

STD13N60M2, STP13N60M2, STU13N60M2, STW13N60M2

N-channel 600 V, 0.318 Ω typ., 12 A MDmesh II Plus™ low Q_g Power MOSFET in DPAK, TO-220, IPAK and TO-247 packages

Datasheet - preliminary data

Features

Order codes	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STD13N60M2			
STP13N60M2	650 V	0.360 Ω	12 A
STU13N60M2	030 V	0.300 12	12 A
STW13N60M2			

- Extremely low gate charge
- Lower R_{DS(on)} x area vs previous generation
- MDmesh[™] II technology
- Low gate input resistance
- 100% avalanche tested

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs developed using a new generation of MDmesh™ technology: MDmesh II Plus™ low Qg. These revolutionary Power MOSFETs associate a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. They are therefore suitable for the most demanding high efficiency converters.

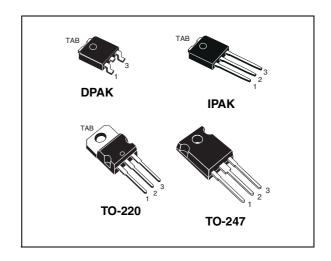


Figure 1. Internal schematic diagram

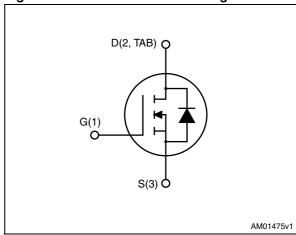


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD13N60M2		DPAK	Tape and reel
STP13N60M2	13N60M2	TO-220	
STU13N60M2	13NOONIZ	IPAK	Tube
STW13N60M2		TO-247	

December 2012 Doc ID 023937 Rev 1 1/19

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuits6
4	Package mechanical data
5	Packaging mechanical data16
6	Revision history

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	12	Α
I _D	Drain current (continuous) at T _C = 100 °C	7.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	48	Α
P _{TOT}	Total dissipation at T _C = 25 °C	110	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	- 55 10 150	

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter		Va	lue		Unit
Symbol	Parameter	DPAK TO-220 IPAK TO-247		Offic		
R _{thj-case}	Thermal resistance junction-case max	1.13			°C/W	
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	50		°C/W		
R _{thj-amb}	Thermal resistance junction-ambient max	62.5 100 50		°C/W		

^{1.} When mounted on 1 inch 2 FR-4, 2 Oz copper board

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	TBD	А
E _{AS}	Single pulse avalanche energy (starting T_j =25°C, I_D = I_{AR} ; V_{DD} =50)	TBD	mJ

^{2.} $I_{SD} \leq$ 12 A, di/dt \leq 400 A/ μ s; $V_{DS peak} < V_{(BR)DSS}$, V_{DD} =400 V.

2 Electrical characteristics

 $(T_C = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
I _{DSS}		V _{DS} = 600 V V _{DS} = 600 V, T _C =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 25 \text{ V}$			10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$		0.318	0.360	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	TBD TBD TBD	-	pF pF pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0	-	TBD	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	TBD	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 480 \text{ V}, I_D = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 3</i>)	-	16 TBD TBD	-	nC nC nC

C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _d (on)	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 6 \text{ A},$		14		ns
t _r (v)	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	_	9		ns
t _d (off)	Turn-off-delay time	(see Figure 4 and Figure 7)	-	15	_	ns
t _f (i)	Fall time	(See Figure 4 and Figure 7)		61		ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		12 48	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 12 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 7</i>)	1	TBD TBD TBD		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 12 A, di/dt = 100 A/ μ s V_{DD} = 60 V, T_j = 150 °C (see <i>Figure 7</i>)	-	TBD TBD TBD		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

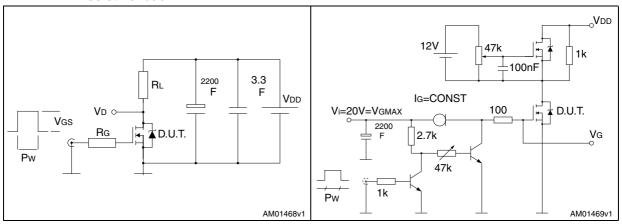


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

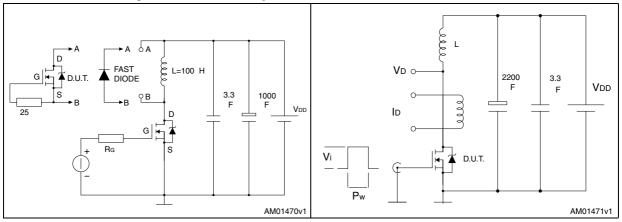
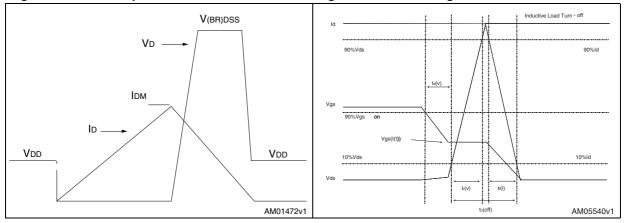



Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

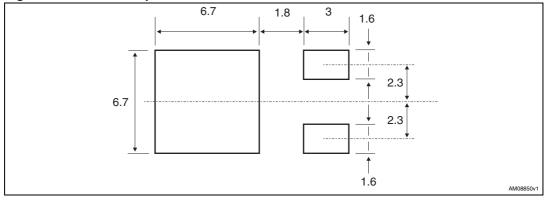


Table 9. DPAK (TO-252) mechanical data

Dim	,	mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

Figure 8. DPAK (TO-252) drawing

a. All dimensions are in millimeters

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

D D1 L30 D1 L30

Figure 10. TO-220 type A drawing

Table 11. IPAK (TO-251) mechanical data

DIM	mm.			
	min.	typ.	max.	
А	2.20		2.40	
A1	0.90		1.10	
b	0.64		0.90	
b2			0.95	
b4	5.20		5.40	
B5		0.30		
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
Е	6.40		6.60	
е		2.28		
e1	4.40		4.60	
Н		16.10		
L	9.00		9.40	
L1	0.80		1.20	
L2		0.80	1.00	
V1		10°		

E-L2 , D L1 *b2 (3x)* Н b (3x) V1 -*B5* -e1— 0068771_K

Figure 11. IPAK (TO-251) drawing

57

Table 12. TO-247 mechanical data

Dim.	mm.			
	Min.	Тур.	Max.	
А	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
Е	15.45		15.75	
е	5.30	5.45	5.60	
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S	5.30	5.50	5.70	

HEAT-SINK PLANE E -S Ĺ2 *b1* BACK VIEW

Figure 12. TO-247 drawing

A1-

0075325_G

5 Packaging mechanical data

Table 13. DPAK (TO-252) tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.	— Dilli.	Min.	Max.	
Α0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Figure 13. