GUI. The board is also populated with a temperature sensor, and user LEDs to extend the functionality of the board. A picture of the board is shown in Figure 2.

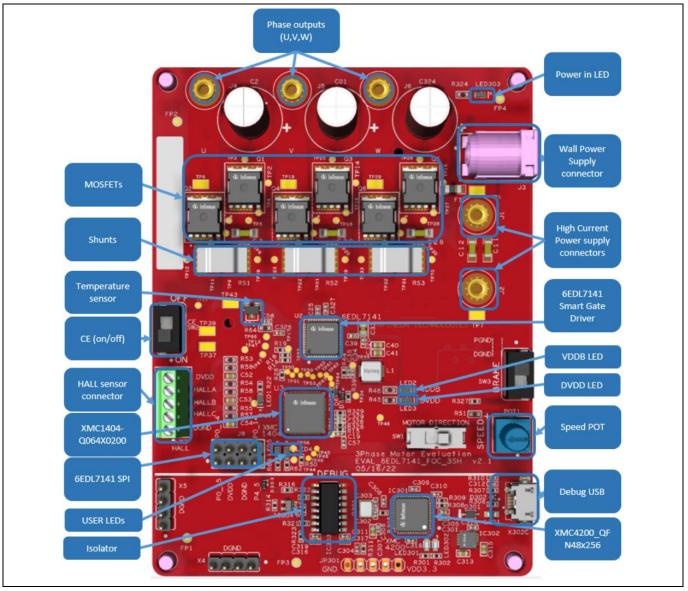


Figure 2 Evaluation board (EVAL_6EDL7141_FOC_3SH)

1.2 Board parameters and technical data

 Table 2 shows the evaluation board parameters and technical details.

Table 2 Parameters						
Parameter	Symbol	Conditions	Value	Unit		
Input DC voltage	V _{IN}	DC voltage input	36~42	V		
Buck output 12 V	+12 V	Maximum 1 A output current	12 ±5%	V		
LDO output 5 V	+5 V	Maximum 300 mA output current	5 ±5%	V		
Maximum inverter switching frequency	f _{sw}	V _{cc} = 12 V	20	kHz		
Maximum output phase current	I _{phase_peak}	$T_A = 25^{\circ}C$, $T_C = 100^{\circ}C$, air cooling, $f_{sw} = 20$ kHz	282	A _{peak}		
Maximum output power	Pout	Sufficient cooling applied to maintain MOSFET temperature below 125°C	10001	W		
Maximum output power with heatsink	Pout	With supplied heatsink as tested	1000	W		
Peak output power with Pout heatsink		Peak power for 2 minutes with heatsink, or maintain MOSFET temperature below 125°C with forced air cooling	1500	W		

PCB characteristics

Material	1.6 mm thickness, 2 oz. copper each layer, six layers	FR4	
Dimensions	Length x width	76.2 x 101.6	mm

1.3 Main features

The main features of the EVAL_6EDL7141_FOC_3SH evaluation board using **MOTIX™** 6EDL7141 **three-phase motor control gate driver IC** for products using BLDC or PMSM motors are:

- Single sTOLL power MOSFET at each bridge of the three-phase inverter
- 36 V nominal input and 42 V maximum input voltage
- 1000 W continuous power
- 1.5 kW maximum peak power for 2 minutes
- Fuse for OCP
- Reverse polarity protection
- 3.3 or 5.0 V onboard generation for compatible digital interface
- Onboard debugger powered by **SEGGER J-Link** technology
- Hardware supports both block commutation control and FOC using Hall sensors or back EMF

¹ Continuous operation at full load may require forced air cooling.

1.4 Block diagram

A block diagram of the three-phase inverter board is shown in **Figure 3**. In this design, the **MOTIXTM** 6EDL7141 was programmed to produce 12 V gate drive voltage and an integrated buck converter creates 8 V output with 500 kHz switching frequency. The buck converter output is fed to an integrated linear regulator, which is set to output 5 V DVDD to power up the onboard XMC1404 and digital control signals. Alternatively, it is also possible to set 3.3 V output by GUI configuration or by changing external resistor R44. OCP is configured by GUI to sense low-shunt voltage drop for each leg. Hall sensor inputs are populated on this design for future development of sensored FOC control by the customer. They are not currently used in the FOC FW provided, and therefore motor Hall sensors do not need to be connected to this board when using Infineon FOC using GUI.

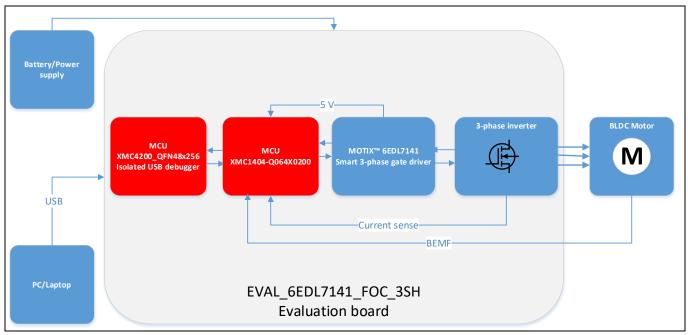


Figure 3 EVAL_6EDL7141_FOC_3SH block diagram

2 Hardware description

The evaluation board PCB top and bottom 3D views are shown in **Figure 4**. The evaluation board has all the necessary functional blocks to drive a three-phase BLDC motor. The board is divided into three logical sections – section 1: OBD, section 2: digital control, section 3: power inverter. An aluminum heatsink is attached to the bottom side of the PCB under the inverter section. An insulator made of thermal insulating material (TIM) is placed between the heatsink and the MOSFETs to eliminate any potential short-circuit caused by the heatsink and to provide a flat, smooth surface to transfer heat. The heatsink is designed to use with a Z-clip and two-pin configuration, which reduces the need for screwing and drilling of the heatsink.

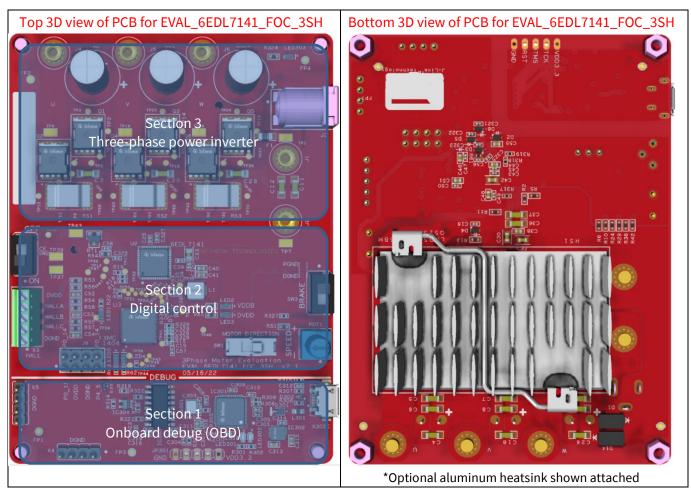


Figure 4 PCB top and bottom view of the evaluation board

2.1 Power supplies

The integrated sink-buck converter is configurable to set 7, 10, 12 or 15 V to drive the charge pump and internal integrated LDO. Buck could be configured to 500 kHz or 1 MHz. On this board 12 V output at 500 kHz frequency is configured. LDO is configurable to deliver 5 or 3.3 V to supply external digital components with maximum 300 mA. To power the XMC1404 microcontroller on this board LDO is set for 5 V settings, which could be changed to 3.3 V by hardware resistor R44 or GUI settings. The onboard power supply architecture is shown in **Figure 5**. Gate driver architecture of the MOTIX[™] 6EDL7141 is shown in **Figure 6**.

