KA431 / KA431A / KA431L
Programmable Shunt Regulator

Features
• Programmable Output Voltage to 36 V
• Low Dynamic Output Impedance: 0.2 Ω (Typical)
• Sink Current Capability: 1.0 to 100 mA
• Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
• Temperature Compensated for Operation Over Full Rated Operating Temperature Range
• Low Output Noise Voltage
• Fast Turn-on Response

Description
The KA431 / KA431A / KA431L are three-terminal adjustable regulators with a guaranteed thermal stability over the operating temperature range. The output voltage can be set to any value between V_REF (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω. Active output circuitry provides a sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Output Voltage Tolerance</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA431DTF</td>
<td>-25 ~ +85°C</td>
<td>2%</td>
<td>431</td>
<td>8-SOIC</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>KA431ADTF</td>
<td>-25 ~ +85°C</td>
<td>1%</td>
<td>431A</td>
<td>8-SOIC</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>KA431AZBU</td>
<td>-25 ~ +85°C</td>
<td>1%</td>
<td>KA431AZ</td>
<td>TO-92</td>
<td>Bulk</td>
</tr>
<tr>
<td>KA431AZTA</td>
<td>-25 ~ +85°C</td>
<td>1%</td>
<td>KA431AZ</td>
<td>TO-92</td>
<td>Ammo</td>
</tr>
<tr>
<td>KA431LZTA</td>
<td>-25 ~ +85°C</td>
<td>0.5%</td>
<td>KA431LZ</td>
<td>TO-92</td>
<td>Ammo</td>
</tr>
</tbody>
</table>
Block Diagram

Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{KA}</td>
<td>Cathode Voltage</td>
<td>37</td>
<td>V</td>
</tr>
<tr>
<td>I_{KA}</td>
<td>Cathode Current Range (Continuous)</td>
<td>-100 to +150</td>
<td>mA</td>
</tr>
<tr>
<td>I_{REF}</td>
<td>Reference Input Current Range</td>
<td>-0.05 to +10</td>
<td>mA</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation TO-92, 8-SOIC Packages</td>
<td>770</td>
<td>mW</td>
</tr>
<tr>
<td>$R_{\theta JA}$</td>
<td>Thermal Resistance, Junction to Ambient TO-92, 8-SOIC Packages</td>
<td>160</td>
<td>°C/W</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature Range</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{KA}</td>
<td>Cathode Voltage</td>
<td>V_{REF}</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>I_{KA}</td>
<td>Cathode Current</td>
<td>1</td>
<td>100</td>
<td>mA</td>
</tr>
</tbody>
</table>
Electrical Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>KA431</th>
<th>KA431A</th>
<th>KA431L</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>REF</sub></td>
<td>Reference Input Voltage</td>
<td>$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$</td>
<td>2.450</td>
<td>2.500</td>
<td>2.550</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta V_{REF}/\Delta T$</td>
<td>Deviation of Reference Input Voltage Over-Temperature</td>
<td>$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$</td>
<td>4.5</td>
<td>17.0</td>
<td>4.5</td>
<td>mV</td>
</tr>
<tr>
<td>$\Delta V_{REF}/\Delta V_{KA}$</td>
<td>Ratio of Change in Reference Input Voltage to the Change in Cathode Voltage</td>
<td>$I_{KA} = 10 \text{ mA}$</td>
<td>-1.0</td>
<td>-2.7</td>
<td>-1.0</td>
<td>mV / V</td>
</tr>
<tr>
<td>$\Delta I_{REF}/\Delta T$</td>
<td>Deviation of Reference Input Current Over Full Temperature Range</td>
<td>$I_{KA} = 10 \text{ mA}$, $R_1 = 10 \text{ k}\Omega$, $R_2 = \infty$</td>
<td>0.4</td>
<td>1.2</td>
<td>0.4</td>
<td>μA</td>
</tr>
<tr>
<td>$I_{KA(MIN)}$</td>
<td>Minimum Cathode Current for Regulation</td>
<td>$V_{KA} = V_{REF}$</td>
<td>0.45</td>
<td>1.00</td>
<td>0.45</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{KA(OFF)}$</td>
<td>Off - Stage Cathode Current</td>
<td>$V_{KA} = 36 \text{ V}$, $V_{REF} = 0$</td>
<td>0.05</td>
<td>1.00</td>
<td>0.05</td>
<td>μA</td>
</tr>
<tr>
<td>Z_{KA}</td>
<td>Dynamic Impedance</td>
<td>$V_{KA} = V_{REF}$, $I_{KA} = 1 \text{ to } 100 \text{ mA}$</td>
<td>0.15</td>
<td>0.50</td>
<td>0.15</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Note:

