
SKU:DFR0654 (https://www.dfrobot.com/product-2195.html)

 (https://www.dfrobot.com/product-2195.html)

1. Introduction

FireBeetle ESP32-E, specially designed for IoT, is an ESP-WROOM-32E-based main controller board with dual-core chips. It supports WiFi and
Bluetooth dual-mode communication, and features small size, ultra-low power consumption, on-board charging circuit and easy-to-use
interface, which can be conveniently used for smart home IoT, industrial IOT applications, wearable devices and so on. You can easily create your
own IoT smart home system when connecting it with an IoT platform like IFTTT. FireBeetle ESP32-E supports Arduino programming, and will
support Scratch graphical programming and MicroPython programming very soon. We provide you with detailed online tutorials and
application cases, and there are thousands of sensors with welding-free Gravity interface and actuators to help you get started easily. Besides,
th t h l d i k it bl t b il b dd d i PCB tl i t d ti t b ild d t t t t

https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html

the stamp hole design makes it able to be easily embedded in your PCB, greatly saving your costs and time to build and test prototype.

2. What is FireBeetle Series?

FireBeetle was originally designed to be a high-performance and more Mini Arduino open-source development board series. Now it is not only
fully compatible with Arduino development environment, but also comes with abundant hardware and software resources. FireBeetle will
support the various development environment like MakeCode, Mind+, Pingpong and MicroPython (to be improved soon), which allows you to
program your hardware by graphical programming, C language, Python or JS.

This open source board of high-flexibilty could bring you infinite possibilities! There are a large number of detailed tutorials and thousands of
easy-to-use Gravity peripherals that provide you with the simplest way to program. No matter you are a student, an electronic enthusiast, an
artist or a designer, this would be your best partner to open up the world of electronic without dealing with complicated circuits, brain-buring
codings, and all complex communication protocols. Turn your worthy ideas into fantastic reality with this FireBeetle board!

3. Features

Compatible with DFRobot FireBeetle V2 Series
Small Size of 25.4×60 mm
ESP32 Dual-core low power maincontroller, WiFi+BT4.0
GDI Display Port, esay to connect
Onboard Charging Circuit and PH2.0 li-ion Battery Interface

4. Specification

Operating Voltage: 3.3V
Input Voltage: 3.3V~5.5V
Support Low-Power: 10uA
Max Discharge Current: 600mA@3.3V (mailto:600mA@3.3V) LDO

mailto:600mA@3.3V

Max Charge Current: 500mA
Support USB Charging
Processor: Tensilica LX6 dual-core processor (One for high-speed connection; one for independent application development)

Main Frequency: 240MHz
SRAM: 520KB
Flash: 32Mbit
Wi-Fi Standard: FCC/CE/TELEC/KCC
Wi-Fi Protocol: 802.11 b/g/n/d/e/i/k/r (802.11n，speed up to 150 Mbps), A-MPDU and A-MSDU Aggregation, support 0.4us guard interval)
Frequency Range: 2.4~2.5 GHz
Bluetooth Protocol: Bluetooth v4.2 BR/EDR and BLE standard compliant
Bluetooth Audio: CVSD and SBC audio
Operating Current: 80mA (Average)
Support Arduino download with one-key
Support MicroPython
On-chip Clock: 40MHz crystal, 32.768KHz crystal
Digital I/O x10(Arduino default)
Analog Input x5(Arduino default)
SPI x1(Arduino Default)
IIC x1(Arduino Default)
I2S x1(Arduino Default)
RGB_LED: 5/D8
Connector: FireBeetle V2 series compatible
Operating Temperature: -40℃~+85℃
Module Size: 25.4 × 60(mm)
Mount Hole Size: M2 Mounting hole with diameter of 2.0mm

5. Board Overview

Type-c: USB Interface: 4.75v-5.5v
PH2.0 Li-ion Battery Connector: 3.5-4.2V

2/D9 LED: control LED via Pin 2/D9
Charging Indicator: red LED for indicating charging status: 1. Off when fully charged or not charged; 2. On when charging; 3. Quick flash
when powered by USB, and no battery connected.
RST Reset Pin: click the reset button to reset program
5/D8 WS2812 Indicator: control WS2812 RGB LED via pin 5/D8
Low Power Pad: This pad is specially designed for low power consumption. It is connected by default. You can cut off the thin wire in the
middle with a knife to disconnect it. After disconnection, the static power consumption can be reduced by 500 μA. The power consumption
can be reduced to 13 μA after controlling the maincontroller enter the sleep mode through the program. Note: when the pad is
disconnected, you can only drive RGB LED light via the USB Power supply.
GDI Display Interface: DFRobot dedicated display interface, details will be given later.
ESP32 Module: the newest ESP32-e module launched by ESPRESSIF
Button: control the button via pin 27/D4

6. Pinout

Overview

FireBeetle ESP32-E has up to 22 physical GPIOs, of which the pins 34-39 are only used as input pins, and others can be used as both input and
output pins. All logic voltages are 3.3V.

Control: FireBeetle Enable/reset pin
Touch: pin with capacitive touch function
Analog: analog pin

Port Pin: the default physical pin number of the chip, which can be directly used to control the corresponding pin
IDE: In Arduino IDE, the pin numbers have been remapped by FireBeetle, or you can directly use this symbol to control the corresponding
pin

RTC PIN: FireBeetle supports low power function, and in deepsleep mode, only RTC pins can be used.
Power: FireBeetle leads out the power source voltage and the voltage stablized 3.3V power supply through pins, which is convenient for
users to use.
GND: FireBeetle common ground pin

Power

GND: common ground for all power and logic
VCC: positive voltage of USB/li-ion battery input(5V-output USB voltage when powered by USB; 3.7V-Output battery voltage when
powered by Li-ion battery)
3V3: output of 3.3 voltage regulator, can provide 500mA peak current

Control

RST: connected to the reset pin of ESP32, can reset program
EN: enable pin of 3.3V voltage regulator. It has been pulled up, so grounding can disable the 3.3V regulator.

GPIO

D2 to D13: these are general purpose pins, which are usually used as digital pins or multiplexed function
A0 to A4: these are analog input pins, of which A0-A3 can only be used as input pins.
SDA-IIC(line) data pin
SCL-IIC(line) clock pin
SCK/MOSI/MISO: hardware SPI pins, you can use them as normal GPIO pins (but it is recommended to leave them idle as they are best
suited for high-speed SPI hardware)

UART

ESP32 has two UART ports, of which UART0 is for PC communication.

SerialPort Name Arduino TX RX

UART0 Serial Pin1 Pin3

UART2 Serial2 Pin17 Pin16

7. Getting Started (Use for first time)

7.1 Arduino IDE Configuration

When using FireBeetle maincontroller for the frist time, you need know the following steps:

Add the json link in IDE
Download the core of the maincontroller
Select development board and serial port
Get to know serial monitor

Arduino IDE Setup

Add URL to Ardudino IDE

Open Arduino IDE, click File->Preferences, as shown below:

Click the icon marked with red below.

Copy the address to the newly popped up box: http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json
(http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json)

Click OK.

Update board. Open Tools->Board->Boards Manager.

http://download.dfrobot.top/FireBeetle/package_DFRobot_index.json

The board will be automatically updated.

Wait for while, then you will find the FireBeetle-ESP32(V0.0.8 Available now) in the list. Click "Install":

Done! You can find the installed FireBeetle-ESP32 board in the list now.

7.2 Blink

This is a blink program for users who use Arduino for the first time. The LED will blink regularly when burning codes into your board.
The default blink LED for FireBeetle-ESP32 board is D9/2.

Select Board and Port
Click Tools>Board; Select FireBeetle ESP32 E

Click Tools>Board; Select FireBeetle-ESP32-E
Click port to select the corresponding port

Programming

 // the setup function runs once when you press reset or power the board
 void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
 }

 // the loop function runs over and over again forever
 void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
 }

Copy the codes above to the Arduino IDE.
Click the arrow to compile and burn the codes into your board.

Burning Completed

7.3 Bluetooth Tutorial

The ESP32 supports Bluetooth function. This part will mainly demonstrate how to use two FireBeetle-ESP32-E for realizing Bluetooth Data
Transparent Transmission.

//This example code is in the Public Domain (or CC0 licensed, at your option.)
//By Victor Tchistiak - 2019
//
//This example demostrates master mode bluetooth connection and pin
//it creates a bridge between Serial and Classical Bluetooth (SPP)
//this is an extention of the SerialToSerialBT example by Evandro Copercini - 2018
//

#include "BluetoothSerial.h"

BluetoothSerial SerialBT;

String MACadd = "AA:BB:CC:11:22:33";
uint8_t address[6] = {0xAA, 0xBB, 0xCC, 0x11, 0x22, 0x33};
//uint8_t address[6] = {0x00, 0x1D, 0xA5, 0x02, 0xC3, 0x22};
String name = "ESP32test";
char *pin = "1234"; //<- standard pin would be provided by default
bool connected;

void setup() {
 Serial.begin(115200);
 //SerialBT.setPin(pin);
 SerialBT.begin("ESP32master", true);
 //SerialBT.setPin(pin);
 Serial.println("The device started in master mode, make sure remote BT device is on!");

 // connect(address) is fast (upto 10 secs max), connect(name) is slow (upto 30 secs max) as it needs
 // to resolve name to address first, but it allows to connect to different devices with the same name.
 // Set CoreDebugLevel to Info to view devices bluetooth address and device names
 connected = SerialBT.connect(name);
 //connected = SerialBT.connect(address);

 if(connected) {
 Serial.println("Connected Succesfully!");
 } else {
 while(!SerialBT.connected(10000)) {

 Serial.println("Failed to connect. Make sure remote device is available and in range, then restart app.");
 }
 }
 // disconnect() may take upto 10 secs max
 if (SerialBT.disconnect()) {
 Serial.println("Disconnected Succesfully!");
 }
 // this would reconnect to the name(will use address, if resolved) or address used with connect(name/address).
 SerialBT.connect();
}

void loop() {
 if (Serial.available()) {
 SerialBT.write(Serial.read());
 }
 if (SerialBT.available()) {
 Serial.write(SerialBT.read());
 }
 delay(20);
}

//This example code is in the Public Domain (or CC0 licensed, at your option.)
//By Evandro Copercini - 2018
//
//This example creates a bridge between Serial and Classical Bluetooth (SPP)
//and also demonstrate that SerialBT have the same functionalities of a normal Serial

#include "BluetoothSerial.h"

#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif

BluetoothSerial SerialBT;

void setup() {
 Serial.begin(115200);
 SerialBT.begin("ESP32test"); //Bluetooth device name
 Serial.println("The device started, now you can pair it with bluetooth!");
}

void loop() {
 if (Serial.available()) {
 SerialBT.write(Serial.read());
 }
 if (SerialBT.available()) {
 Serial.write(SerialBT.read());
 }
 delay(20);
}

R l

Result

Send "I'm the master" from the mater port.
The slave port displays "The slave receives: I'm the master"
Send "I'm the slave" from the slave port.
The master port displays "The master receives: I'm the slave".

Member Functions

SerialBT.begin()
Description：init Bluetooth module

SerialBT.disconnect()
Description: disconnect device
Return: ture/false

SerialBT.connect()
Description: connect device
Return: ture/false

SerialBT.available()
Description: judge if the Bluetooth received data

SerialBT.read()
Description: read the information received by the Bluetooth
Return: string

SerialBT.write()
Description: send message by Bluetooth

7.4 WiFi Tutorial

The ESP32 supports WiFi function. Here we build a WiFi server with the ESP32, and use the client to connect it to control an LED remotely.

/*
 WiFiAccessPoint.ino Create a wifi hotspot, and provide a web service

 Steps:
 1. Connect to the wifi "yourAp"
 2. Visit http://192.168.4.1/H to turn on the LED; Visit http://192.168.4.1/L to turn off the LED
 OR
 Run raw TCP "GET /H" and "GET /L" on PuTTY terminal with 192.168.4.1 as IP address and 80 as port
*/

#include <WiFi.h>
#include <WiFiClient.h>
#include <WiFiAP.h>

// Set your wifi and password
const char *ssid = "esp32";
const char *password = "";

WiFiServer server(80);

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);//Set pin LED to output mode
 Serial.begin(115200);
 Serial.println();
 Serial.println("Configuring access point...");

 // Configure wifi and get IP address
 WiFi.softAP(ssid, password);
 IPAddress myIP = WiFi.softAPIP();
 Serial.print("AP IP address: ");

Serial println(myIP);

 Serial.println(myIP);
 server.begin();

 Serial.println("Server started");
}

void loop() {
 WiFiClient client = server.available(); // listen for incoming clients

 if (client) { // if you get a client,
 Serial.println("New Client."); // print a message out the serial port
 String currentLine = ""; // make a String to hold incoming data from the client
 while (client.connected()) { // loop while the client's connected
 if (client.available()) { // if there's bytes to read from the client,
 char c = client.read(); // read a byte, then
 Serial.write(c); // print it out the serial monitor
 if (c == '\n') { // if the byte is a newline character

 // if the current line is blank, you got two newline characters in a row.
 // that's the end of the client HTTP request, so send a response:
 if (currentLine.length() == 0) {
 // HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
 // and a content-type so the client knows what's coming, then a blank line:
 client.println("HTTP/1.1 200 OK");
 client.println("Content-type:text/html");
 client.println();

 // the content of the HTTP response follows the header:
 client.print("Click here to turn ON the LED.
");
 client.print("Click here to turn OFF the LED.
");

 // The HTTP response ends with another blank line:
 client.println();
 // break out of the while loop:
 break;
 } else { // if you got a newline, then clear currentLine:
 currentLine = "";

}

 }
 } else if (c != '\r') { // if you got anything else but a carriage return character,
 currentLine += c; // add it to the end of the currentLine
 }

 // Check to see if the client request was "GET /H" or "GET /L":
 if (currentLine.endsWith("GET /H")) {
 digitalWrite(LED_BUILTIN, HIGH); // GET /H turns the LED on
 }
 if (currentLine.endsWith("GET /L")) {
 digitalWrite(LED_BUILTIN, LOW); // GET /L turns the LED off
 }
 }
 }
 // close the connection:
 client.stop();
 Serial.println("Client Disconnected.");
 }
}

Result

Connect to the WiFi with a phone, and access 192.168.4.1 through the browser. As shown in the figure, the IP address is 192.168.4.1, and the
server has been started.

Use the browser to access the IP address, then you will get the result as shown in the figure below

Click to turn the LED on/off.

Member Functions

begin()
Description: Init WiFi module

softAP(ssid,password)
Description: Configure WiFi to AP mode, and set name and password
Parameter:

ssid: WiFi name in AP mode
password: WiFi password in AP mode

disconnect()
Description:disconnect client

connect()
Description: connect client

read()
Description:
Read the data received by WiFi

write()
Description: Send data by WiFi

7.5 Hall Sensor

The ESP32 comes with a hall sensor that presents positive/negative number when approaching a mangnetic field.

void setup()
{
 Serial.begin(9600);
}
void loop()
{
 Serial.printf("hallRead:%d\n",hallRead());
 delay(200);
}

Result

Member Function

hallRead()
Description: read the value of built-in hall sensor Return: return integer 0-255; Positive number for North pole; Negative number for South
pole. The stronger the magnetic field, the greater the absolute value

7.5 Compacitive Keys

ESP32 provides the function of capacitive touch sensor. There are 9 touch sensors (T0, T2 ~ T9)available, corresponding to pins 4, 2, 15, 13, 12,
14, 27, 33 and 32 respectively. There is no need to set PinMode. The return value of touchRead() is within 0 ~ 255. The greater the touch force,
the smaller the return value. Burning this sample code into your board, use the pin 4/D12 as the touch key, the touch value will be returned
through the serial port monitor.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.printf("touch:%d\n",touchRead(4));
}

Result

Member Functions

TouchRead(pin)
Description: no need to set PinMode
Parameter:

pin: touch sensor pin to be called
Return*: range 0~255. The stronger the touch force, the greater the return value.

7.6 GDI

This is a DFRobot special GDI display interface. It can be conveniently connected to a screen with 18pin-FPC cable, easy to get started.

The pin list for GDI:

FPC PINS FireBeetle M0 PINS Description

VCC 3V3 3.3V

FPC PINS FireBeetle M0 PINS DescriptionBLK（PWM adjustment) 12/D13 Backlit

GND GND GND

SCLK 18/SCK SPI clock

MOSI 23/MOSI Master output, slave input

MISO 19/MISO Master input, slave output

DC 25/D2 Data/command

RES 26/D3 Reset

CS 14/D6 TFT chip select

SDCS 13/D7 SD card chip select

FCS 0/D5 Font library

TCS 4/D12 Touch

SCL 22/SCL I2C Clock

SDA 21/SDA I2C Data

INT 16/D11 INT

BUSY-TE 17/D10 Anti-tearing Pin

X1 NC User-defined pin 1

X2 NC User-defined pin 2

When using FPC to connect a screen, configure the corresponding pins according to GDL demo. Generally, you only need to configure the three
pins for different maincontrollers.

p s o d e e t a co t o e s.

GDI supported screen:

1. 1.54inch 240x240 IPS TFT LCD Display with MicroSD Card Breakout (https://www.dfrobot.com/product-2072.html)

2. 2.0inch 0x240 IPS TFT LCD Display with MicroSD Card Breakout (https://www.dfrobot.com/product-2071.html)
3. 2.8inch 320x240 IPS TFT LCD Touchscreen with MicroSD (https://www.dfrobot.com/product-2106.html)
4. 3.5inch 480x320 TFT LCD Capacitive Touchscreen (https://www.dfrobot.com/product-2107.html)

/*ESP32 and ESP8266*/
#elif defined(ESP32) || defined(ESP8266)
#define TFT_DC 25
#define TFT_CS 14
#define TFT_RST 26

For more details, please refer to: https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664
(https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664)

7.7 RGB_LED

FastLED is a powerful but easy-to-use Arduino third-party library for controlling LED strips such as WS2812 and LPD8806. At present, FastLED is
recognized as one of the most widely used LED controlling libraries by Arduino developers. FireBeetle integrates FastLED into the core library.
The following code demonstrates how to use the 5/D8 conneted RGB_LED.

https://www.dfrobot.com/product-2072.html
https://www.dfrobot.com/product-2071.html
https://www.dfrobot.com/product-2106.html
https://www.dfrobot.com/product-2107.html
https://wiki.dfrobot.com/2.0_Inches_320_240_IPS_TFT_LCD_Display_with_MicroSD_Card_Breakout_SKU_DFR0664