Hardware description

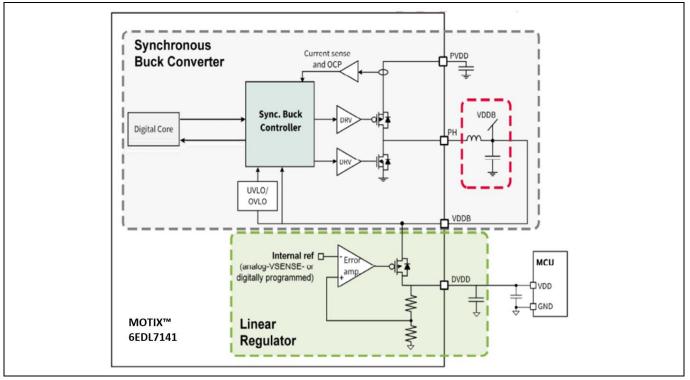
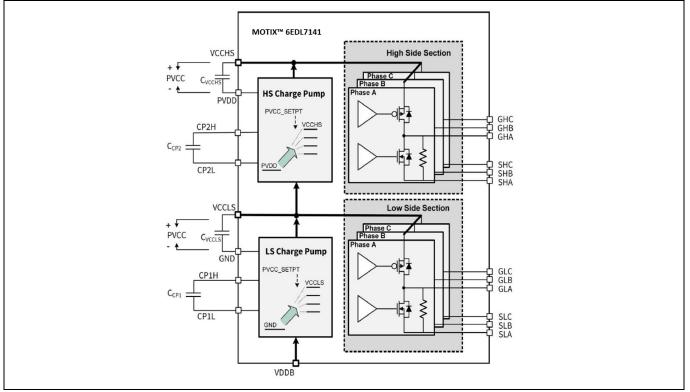



Figure 5 Integrated buck and LDO regulators – block diagram of the MOTIX[™] 6EDL7141

2.2 Gate drivers

Infineon's MOTIX[™] 6EDL7141 smart gate driver IC has been implemented in this design for driving the three-phase inverter MOSFETs.

3 Control and firmware

3.1 Field-oriented control

FOC, also known as vector control, is implemented on this board. FOC is a control method to generate a threephase sinusoidal signal to maximize the efficiency of the inverter when targeting high-power applications. Infineon's FOC algorithm requires real-time feedback of the current and rotor position. Phase-current feedback is provided by using a single shunt on each leg of the inverter. It is also possible to develop a Hall sensor feedback reading with a FOC-sensored algorithm using this board, because the board is also populated with Hall sensor inputs. Infineon's proprietary FOC algorithm parameters can be adjusted to enable a smooth transition from V/F open-loop to closed-loop FOC. The block diagram of a typical FOC block commutation system with Hall sensors is shown in **Figure 7**.

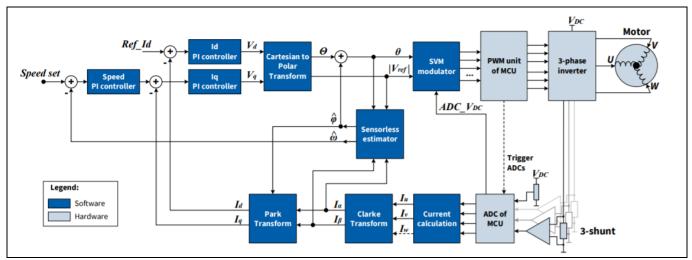
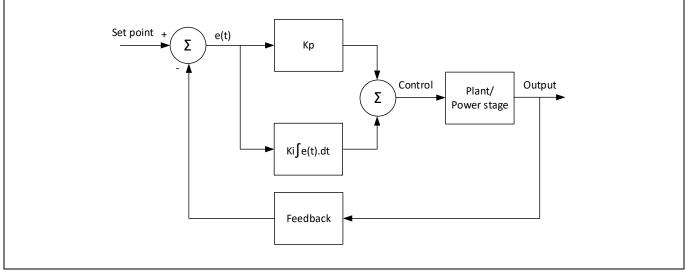



Figure 7 Block diagram of FOC commutation algorithm

3.2 PID tuning

Infineon's motor control GUI has a PID tuning option to fine-tune the control and feedback loop.

Control and firmware

The P-I controller is a widely used feedback control mechanism, which continuously calculates an error value e(t) that is the difference between the set-point of the measured output quantity (here, speed in RPM) and the actual measured value. In this case the speed is derived by the firmware from the Hall sensor input signals. The error value is fed to the proportional calculator, where it is multiplied by K_P, and to the integral calculator, where it is integrated with respect to time and the result multiplied by K_I. These two results are then added together to provide a control value, which is applied to the power stage to provide a correction that will adjust the output to match the set-point. The goal is to optimize the values of K_P and K_I for the specific system (inverter and motor) to achieve minimal delay and overshoot when changes are made to the commanded speed.

4.1 System start-up

To power up the board only one power supply, V_{IN} 36 to 42 V, is needed as the **MOTIX™** 6EDL7141 internal integrated buck and LDO will provide MOSFET gate voltage and digital logic voltage. The motor speed is set by adjusting hardware POT1 or by GUI software control. Parameters of the gate drivers are programmed and modified using BPA motor control GUI. The GUI provides an easy-to-use interface to modify and monitor parameters and provide motor status.

4.1.1 Operating waveforms

Figure 9 and **Figure 10** give an overview of the inverter switching waveforms FOC method at 3700 RPM with an input power of 1000 W at 36 V input voltage. **Figure 12** and **Figure 13** show detailed switching waveforms of gate-source and drain-source voltages of both high-side and low-side MOSFETs for phase V, and also the phase V current.

At start-up the GUI is configured to start with open-loop with transition to closed-loop once the initial userconfigured motor speed is reached. **Figure 11** shows the three-step start-up process with maximum efficiency tracking (MET) current waveform for phase V. The MET is a transition from open-loop to closed-loop. This is an important stage to provide a smooth transition from open-loop to closed-loop FOC and ensure the stator flux is perpendicular to the rotor flux. It is also possible to configure the start-up method using GUI to direct FOC, which with start with direct FOC control.

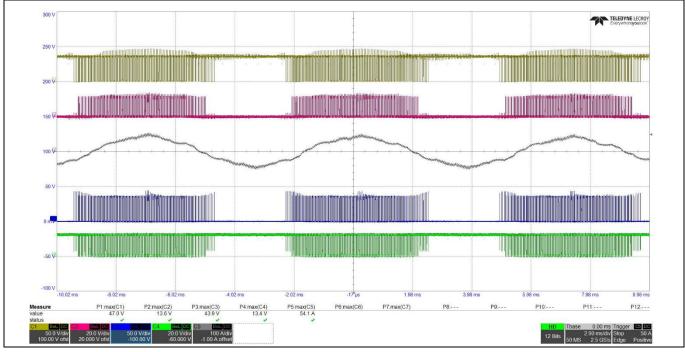


Figure 9 High-side and low-side MOSFET voltages and current for phase V (2 ms/div); V_{DS_HS} (yellow), V_{GS_HS} (pink), V_{DS_LS} (blue), V_{GS_LS} (green), I_{PHASE_V} (gray)

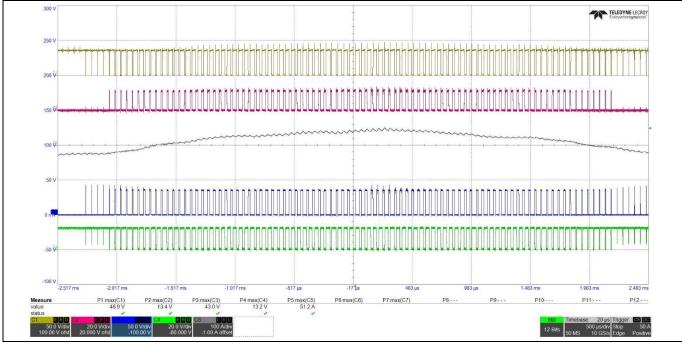


Figure 10High-side and low-side MOSFET voltages and current for phase V
(500 μs/div); V_{DS_HS} (yellow), V_{GS_HS} (pink), V_{DS_LS} (blue), V_{GS_LS} (green), I_{PHASE_V} (gray)

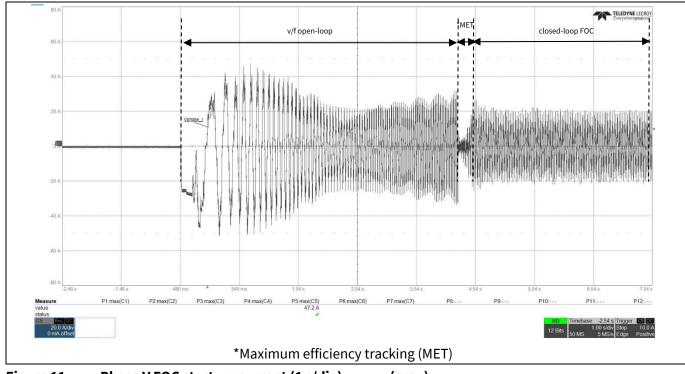


Figure 11 Phase V FOC start-up current (1 s/div); IPHASE_V (gray)

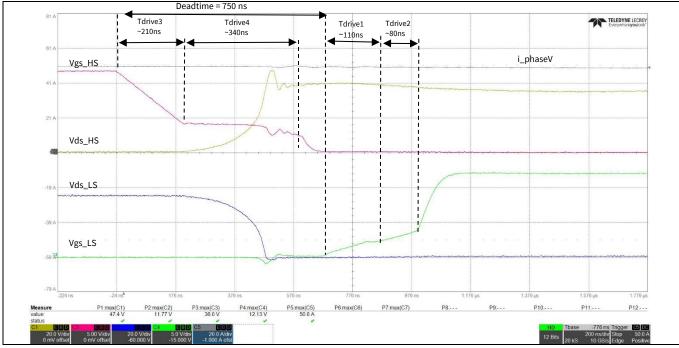


Figure 12High-side and low-side MOSFET gate-source and drain-source voltages for phase V during
high-side MOSFET turn-off and low-side MOSFET turn-on (100 ns/div); V_{GS_HS} (blue), V_{DS_LS}
(green), V_{GS_HS} (yellow), V_{DS_LS} (pink)

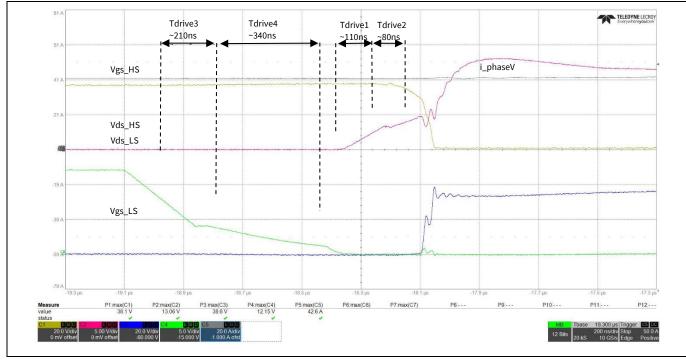


Figure 13 High-side and low-side MOSFET gate-source and drain-source voltages for phase V (1 ms/div) for high-side MOSFET turn-on and low-side MOSFET turn-off (200 ns/div); V_{GS_HS} (blue), V_{GS_LS} (yellow), V_{DS_HS} (green), V_{DS_LS} (pink)

4.1.2 **Power measurements**

		Element 1	Element 2	Element 3	Element 4
Urms	[V]	36.59	15.34	15.15	15.14
lrms	[A]	29.76	35.3	36.6	34.0
Р	[\]]	1071.19	348.50	364.80	337.20

Figure 14 Input and output measurements with an input power of 500 W at 36 V input voltage

In **Figure 14**, the results for Element 1 represent the DC input to the inverter. Elements 2, 3 and 4 are connected to the output phases U, V and W, respectively.

The total input power is 1071.19 W. Total output power is equal to 348.5 W + 364.8 W + 337.2 W = 487.5 W for an input power of 1050.5 W.

This gives an efficiency of $\frac{1050.5}{1071.19} * 100 = 98\%$ with losses of 20.7 W.

4.1.3 Thermal measurements

Thermal images were taken after 12 minutes of operation to allow the components to rise and reach steady-state at an input power of 1000 W at 36 V input voltage, as shown in **Figure 15**. No forced air cooling was used.

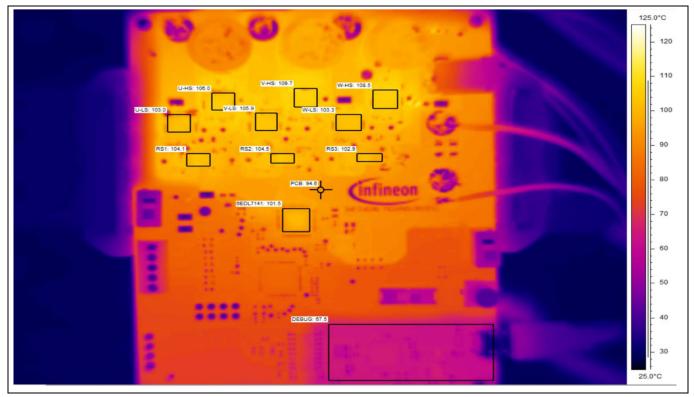
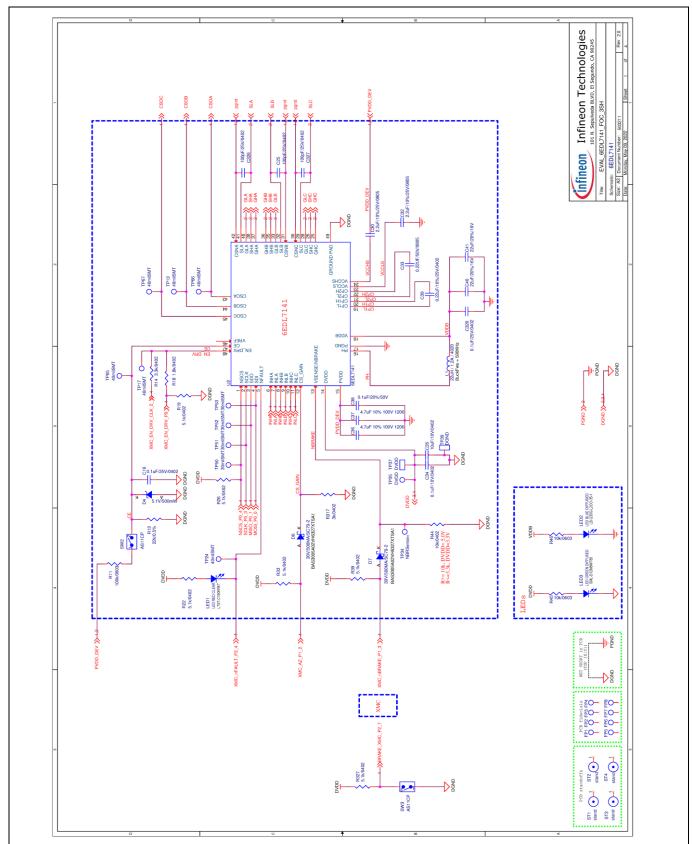


Figure 15 Thermal measurements at 36 V input, 1000 W load at 3700 RPM 20 in-lb (2.25 N-m) torque

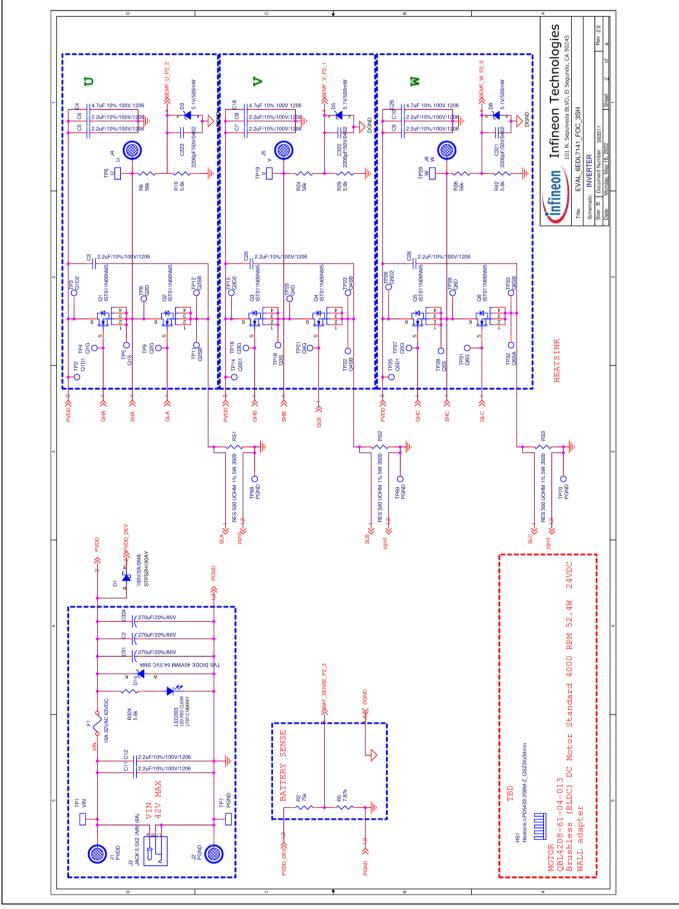
The temperature above shows the system at equilibrium after running for 12 minutes with 1000 W input power. **Table 3** summarizes the measurements.


Table 3	Temperature of the components
---------	-------------------------------

Point of interest	°C
Phase U high-side MOSFET	106
Phase U low-side MOSFET	103
Phase U shunt	104.1
Phase V high-side MOSFET	109.7
Phase V low-side MOSFET	105.9
Phase V shunt	104.5
Phase W high-side MOSFET	108.5
Phase W low-side MOSFET	103.3
Phase V shunt	102.9
6EDL7141	101.5
РСВ	94.6

EVAL_6EDL7141_FOC_3SH 1 kW user manual Three-phase motor inverter board using MOTIX[™] 6EDL7141 Schematics and PCB layout

5 Schematics and PCB layout



5.1 EVAL_6EDL7141_FOC_3SH schematic

Figure 16 MOTIX[™] 6EDL7141 schematic

User Manual

Battery input and inverter schematic

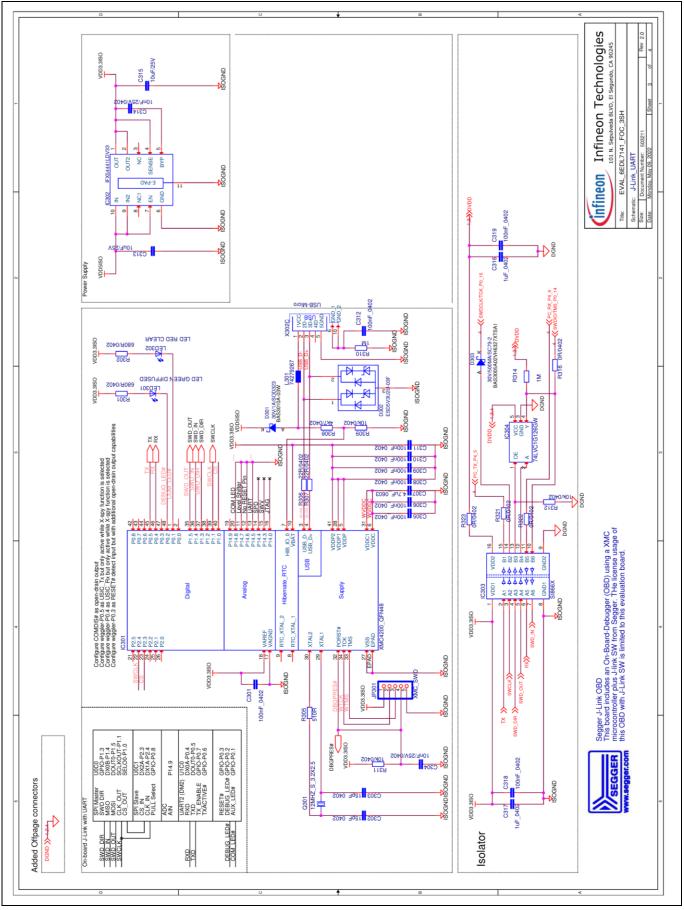


Figure 18 Onboard debugger schematic

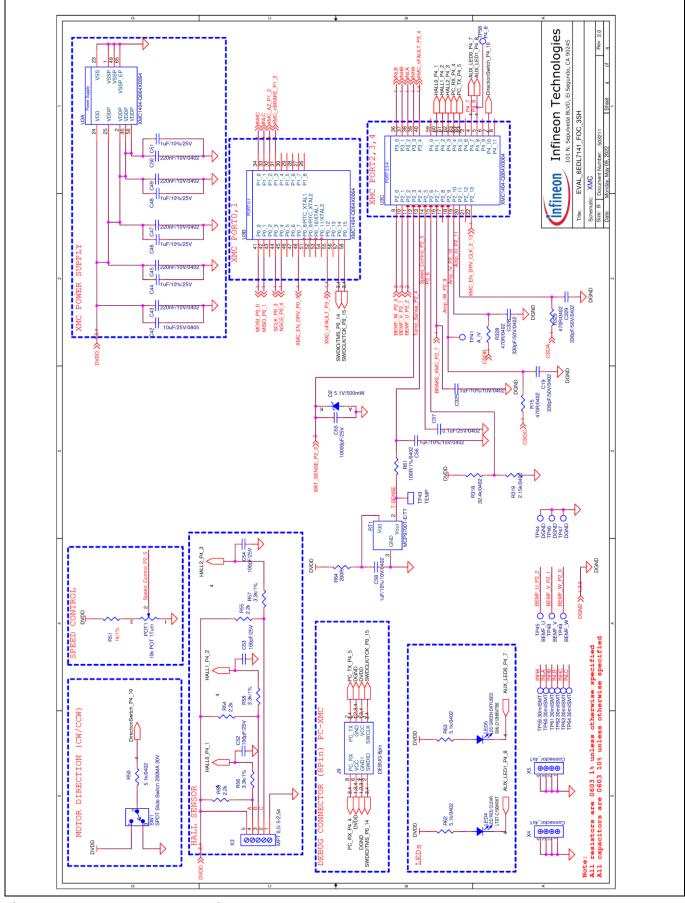


Figure 19 XMC1404 schematic

5.2 Layout

The EVAL_6EDL7141_FOC_3SH board consists of six copper PCB layers. All the layers have 2 oz. copper and the board size is 3.0 x 4.0 inches (76.2 x 101.6 mm). The board material is FR4 grade with 1.6 mm thickness. The Gerber files are available from the downloads section of the **Infineon website**. A login is required to download this material.

The PCB was logically divided into three areas to provide better routing for each section, as well as solid signal separation and shielding.

• Section 1 is the digital debugger section, which consists of all the logic components required to communicate with a PC via USB connection.

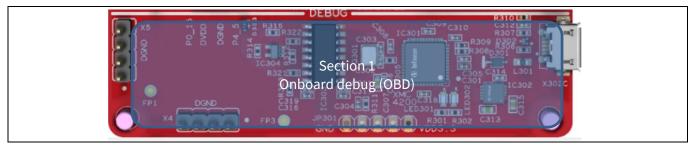


Figure 20 PCB layout section 1 – OBD

Section 2 is the digital controller section, which includes Infineon's XMC1404-Q064X0064 32-bit microcontroller and MOTIX[™] 6EDL7141 three-phase gate driver. This is a mostly low-digital logic-level section, except for the path to the power gate driver, which is based on the board input voltage (36 to 42 V). XMC1404 holds firmware for motor control, sets communication with the gate driver and processes all digital logic.

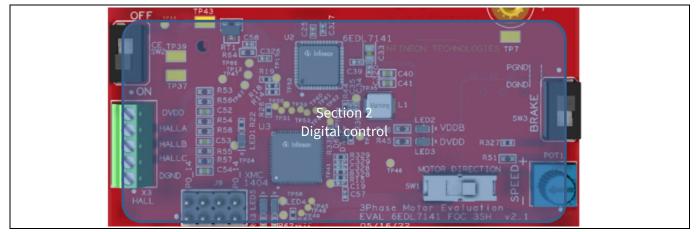
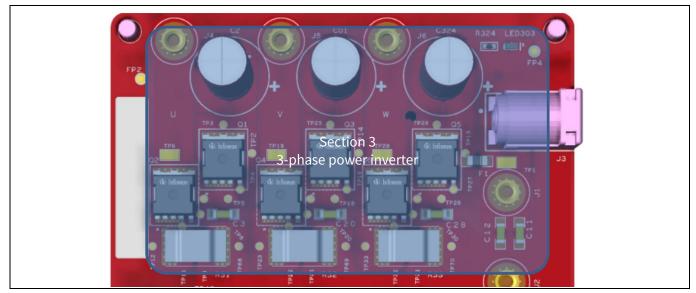
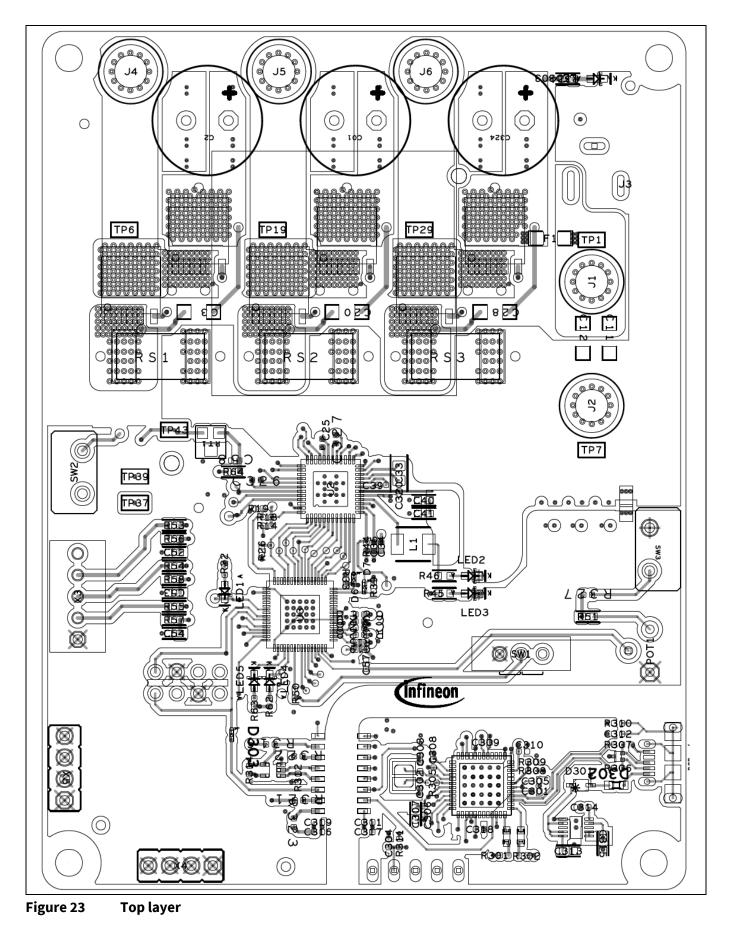


Figure 21 PCB layout section 2 – digital control

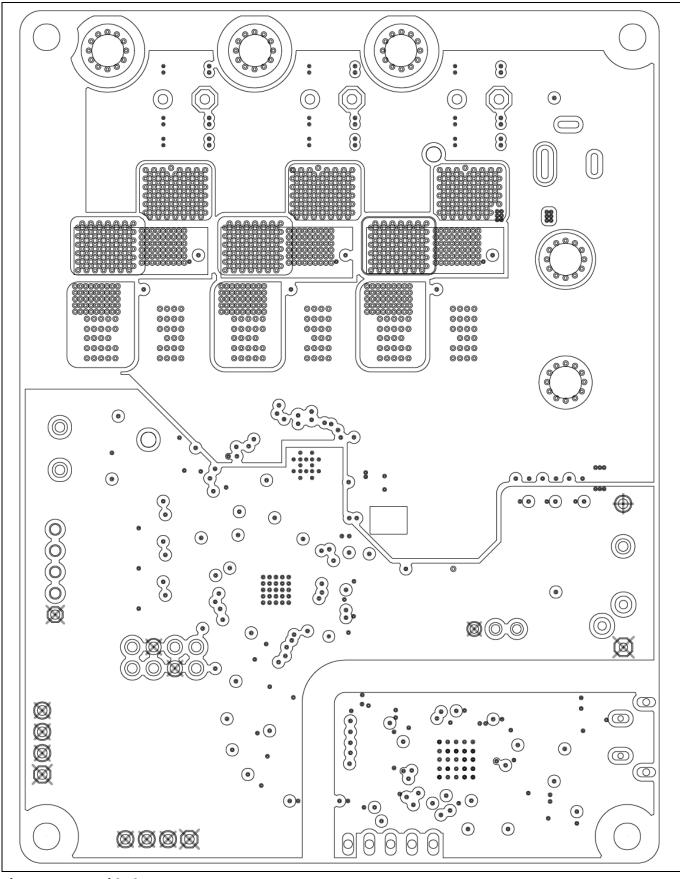
 Section 3 is the three-phase inverter section, which holds six Infineon IST011N06NM5 MOSFETs, 60 V, 1.1 mΩ sTOLL input bypass capacitor, and low-side shunt resistors for current sense (CS). The low-side CS resistors must be positioned as close as possible to the inverter to minimize parasitic inductance and provide a shared ground loop for the inverter.

Schematics and PCB layout

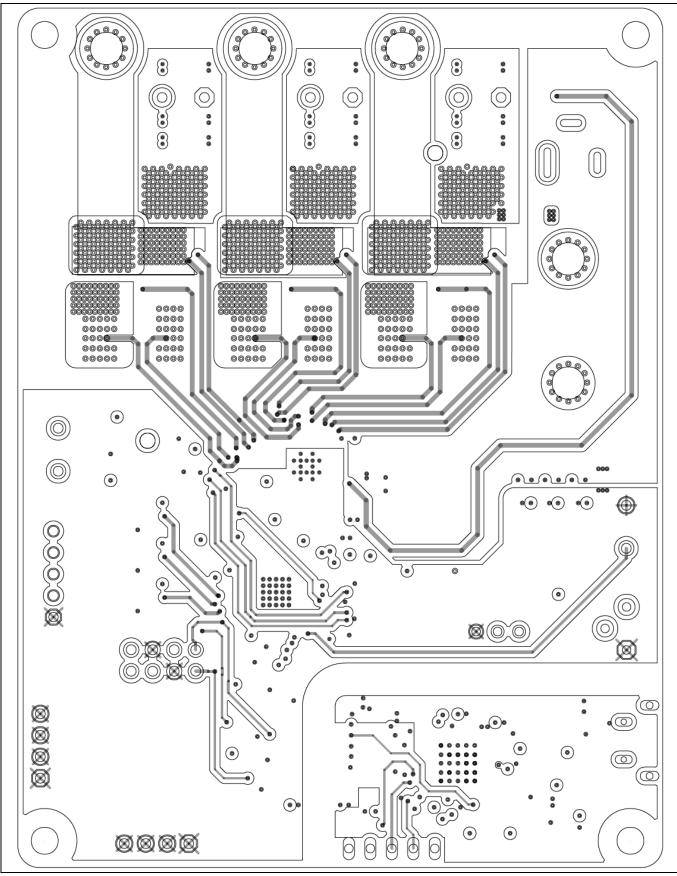
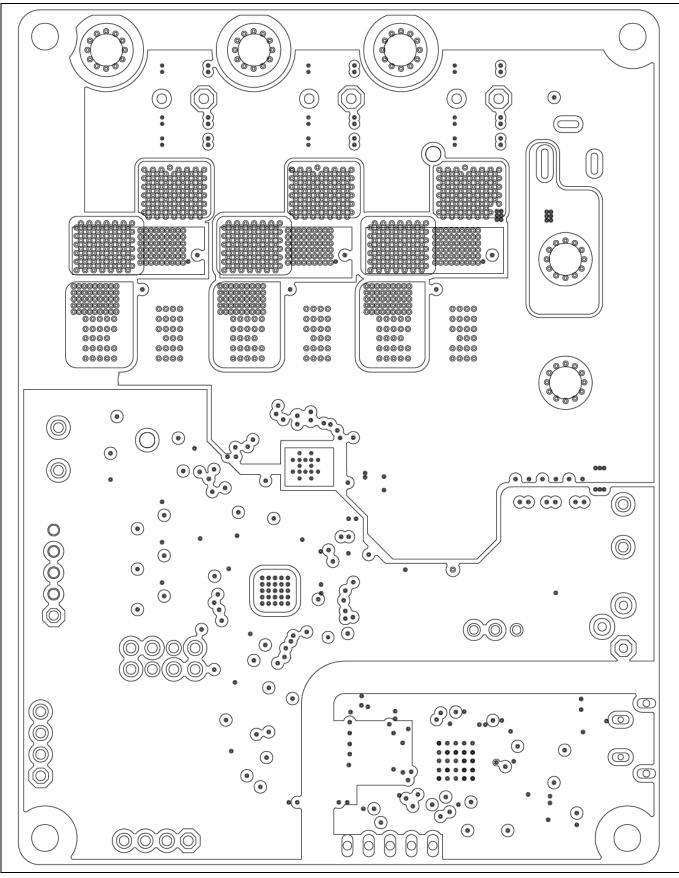


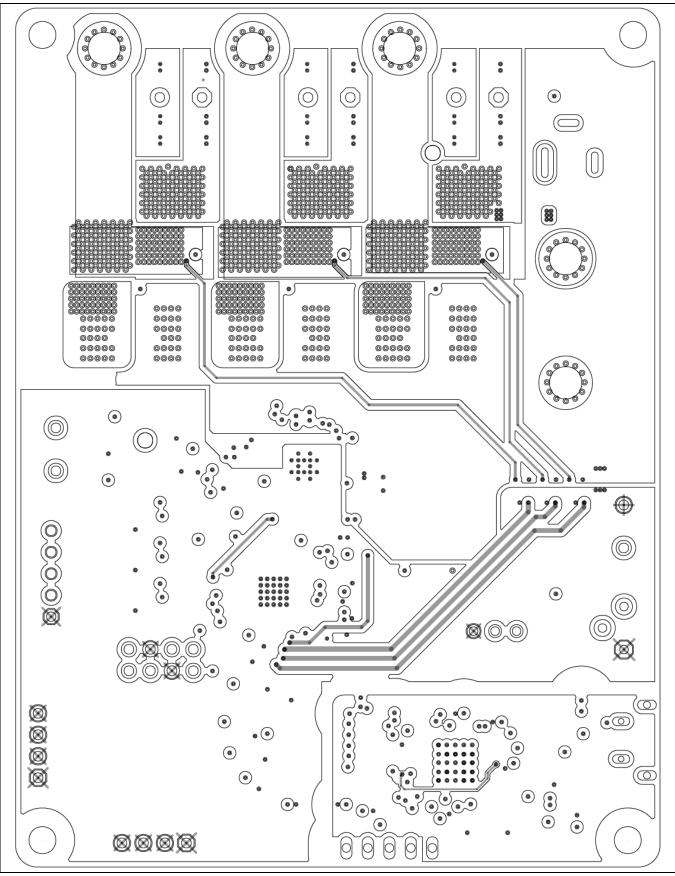

Figure 22 PCB layout section 3 – three-phase power inverter

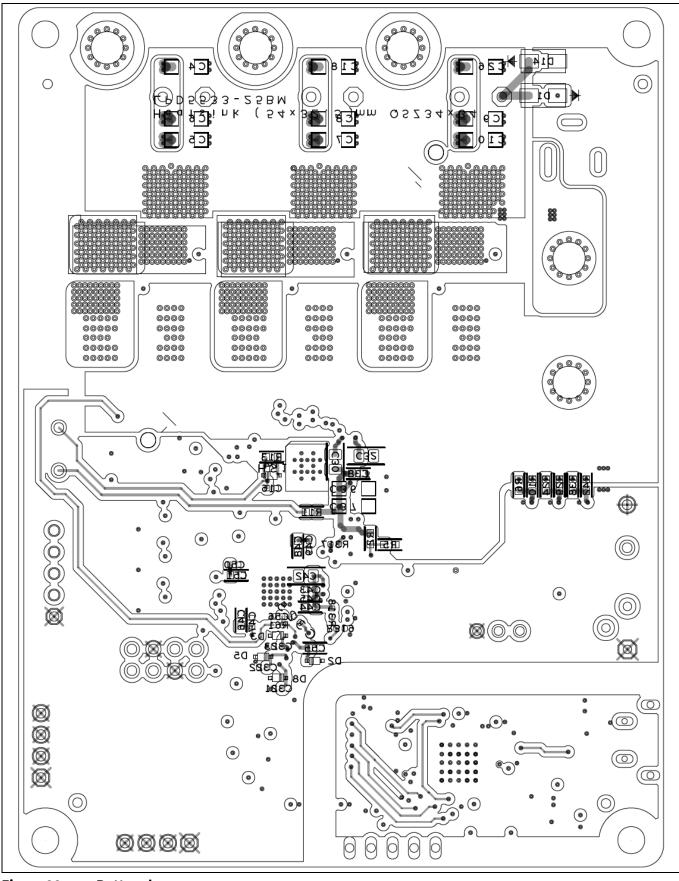
Layout was optimized for FOC current sensing by routing the CS path to the controller in the mid 2 layer with the ground layer to the adjacent layer. When routing noise sensitive signals the designer must also consider the impact of electrical noise, especially when the current is low, as any nearby high dv/dt signal can compromise the integrity of the CS signal.


The design incorporates via in-pad plated-over (VIPPO) technology to increase vertical heat spread and provide high power dissipation for the inverter section, shunts and IC, as well as other devices that require heat spread.

The top layer, mid 1 layer, mid 2 layer, mid 3 layer, mid 4 layer and bottom layer PCB layouts are shown in **Figure 23** to **Figure 28**.


Figure 25 Mid 2 layer



5.3 **Bill of materials**

The complete bill of materials (BOM) is available from the downloads section of the Infineon website. A login and product registration might be required to download this material.

Table 4	4	BOM of the evaluation board	EVAL_6EDL7141_	FOC_3SH	
ltem	Qty.	Description	References	Manufacturer	Part number
			C01, C2,		
1	3	270 μF, 80 V, 20%, radial	C324	United Chemi-Con	EKYB800ELL271MK20S
			C3, C5, C6,		
			C7, C8, C9,		
			C10, C11,		
2		2 2 5 100 V 100/ 100C	C12, C20,		
2	11	2.2 μF, 100 V, 10%, 1206	C28	TDK Corporation	C3216X7S2A225K160AB
3	5	4.7 μF, 100 V, 10%, 1206	C4, C18, C26, C36, C37	Murata	GRM31CC72A475KE11L
3	5	4.7 με, 100 ν, 10%, 1208	C16, C57,	Mulata	GRMSICCIZA4ISKLIIL
4	3	0.1 μF, 25 V, 10%, 0402	C320	Samsung	CL05A104KA5NNNC
-		ο.: μι, 25 ν, 10/0, 0402	C19, C328,	Samsung	
5	3	330 pF, 50 V, 10%, 0402	C329	Murata	GCM155R71H331KA37D
-			C25, C326,		
6	3	100 pF, 25 V, 5%, 0402	C327	Kemet	C0402C101J3GACTU
7	2	2.2 μF, 25 V, 10%, 0805	C30, C32	Samsung	CL21A225KAFNNNG
8	1	0.22 μF, 50 V, 10%, 0805	C33	Kemet	C0805C224K5RACAUTO
9	1	0.1 μF, 10 V, 10%, 0402	C34	Samsung	CL05A104KP5NNNC
10	1	10 μF, 10 V, 20%, 0402	C35	Samsung	CL05A106MP5NUNC
11	1	0.1 μF, 100 V, 10%, 0603	C38	Yageo	CC0603KRX7R0BB104
12	1	0.22 μF, 25 V, 10%, 0402	C39	Murata	GRT155R61E224ME01D
13	2	22 μF, 16 V, 20%, 0603	C40, C41	Samsung	CL10A226MO7JZNC
14	1	10 μF, 25 V, 10%, 0805	C42	Samsung	CL21A106KAFN3NE
			C43, C45,		
			C47, C49,		
15	5	220 nF, 10 V, 10%, 0402	C50	TDK	GRM155R61A224KE19J
			C44, C46,		
16	4	1 μF, 25 V, 10%, 0603	C48, C51	Samsung	CL10A105KA8NNNC
17	2		C52, C53,	AVX	00022010110720
17	3	100 pF, 25 V, 5%, 0603	C54		06033A101JAT2A
18	1	10000 pF, 25 V, 10%, 0603	C55	AVX	06033D103KAT2A
19	3	1 μF, 10 V, 10%, 0402	C56, C58, C325	Murata	GRM155C81A105KA12D
10		1 µ1, 10 1, 10 /0, 0 102	C301, C305,		
			C306, C308,		
			C309, C310,		
			C311, C312,		
20	10	100 nF, 25 V, 10%, 0402	C318, C319	Vishay	VJ0402Y104KXXCW1BC
				Walsin Technology	
21	2	15 pF, 25 V, 5%, 0402	C302, C303	Corporation	0402N150J250CT
22	2	10 nF, 25 V, 5%, 0402	C304, C314	Kemet	C0402C103J3RACTU
23	1	4.7 μF, 25 V, 20%, 0603	C307	Taiyo Yuden	TMK107BBJ475MA-T
~ .				L	