1. $T_{MIN} = -25^\circ C$, $T_{MAX} = +85^\circ C$.
Test Circuits

Figure 2. Test Circuit for $V_{KA} = V_{REF}$

Figure 3. Test Circuit for $V_{KA} \geq V_{REF}$

Figure 4. Test Circuit for $I_{KA(OFF)}$
Typical Performance Characteristics

Figure 5. Cathode Current vs. Cathode Voltage

Figure 6. Cathode Current vs. Cathode Voltage

Figure 7. Change in Reference Input Voltage vs. Cathode Voltage

Figure 8. Dynamic Impedance Frequency

Figure 9. Small Signal Voltage Amplification vs. Frequency

Figure 10. Pulse Response
Typical Performance Characteristics (Continued)

Figure 11. Stability Boundary Conditions

![Stability Boundary Conditions Diagram]

- **A**: \(V_c = V_{ref} \)
- **B**: \(V_c = 5.0 \text{V} \) @ \(I_C = 10 \text{mA} \)
- **C**: \(V_c = 10 \text{V} \) @ \(I_C = 10 \text{mA} \)
- **D**: \(V_c = 15 \text{V} \) @ \(I_C = 10 \text{mA} \)
- \(T_A = 25^\circ \text{C} \)
Typical Application

\[V_O = \left(1 + \frac{R_1}{R_2}\right) V_{ref} \]

Figure 12. Shunt Regulator

\[V_O = V_{ref}\left(1 + \frac{R_1}{R_2}\right) \]

Figure 13. Output Control for Three-Terminal Fixed Regulator

\[V_O = \left(1 + \frac{R_1}{R_2}\right) V_{ref} \]

Figure 14. High-Current Shunt Regulator

Figure 15. Current Limit or Current Source

Figure 16. Constant-Current Sink

Physical Dimensions

TO-92 Bulk Type

Figure 17. 3-Lead, TO-92, Molded, Standard Straight Lead

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/ZA/ZA03D.pdf

For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:
http://www.fairchildsemi.com/packing_dwg/PKG-ZA03D_BK.pdf
Physical Dimensions (Continued)

TO-92 Ammo Type

Figure 18. 3-Lead, TO-92, Molded, 0.200 in Line Spacing Lead Form

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/ZA/ZA03F.pdf

For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:
http://www.fairchildsemi.com/packing_dwg/PKG-ZA03F_BK.pdf
Physical Dimensions (Continued)

8-SOIC

Figure 19. 8-Lead, SOIC, JEDEC MS 0-12, 0.150 inch Narrow Body

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/M0/M08A.pdf

For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ZCool™
AccoPower™
AX-CAP™
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
FACT Quiet Series™
FACT™
FAST™
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Gm™
GTO™
IntelliMAX™
ISPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MotionMax™
mW.Saver™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench™
PowerXS™
Programmable Active Drop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
System General™
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT™
µSerDes™
UHC™
Ultra FRFET™
UniFET™
VCO™
VisualMax™
VoltagePlus™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, AND PRODUCT SPECIFICATIONS MAY NOT BE APPLICABLE. ALL PRODUCTS ARE SUBJECT TO FAIRCHILD’S STANDARD TERMS AND CONDITIONS FOR SALE SET FORTH ON FAIRCHILD’S WEB SITE www.fairchildsemi.com, OR ELSE AS AGREED IN WRITING BETWEEN FAIRCHILD AND ITS CUSTOMERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Definition of Terms</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasheet Identification</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>