#include <FastLED.h>

// How many leds in your strip?
#define NUM_LEDS 1

// For led chips like WS2812, which have a data line, ground, and power, you just
// need to define DATA_PIN. For led chipsets that are SPI based (four wires - data, clock,
// ground, and power), like the LPD8806 define both DATA_PIN and CLOCK_PIN
// Clock pin only needed for SPI based chipsets when not using hardware SPI
#define DATA_PIN 5
#define CLOCK_PIN 13

// Define the array of leds
CRGB leds[NUM_LEDS];

void setup() {
 // Uncomment/edit one of the following lines for your leds arrangement.
 // ## Clockless types ##
 FastLED.addLeds<NEOPIXEL, DATA_PIN>(leds, NUM_LEDS); // GRB ordering is assumed
}

void loop() {
 //LED light up in red
 leds[0] = CRGB::Red;
 FastLED.show();
 delay(500);
 // LED light up in green
 leds[0] = CRGB::green;
 FastLED.show();
 delay(500);
 // LED light up in blue

leds[0] CRGB::Blue;

 leds[0] = CRGB::Blue;
 FastLED.show();
 delay(500);
}

Member Functions

leds[0] = CRGB::Red
Description: set the LED No.0 to red

FastLED.show()
Description: light up or change LED color

leds[0].r = 255
Description: Set the R value of the first LED on the LED strip to 255

leds[0].g = 125
Description: Set the G value of the first LED on the LED strip to 125

leds[0].b = 0
Description: Set the B value of the first LED on the LED strip to 0

7.8 Sleep Mode

In sleep mode, the power consumption can be reduced to 10μA (disconnect the low-power pad). The following will demonstrate how to enter
the sleep mode at a set time.

#define uS_TO_S_FACTOR 1000000ULL /* Conversion factor for micro seconds to seconds */
#define TIME_TO_SLEEP 5 /* Time ESP32 will go to sleep (in seconds) */

RTC_DATA_ATTR int bootCount = 0;

/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
 esp_sleep_wakeup_cause_t wakeup_reason;

 wakeup_reason = esp_sleep_get_wakeup_cause();

 switch(wakeup_reason)
 {
 case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
 case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
 case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
 case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
 case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
 default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
 }
}

void setup(){
 Serial.begin(115200);
 delay(1000); //Take some time to open up the Serial Monitor

 //Increment boot number and print it every reboot
 ++bootCount;

Serial println("Boot number: " + String(bootCount));

 Serial.println(Boot number: + String(bootCount));

 //Print the wakeup reason for ESP32
 print_wakeup_reason();

 /*
 First we configure the wake up source
 We set our ESP32 to wake up every 5 seconds
 */
 esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR);
 Serial.println("Setup ESP32 to sleep for every " + String(TIME_TO_SLEEP) +
 " Seconds");

 /*
 Next we decide what all peripherals to shut down/keep on
 By default, ESP32 will automatically power down the peripherals
 not needed by the wakeup source, but if you want to be a poweruser
 this is for you. Read in detail at the API docs
 http://esp-idf.readthedocs.io/en/latest/api-reference/system/deep_sleep.html
 Left the line commented as an example of how to configure peripherals.
 The line below turns off all RTC peripherals in deep sleep.
 */
 //esp_deep_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
 //Serial.println("Configured all RTC Peripherals to be powered down in sleep");

 /*
 Now that we have setup a wake cause and if needed setup the
 peripherals state in deep sleep, we can now start going to
 deep sleep.
 In the case that no wake up sources were provided but deep
 sleep was started, it will sleep forever unless hardware
 reset occurs.
 */
 Serial.println("Going to sleep now");
 Serial.flush();
 esp_deep_sleep_start();
 Serial.println("This will never be printed");
}

}

void loop(){
 //This is not going to be called
}

Member Functions

esp_sleep_get_wakeup_cause()
Descriptin：Check which wake-up source triggered a wake-up from sleep mode

esp_deep_sleep_start()
Descriptin：Enter sleep mode

esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR)
Descriptin：user timer to start wake-up from deep sleep.

8. Arduino Tutorial Basics

8.1 GPIO

Digital IO

digitalRead(pin)
Description: Reads the value from a specified digital pin, either HIGH or LOW.
Parameter:

pin：the Arduino pin number you want to read

digitalWrite（pin,value）
Description: Write a HIGH or a LOW value to a digital pin. Parameter:

pin：the Arduino pin number.
value：HIGH or LOW.

pinMode(pin, mode)
Description: Configures the specified pin to behave either as an input or an output
Parameter:

pin：the Arduino pin number to set the mode of.
mode：INPUT, OUTPUT, or INPUT_PULLUP.

Control LED via Keys

Analog IO

AnalogRead（pin）
Description: Reads the value from the specified analog pin.
Parameter:

pin：the name of the analog input pin to read

AnalogReference（type）
Description: Configures the reference voltage used for analog input
Parameter:

type

AnalogWrite（pin，value）
Description: Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightnesses or drive a motor at various
speeds. After a call to analogWrite(), the pin will generate a steady rectangular wave of the specified duty cycle until the next call to
analogWrite() (or a call to digitalRead() or digitalWrite()) on the same pin.
P t

Parameter:

pin：the Arduino pin to write to. Allowed data types: int.

value：the duty cycle: between 0 (always off) and 255 (always on). Allowed data types: int.

8.2 Serial

Serial.begin(speed)
Description: Sets the data rate in bits per second (baud) for serial data transmission. For communicating with Serial Monitor, make sure to
use one of the baud rates listed in the menu at the bottom right corner of its screen.
Parameter:

speed：in bits per second (baud). Allowed data types: long.

Serial.available()
Description: Get the number of bytes (characters) available for reading from the serial port.

Input

Serial.read()
Description: Reads incoming serial data.

Serial.peek()
Description: Returns the next byte (character) of incoming serial data without removing it from the internal serial buffer.

Output

Serial.print(）
Description: Prints data to the serial port
Serial.println()
Description: Prints data to the serial port followed by a carriage return character and a newline character

S f S i l

Software Serial

SoftwareSerial()

Running time Function

micros（）
Description: Returns the number of microseconds since the Arduino board began running the current program.
millis（）
Description: Returns the number of milliseconds passed since the Arduino board began running the current program.

Delay Functions

delay（ms）
Description: Pauses the program for the amount of time (in milliseconds) specified as parameter.
Parameter: ms: the number of milliseconds to pause. Allowed data types: unsigned long.

delayMicroseconds（us）
Description: Pauses the program for the amount of time (in microseconds) specified by the parameter. There are a thousand microseconds
in a millisecond and a million microseconds in a second.
Parameter: us: the number of microseconds to pause. Allowed data types: unsigned int.

8.3 Tone Functions

tone(pin, frequency, duration)
Description: Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A duration can be specified, otherwise the
wave continues until a call to noTone(). The pin can be connected to a piezo buzzer or other speaker to play tones.
Parameter:

pin：the Arduino pin on which to generate the tone.
frequency：the frequency of the tone in hertz. Allowed data types: unsigned int.

q y q y yp g
duration：the duration of the tone in milliseconds (optional). Allowed data types: unsigned long.

noTone(pin)
Description: Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being generated.
Parameter:

pin：the Arduino pin on which to stop generating the tone

frequency：the frequency of the tone in hertz. Allowed data types: unsigned int.

duration：the duration of the tone in milliseconds (optional). Allowed data types: unsigned long.

8.4 Interrupt

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)
Description: External Interrupts
Parameter:

pin：the Arduino pin number.
ISR：the ISR to call when the interrupt occurs; this function must take no parameters and return nothing. This function is sometimes
referred to as an interrupt service routine.
mode：defines when the interrupt should be triggered. Four constants are predefined as valid values:

detachInterrupt(digitalPinToInterrupt(pin))
Description: Turns off the given interrupt.
Parameter:

interrupt: the number of the interrupt to disable
pin: the Arduino pin number of the interrupt to disable

interrupts（）

Description: Re-enables interrupts (after they’ve been disabled by noInterrupts(). Interrupts allow certain important tasks to happen in the
background and are enabled by default. Some functions will not work while interrupts are disabled, and incoming communication may be
ignored. Interrupts can slightly disrupt the timing of code, however, and may be disabled for particularly critical sections of code.。

noInterrupts（）
Description: Disables interrupts (you can re-enable them with interrupts()). Interrupts allow certain important tasks to happen in the
background and are enabled by default. Some functions will not work while interrupts are disabled, and incoming communication may be
ignored. Interrupts can slightly disrupt the timing of code, however, and may be disabled for particularly critical sections of code.

8.5 I2C

IIC Master/Slave Pin

Different from the one-to-one communication mode of serial port, bus communication is usually divided into master and slave. During
communication, the master is responsible for starting and terminating data transmission, and also outputs clock signal; the slave is addressed
by the host and responds to the communication request of the host. The communication rate is controlled by the host, and the master outputs
clock signal for all slaves on the bus through SCL pin. At the same time, I2C is a half duplex communication mode, that is, the devices on the bus
transmit communication data through SDA pins, and the sending and receiving of data are controlled by the host computer. Esp32 has two I2C
controllers (also known as ports) that handle communication on both I2C buses. Each I2C controller can run as a master or slave. Pin 21 is
default to SDA, pin 22 to SCL.

begin(address)
Description: Initiate the IIC and join the I2C bus as a master or slave.
Parameter:

read()
Description: In the host, when the requestfrom() function is used to send the data request signal, the read() function is needed to obtain
the data; in the slave machine, the function is used to read the data sent by the host.
Parameter:

available()

Description: Get the number of bytes (characters) of the received value
Parameter:

write：()
Description: When it is in host state, the host will add the data to be sent to the sending queue; when it is in the slave state, the slave will
send the data to the requesting host.
Parameter:

valuc: send as a single byte
string: send as a series of bytes
data: an array to send as a series of bytes

requestFrom(address，quantity)
Description: The host sends a data request signal to the slave. After using requestfrom(), the slave can use onrequest() to register an event
to respond to the host's request. The host can read the data through the available() and read() functions.
Parameter:

quantity: the number of bytes to request
address：ddress of the device to request bytes from

beginTransmission(address)
Description: Begin a transmission to the slave device with the given address. Subsequently, queue bytes for transmission with the write()
function and transmit them by calling endTransmission().
Parameter:

address: address of the device to transmit to

endTransmission
Description: Ends a transmission
Parameter:

stop：boolean. true will send a stop message, releasing the bus after transmission. false will send a restart, keeping the IIC connection
active.

onReceive() Description: 8. onReceive()
Function: Registers an event to be triggered when a slave device receives a transmission from a master.
Grammar: Wire.onReceive(handler）
Parameter:

handler：the event to be triggered when the slave receives data; this should take a single int parameter (the number of bytes read
from the master) and return nothing, e.g.: void myHandler(int numBytes)

onRequest(handler)
Description: Register an event to be triggered when a master requests data from this slave device. Grammar: Wire.onRequest(handler)
Parameter:

handler：the event to be triggered, takes no parameters and returns nothing, e.g.: void myHandler()

8.6 SPI

SPI Pin

ESP32 has four SPI peripherals: SPI0，SPI1, HSPI and VSPI.

1. SPI0 is used for flash cache, and ESP32 maps the attached SPI flash device to memory.
2. SPI1 and SPI0 share one hardware line, SPI1 is used to write flash chip.
3. HSPI and VSPI can be used arbitrarily.
4. SPI1, HSPI and VSPI have three chip selection lines, so as SPI host, ESP32 is allowed to drive up to three SPI devices.

begin()
Description: initialize SPI communication. after calling this function, SCK.MOSI, and SS pins will be set to the output mode, and the SCK and

MOSI pins will be pulled down and the SS pin will be pulled up.

end()
Description: turn off SPI BUS communication

setBitOrder()
Description: Set transmission order

setBitOrder()
Description: Set communication clock. The clock signal is generated by the master, and the slave is not configured. But the SPI clock
frequency of the master should be within the processing speed range allowed by the slave.

9. Advanced Tutorials

9.1 How to use SD Library

SD Class

begin(cspin)
Description: Initializes the SD library and card. This begins use of the SPI bus (digital pins 11, 12, and 13 on most Arduino boards; 50, 51,
and 52 on the Mega) and the chip select pin, which defaults to the hardware SS pin (pin 10 on most Arduino boards, 53 on the Mega). Note
that even if you use a different chip select pin, the hardware SS pin must be kept as an output or the SD library functions will not work.
Parameter: cspin：the Arduino pin connected to the chip select line of the SD card.
Return: boolean type. True on success; false on failure

exists()
Description: Tests whether a file or directory exists on the SD card. Grammar: SD. exists(filename)
Parameter:

filename: the name of the file to test for existence, which can include directories (delimited by forward-slashes, /)
Return*: boolean type, true if the file or directory exists, false if not

open()
Description: Opens a file on the SD card. If the file is opened for writing, it will be created if it doesn't already exist (but the directory
containing it must already exist). Grammar: SD.open(filename) SD.open(filename，mode)

Parameter:
filename： the name the file to open, which can include directories (delimited by forward slashes, /) - char * mode (optional): the mode in
which to open the file, defaults to FILE_READ - byte. one of:
FILE_READ: open the file for reading; FILE_WRITE: open the file for reading and writing.
Return: a File object referring to the opened file: if the file couldn't be opened, this object will evaluate to false in a boolean
FILE_WRITE: open the file for reading and writing.
Return: a File object referring to the opened file;Return false if the file cannot be opened.

remove()
Description: Remove a file from the SD card. If the file didn't exist, the return value is unspecified, so it is better to use SD. Exists (file name)
to detect whether the file exists before removing the file.
Grammar: SD. remove(filename)
Parameter:

filename：the name of the file to remove, which can include directories (delimited by forward-slashes, /)
Return:* boolean type. True if the removal of the file succeeded, false if not.

mkdir(filename)
Description: Create a directory on the SD card.
Parameter:

filename,the name of the directory to create, with sub-directories separated by forward-slashes, /
Return*: boolean type. True if the creation of the directory succeeded, false if not.

rmdir(filename)
Description: Remove a directory from the SD card. The directory must be empty. Grammar: SD.rmdir(filename)
Parameter:

filename: the name of the directory to remove, with sub-directories separated by forward-slashes, /
Return*: booleantype. True if the removal of the directory succeeded, false if not.

File Class

The file class provides the function of reading / writing files. The function of this class is very similar to the that of serial port related functions
used before. The member functions are as follows.

available(）
Description: Check if there are any bytes available for reading from the file. Grammar: file. available()
Parameter:

file:an instance of the File class
Return*: the number of bytes available

close()
Description: Close the file, and ensure that any data written to it is physically saved to the SD card. Grammar: file. close()
Parameter:

file:an instance of the File class
Return*: none

flush()
Description: Ensures that any bytes written to the file are physically saved to the SD card. This is done automatically when the file is closed.
Syntax: file.flush
Parameter:

file: an instance of the File class
Return*: none

peek(）

peek(）
Description: Read a byte from the file without advancing to the next one.
Parameter:

file: an instance of the File class

Return*: The next byte (or character), or -1 if none is available.

position()
Description: Get the current position within the file (i.e. the location to which the next byte will be read from or written to). Syntax: file.
position()
Parameter:

file: an instance of the File class
Return*: the position within the file

print()
Description: Print data to the file, which must have been opened for writing. Syntax: file. print(data)file. print(data，BASE)
Parameter:

file: an instance of the File class
data：the data to print (char, byte, int, long, or string)
BASE(optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for
hexadecimal (base 16).

println()
Description: Print data, followed by a carriage return and newline, to the File, which must have been opened for writing. Syntax: file.
println(data)file,println(data，BASE)
Parameter:

file:an instance of the File class
data (optional): the data to print (char, byte, int, long, or string)
BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base 10), OCT for octal (base 8), HEX for
hexadecimal (base 16).

seek(）
Description: Seek to a new position in the file, which must be between 0 and the size of the file (inclusive). Syntax: file. seek(pos)
Parameter:

file：an instance of the File class
pos: the position to which to seek
Return*: true for success, false for failure (boolean)

size()
Description: Get the size of the file. Syntax: filue. size()
Parameter:

file：an instance of the File class
Return*: the size of the file in bytes

read()
Description:Read from the file. Syntax: file.read Parameter:

file：an instance of the File class
Return:* The next byte (or character), or -1 if none is available.

write()
Description: Write data to the file.
Syntax: file. write(data)file. write(buf，len)
Parameter:

file：an instance of the File class

data：the byte, char, or string (char*) to write
buf: an array of characters or bytes
len：the number of elements in buf

Return*: the number of bytes written

isDirectory(）
Description: Reports if the current file is a directory or not Syntax: file.isDirectory()
Parameter:

file: an instance of the File class
Return*:boolean. True if the file is a directory, false if not

openNextFile()
Description: Reports the next file or folder in a directory. Syntax: file.openNextFile()
Parameter:

file: an instance of the File class that is a directory
Return*: the next file or folder in the path

rewindDirectory()
Description: Back to the first file in the directory Syntax: file.rewindDirectory()
Parameter:

file: an instance of the File class.
Return*: None

9.2 IR Remote Control

IRrecv Class

IRrecv class can be used to receive and decode infrared signals Before using this class you need to instantiate an object of the class Its

IRrecv class can be used to receive and decode infrared signals. Before using this class, you need to instantiate an object of the class. Its
member functions are as follows.

IRrecv()
Description: construct function of IRrecv class. Specify the pin the IR receiver connects to on Arduino. Syntax: IRrecvobject(recvpin)
Parameter:

object: user-defined object name
recvpin: Arduino pin connect to IR receiver

enableIRIn(）
Description: Init IR decoder Syntax: IRrecv. enableIRIn()
Parameter:

IRrecv: an object of IRrecv class

decode()
Description: detect if an IR signal is received Syntax: IRrecv.decode(&.results)
Parameter:

IRrecv: an object of IRrecv class
results: an object of decode_results class
Return*: int type. Returns 0 if a code was received, or 1if nothing received yet

resume()
Description: Receive the next ir code Syntax: IRrecv.resume()
Parameter:

IRrecv: an object of IRrecv class.
Return*: none

IRsend class

The IRsend class can encode and send infrared signals.

IRsend(object)
Description: Construct function of IRsend class Parameter:

object: an object of IRsend class

sendNEC(）
Description: Sends the specified value in NEC encoded format. Syntax: IRsend.sendNEC(data，nbits)
Parameter:

IRsend: an object of IRsend class. data: encode value to send
nbits: number of encodeing bits

sendSony(）
Description:Send a code in Sony format. Syntax: IRsend.sendSony(data，nbits)
Parameter:

IRsend: an object of IRsend class. data: encode value to send
nbits: number of encodeing bits

sendRaw(）
Description: Send a raw code. Syntax: IRsend.sendRaw(buf,len,hz)
object:

IRsend:an object of IRsend class
buf: store the array of original code
len: the length of the array
hz: ir transmitting frequency

9.3 WIFI

ESP32 supports WiFi connection of both STA and AP mode.

STA mode: ESP32 module connects Internet through router, and mobile phone or computer realizes remote control of equipment through
Internet.
AP mode: ESP32 module acts as a hot spot to enable the communicate between the module and mobile phone/computer, and realize the
wireless LAN controlling.
STA+AP mode: The coexistence mode of the two modes can realize seamless switching through Internet control, which is convenient for
operation.

#include <WiFi.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>
HTTPClient http;
const char* ssid="dfrobotOffice";
const char* password="dfrobot2011";
const char* ntpServer = "pool.ntp.org";
const long gmtOffset_sec = 28800;
const int daylightOffset_sec = 0;
DynamicJsonDocument doc(1024);
DynamicJsonDocument doc1(1024);

void printLocalTime(){
 struct tm timeinfo;
 if(!getLocalTime(&timeinfo)){
 Serial.println("Failed to obtian time");
 return ;
 }
 Serial.println(&timeinfo,"%A, %B %d %Y %H:%M:%S");
}

void printLocalWeather(){
 http.begin("http://www.weather.com.cn/data/cityinfo/101270101.html");
 int httpCode = http.GET();
 if(httpCode == HTTP_CODE_OK){
 String pageData = http .getString();
 //Serial.println(pageData);
 deserializeJson(doc,pageData);
 JsonObject obj = doc.as<JsonObject>();
 String weatherInfo = obj["weatherinfo"];
 deserializeJson(doc1,weatherInfo);

JsonObject obj1 doc1 as<JsonObject>();

 JsonObject obj1 = doc1.as<JsonObject>();
 String city = obj1["city"];
 String temp1 = obj1["temp1"];
 String temp2 = obj1["temp2"];
 String weather = obj1["weather"];

 String cityInfo ="Address："+ city;
 String tempInfo =" Temperature: " + temp1 + "~" + temp2;
 String cityWeatherinfo = " Weather: " + weather;
 Serial.println("The weather conditions obtained are as follows: ");
 printLocalTime();
 Serial.print(cityInfo);
 Serial.print(tempInfo);
 Serial.println(cityWeatherinfo);
 }else{
 Serial.println("GET ERR");
 }
 http.end();
}

void setup() {
Serial.begin(115200);
 Serial.printf("Connecting to %s",ssid);
 WiFi.begin(ssid,password);
 while(WiFi.status()!=WL_CONNECTED){
 delay(500);
 Serial.print(".");
 }
 Serial.println(" CONNECTED");
 configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);

 // printLocalWeather();
}

void loop() {
 if(WiFi.status() == WL_CONNECTED){
 printLocalWeather();
 }else{

S i l i tl ("WiFi Di t")

 Serial.println("WiFi Disconnect");
 }
}

Description: This demo shows how to obtain the network time through WiFi function and get the weather by visiting the
http://www.weather.com.cn/datalcityinfo/101010100.html (http://www.weather.com.cn/datalcityinfo/101010100.html) . "101010100" in this
interface is the city code.

Note: you need to download arduino json library in this example, as shown below.

http://www.weather.com.cn/datalcityinfo/101010100.html

Result

WiFiClass

begin()
Description: enable WiFi and connect to the specified wifi network
status()
Description: Get WiFi status

p

HTTPClient

begin()
Description: Analyze the incoming URL parameter information
GET()
Description: Send get request to server
end() Description: end this connection

DynamicJsonDocument

deserializeJson（）
Description: analyze Json
as()
Description: Get the top node and convert it to T-type

9.4 Blutooth

This demo creates a BLE_Server that can provide data and send notification for the client. When the server receives the data from the client, it
will send the received data to the client in the form of notification. That is, the notification service provided by BLE server in this demo only
serves to return the received client data.

#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
#define SERVICE_UUID "DFCD0001-36E1-4688-B7F5-EA07361B26A8"
#define CHARACTERISTIC1_UUID "DFCD000A-36E1-4688-B7F5-EA07361B26A8"
bool deviceConnected = false;
BLEServer *pServer;
BLEService *pService;
BLECharacteristic* pCharacteristic;
class MyServerCallbacks: public BLEServerCallbacks {
 void onConnect(BLEServer* pServer) {
 deviceConnected = true;
 };

 void onDisconnect(BLEServer* pServer) {
 deviceConnected = false;
 }
};
class MyCallbacks: public BLECharacteristicCallbacks {
 void onWrite(BLECharacteristic *pCharacteristic) {
 std::string value = pCharacteristic->getValue();

 if (value.length() > 0) {
 Serial.println("*********");
 Serial.print("New value: ");
 for (int i = 0; i < value.length(); i++){
 Serial.print(value[i]);
 }
 Serial.println();
 Serial.println("*********");

pCharacteristic >notify();

BLE Usage

In this demo, the module FireBeetle ESP32-E acts as the BLE server, and the client could be a mobile phone. Install a BLE helper on the phone to
establish BLE connection with the ESP32 module. Here we use the Light Blue on iPhone to show you how to do that, such kind of Bluetooth

 pCharacteristic->notify();
 }
 }
};
void setupBLE()

{
 BLEDevice::init("DFRobot_ESP32"); //Create BLE device
 pServer = BLEDevice::createServer(); //Create BLE server
 pServer->setCallbacks(new MyServerCallbacks()); //Set the callback function of the server
 pService = pServer->createService(SERVICE_UUID); //Create BLE service
 pCharacteristic = pService->createCharacteristic(
 CHARACTERISTIC1_UUID,
 BLECharacteristic::PROPERTY_READ|
 BLECharacteristic::PROPERTY_NOTIFY|
 BLECharacteristic::PROPERTY_WRITE); //Create the characteristic value of the servic
 pCharacteristic->setCallbacks(new MyCallbacks()); //Set the callback function of the chracteristic value
 pCharacteristic->addDescriptor(new BLE2902());
 pCharacteristic->setValue("Hello DFRobot");
 pService->start();
 BLEAdvertising *pAdvertising = pServer->getAdvertising();
 pAdvertising->start();
}
void setup() {
 Serial.begin(115200);
 setupBLE();
}

void loop() {
 delay(3000);
}

g y
software can also be found on Android phones.

The operation on the client is as follows:

BLEDevice

init()
Description: create a BLE device

createServer()
Description: create BLE server

BLEServer

createService()
Description: create a BLE service

setCallbacks()
Description: create server callback function

start()
Description: turn off server

getAdvertising()
Description: configure advertising function

BLEService

createCharateristic()
Description: create the characteristic value of the service

####　BLECharacteristic

setCallbacks()
Description: set characteristic value callback function

Description: set characteristic value callback function

addDescriptor()
Description:

setValue()
Description: Set the value of the characteristic vlaue

getValue()
Description: get the value of the characteristic vlaue

notify()
Description: send notification

BLEAdvertising

start() Description: start advertising

10 Using with IFTTT

What is IFTTT?

If This Then That (commonly known as IFTTT, /ɪft/), is a web-based service that allows users to create chains of conditional statements triggered
by changes that occur within other web services. It is both a website and a mobile app of free service with the following slogan: "Put the
Internet to work for you". IFTTT aims to help people use the open API of various websites to monitor the triggers set by users. If triggers are
triggered, actions set by users will be executed. Usually, we can create n applets to meet our various automation needs.

Email Sending

Requirements
Hardware

FireBeetle ESP32-E x1
FireBeetle Gravity IO Expansion Board x1

Software

Download IFTTT Library and Sample Code (https://dfimg.dfrobot.com/nobody/wiki/52ca4c18a70580ad4fa9766be442cfda.rar)

Configure IFTTT

Configure IoT platform

1. Enter IFTTT website (https://ifttt.com/), register an account if you don't have one. Then Sign in.

https://dfimg.dfrobot.com/nobody/wiki/52ca4c18a70580ad4fa9766be442cfda.rar
https://ifttt.com/

2. The following interface will appear when you signed in.

3. Click "Create" to enter the interface below.

4. Click "if this" and input "webhooks" in the search bar.

5. The following interface when entering for the first time, click "Receive a web request".

6. Fill in the Event Name with "Message", then click "create this.

7. The webpage will return back automatically. Click "that" and select "Email". Then click "send me an email".

8. Click "Connect", fill in your emial address, and click "send PIN" to send a PIN code to your email box.

9. Check your email to find the PIN code, and fill it in the webpage, then click "Connect".

10. Click "Send me an Email" to edit the email.

11. You can write the content to be sent to your email box in the interface below. Click "Create action".

12. Click "Continue" to review, then click "Finish".

13. Check IFTTT_Key: click your avatar, click "My services"-"Webhooks"-"Documentation", then copy your key.

Burning Arduino Codes

Open the built-in sample code

Sample Code

#include <WiFi.h>
#include <HTTPClient.h>
//Configure WiFi name and password
char *WIFI_SSID = "WIFI_SSID";
char *WIFI_PASSWORD = "WIFI_PASSWORD";
//Configure IFTTT
char *IFTTT_ENVENT = "Your_Event";
char *IFTTT_KEY = "Your_Key";
//IFTTT Send Message
char *IFTTT_VALUE_1 = "Value1";
char *IFTTT_VALUE_2 = "Value2";
char *IFTTT_VALUE_3 = "Value3";
HTTPClient ifttt;
unsigned long lastTime = 0;
unsigned long timerDelay = 10000;
void setup() {
Serial.begin(115200);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.println("Connecting");
while(WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Wifi Connect Success");
}
void loop() {
//Send an HTTP POST request every 10 seconds
if ((millis() - lastTime) > timerDelay) {
//Check WiFi connection status
if(WiFi.status()== WL_CONNECTED){

ifttt IFTTTBeging(IFTTT ENVENT IFTTT KEY);

Configure Parameters in Arduino Code

//Configure WiFi name and password
char *WIFI_SSID = "WIFI_SSID";//Input WiFi name
char *WIFI_PASSWORD = "WIFI_PASSWORD";//Input WiFi Password
//Configure IFTTT
char *IFTTT_ENVENT = "Your_Event";//Input Event Name
char *IFTTT_KEY = "Your_Key";//Input the key you found in IFTTT
//IFTTT Send Message
char *IFTTT_VALUE_1 = "Value1";
char *IFTTT_VALUE_2 = "Value2";
char *IFTTT_VALUE_3 = "Value3";//Configure the three values in email information

Result

Receive the data from FireBeele-ESP32-E in the Email box.

 ifttt.IFTTTBeging(IFTTT_ENVENT,IFTTT_KEY);
 int dataSendState = ifttt.IFTTTSend(IFTTT_VALUE_1,IFTTT_VALUE_2,IFTTT_VALUE_3);
 Serial.println(dataSendState);//Whether the printing data is sent successfully
 }else {
 Serial.println("WiFi Disconnected");

 }
lastTime = millis();
 }
}

Dimension

Pin Pitch：2.54mm
Mounting Hole Pitch:
Mounting Hole Size: 2mm
Board Dimension: 25.4.00mm×60.00mm
Thickness: 1.6mm

FAQ

1. Install Driver

FireBeetle-ESP32 adopts CH340 serial chip that can be used without driver among most devices. If you find the driver is not installed
automatically after plugging into the device, you can install it manually:click to download the CH340 driver program
(https://dfimg.dfrobot.com/nobody/wiki/0e0d6b3864f7163833ec5d7ad4af7632.EXE)

For any questions, advice or cool ideas to share, please visit the DFRobot Forum (https://www.dfrobot.com/forum/).

More Documents

FireBeetle Schematic (https://dfimg.dfrobot.com/nobody/wiki/fd28d987619c16281bdc4f40990e5a1c.PDF)

 Get FireBeetle_Board_ESP32_E (https://www.dfrobot.com/product-2195.html) from DFRobot Store or DFRobot Distributor.
(https://www.dfrobot.com/index.php?route=information/distributorslogo)

Turn to the Top

https://dfimg.dfrobot.com/nobody/wiki/0e0d6b3864f7163833ec5d7ad4af7632.EXE
https://www.dfrobot.com/forum/
https://dfimg.dfrobot.com/nobody/wiki/fd28d987619c16281bdc4f40990e5a1c.PDF
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/index.php?route=information/distributorslogo