T - **b** 1 - **d**

2

2

10 µF, 25 V, 20%, 0603

1 μF, 6.3 V, 10%, 0402

24

25

C313, C315

C316, C317

Murata

Taiyo Yuden

GRM188R61E106MA73J

JMK105BJ105KV-F

Item	Qty.	Description	References	Manufacturer	Part number
			C321, C322,		
26	3	2200 pF, 50 V, 10%, 0402	C323	TDK Corporation	C1005X5R1H222K050BA
27	1	100 V, 2 A, SMA	D1	STMicroelectronics	STPS2H100AY
	_		D2, D3, D4,		
28	5	5.1 V, 500 mW	D5, D8	On-Semi	MM5Z5V1T1G
29	3	30 V, 500 mA, SC79-2	D6, D7, D303	Infineon Technologies	BAS3005A02VH6327XTSA1
25	5	50 V, 500 MA, 5075-2	00, 01, 0303	Eaton – Electronics	DASSUGAUZVIIUSZIAISAI
30	1	TVS, 40 V _{WM} , 64.5 V C, SMA	D14	Division	SMAJE40A
				Infineon	
31	1	30 V, 1 A, SOD-323	D301	Technologies	BAS3010A-03W
32	1	TVS, 5.3 V _{WM} , 15 V C, TSFP-3	D302	Infineon	ESD5V3U2U03FH6327XTSA1
33	1	10 A, 32 V AC, 63 V DC	F1	Littelfuse Inc.	0458010.DR
		Heatsink-LPD5433-25BM-Z_QSZ, 34 x			
35	1	34 mm	hs1	AlphaNovatech	LPD52x27-25-QSZ34x34
36	1	IC MCU 32-bit 256 kB Flash 48 V _{QFN}	IC301	Infineon	XMC4200Q48K256BAXUMA1
		IC linear regulator, 3.3 V, 300 mA,	10000		
37	1	TSON-10	IC302	Infineon	IFX54441LDV33XUMA1
38	1	Digital ISO, 2500 V _{RMS} , 6-ch GP 16- SOIC	IC303	Silicon Labs	634-SI8662BB-B-IS1
	Ŧ		10303		034-51000200-0-131
39	1	IC non-inverter buffer 5.5 V 5TSSOP	IC304	Nexperia	74LVC1G126GW,125
10			10	Tensility	
42	1	Jack 5.5 x 2.1 mm (6 A)	J3	International Corp	-
46	1	Vertical header connector 8-position 2.54 mm	J9	Adam Tech	PH2-08-UA
	-	Vertical header connector 5-position	33	Addin reen	
47	1	2.54 mm	JP301	Harwin	PINHD-1X5
48	1	22 μH, 1.2 A, 4020	L1	Bourns	SRP4020TA-220M
49	1	74279267	L301	Würth Elektronik	74279267
			LED1, LED4,		
50	3	Clear red LED	LED303	Lite-On Inc.	LTST-C190KRKT
51	1	Blue diffused LED	LED2	OSRAM	LB Q39G-L200-35-1
	-			Rohm	
52	2	Green diffused LED	LED3, LED5	Semiconductor Rohm	SML-D12M8WT86
53	1	Green diffused LED	LED301	Semiconductor	SML-D12M8WT86
54	1	Clear red LED	LED302	Lite-On Inc.	LTST-C190KRKT
55	1	Potentiometer, 10 k, 1 turn	POT1	Bourns Inc.	3362P-1-103TLF
	-	N-channel, 60 V, 38 A, 3.8 W, PG-	Q1, Q2, Q3,	Infineon	
56	6	HSOF-5-1	Q4, Q5, Q6	Technologies	IST011N06NM5AUMA1
57	1	Crystal, 120000 MHz, 8 pF, SMD	Q301	Kyocera	CX3225GA12000D0PTVCC
58	1	75 k, 0.1 W, 1%, 0603	R2	Panasonic	ERJ-3EKF7502V
59	1	7.87 k, 0.1 W, 1%, 0603	R5	Yageo	RC0603FR-077K87L
60	3	56 k, 0.1 W, 1%, 0603	R6, R24, R38	Yageo	RC0603FR-0756KL
00	3	50 K, 0.1 W, 170, 0005	R10, R24, R36		
61	4	5.6 k, 0.1 W, 1%, 0603	R42, R324	Stackpole	RMCF0603FT5K60
62	1	100 k, 0.1 W, 1%, 0603	R11	Yageo	RC0603FR-07100KL
63	1	22 k, 0.1 W, 1%, 0603	R13	Yageo	RC0603FR-0722KL
	<u>⊢ −</u>	3.3 k, 0.1 W, 1%, 0402	R14	KOA	RK73H1ETTP3301F

Item	Qty.	Description	References	Manufacturer	Part number
			R15, R328,		
65	3	470 R, 0.1 W, 1%, 0402	R329	Panasonic	ERJ-2RKF4700X
66	1	1.8 k, 0.063 W, 0.1%, 0402	R18	Panasonic	ERA-2AEB182X
			R19, R22,		
			R26, R33, R39, R50,		
			R62, R63,		
67	9	5.1 k, 0.1 W, 5%, 0402	R327	Panasonic	ERJ-2GEJ512X
			R44, R309,		
68	4	10 k, 0.063 W, 5%, 0402	R311, R312	Yageo	RC0402JR-0710KL
69	2	10 k, 0.1 W, 5%, 0603	R45, R46	Yageo	RC0603JR-0710KL
70	1	1 k, 0.1 W, 1%, 0603	R51	Yageo	RC0603FR-071KL
			R53, R54,		
71	3	2.2 k, 0.1 W, 1%, 0603	R55	Yageo	RC0603FR-072K2L
72	3	2.2.K. 0.1.W. 104, 0002	R56, R57, R58	Vagaa	DTOCOCEDEOZCKCI
		3.3 k, 0.1 W, 1%, 0603		Yageo	RT0603FRE073K3L
73	1	100 R, 0.063 W, 1%, 0402	R61	Yageo	RC0402FR-07100RL
74	1	200 R, 0.1 W, 1%, 0603	R64	KOA	AC0603FR-07200RL
75	2	680 R, 0.063 W, 1%, 0402	R301, R302	Vishay Panasonic	CRCW0402680RFKEDC
				Electronic	
76	1	510 R, 0.1 W, 1%, 0402	R305	Components	ERJ-2RKF5100X
77	2	22 R, 0.1 W, 5%, 0402	R306, R307	Panasonic	ERJ-2GEJ220X
78	1	4k7, 0.1 W, 1%, 0402	R308	Panasonic	ERJ-2RKF4701X
79	2	1 M, 0.063 W, 1%, 0402	R310, R314	Yageo	RC0402FR-071ML
			R316, R321,	-	
80	4	0 R, 0.1 W, 0402	R322, R323	Panasonic	ERJ-2GE0R00X
81	1	3 k, 0.063 W, 1%, 0402	R317	Panasonic	RMCF0402FT3K00
82	1	32.4 k, 0.063 W, 1%, 0402	R318	Bourns	CR0402-FX-3242GLF
83	1	2.15 k, 0.063 W, 1%, 0402	R319	Vishay	RC0402FR-072K15L
	-		RS1, RS2,	Stackpole	
84	3	0.5 m, 5 W, 1%, 3920	RS3	Electronics Inc.	HCS3920FT1L00
		Analog sensor, -40°C to 125°C, SOT-			
85	1	23-3	RT1	Microchip	MCP9700T-E/TT
06		Standoff hex, #4-40, aluminum,	ST1, ST2,	Karahara	0.400
86	4	3/8 in.	ST3, ST4	Keystone	8400
87	1	SPDT slide switch, 200 mA, 30 V	SW1	E-Switch	EG1218
88	2	SPST slide switch, 0.4 V _A , 28 V	SW2, SW3	NKK Switches	AS11CP
89	1	3-phase smart gate drive control	U2	Infineon	6EDL7141
90	1	MCU, 32-bit, 64 kB Flash, 64 V _{QFN}	U3A	Infineon	XMC1404Q064X0064AAXUMA1
		Block terminator, 5-pin, side entry,		PHOENIX	
91	1	2.54 mm PCB	Х3	CONTACT	1725685
92	2	Vertical 4-position header, 2.54 mm	X4, X5	Any	PH1-04-UA
93	1	Receptor, USB 2.0, Micro AB, SMD, RA	X302C	Würth Elektronik	629105150921

References

- [1] Infineon Technologies AG: MOTIX[™] 6EDL7141, Datasheet (Rev. 1.06); 2022-03-08; MOTIX[™] 6EDL7141
- [2] Infineon Technologies AG: EVAL_6EDL7141_TRAP_1SH 18 V brushless DC motor drive board, Application note (V 1.1); 2021-11-15; EVAL_6EDL7141_TRAP_1SH 18 V brushless DC motor drive board
- [3] Infineon Technologies AG: EVAL_IMD700A_FOC_3SH 18 V brushless DC motor drive board, Application note (V 1.0); 2022-03-15; EVAL_IMD700A_FOC_3SH 18 V brushless DC motor drive board
- [4] SEGGER: SEGGER Software Licensing. Available online
- [5] Infineon Technologies AG: PMSM FOC motor control software using XMC[™], Application note (V 1.0); PMSM FOC motor control software using XMC[™]

Revision history

Document version	Date of release	Description of changes
V 1.0	2022-08-31	Initial release

Trademarks All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-08-31 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference UM_2208_PL88_2208_131735

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.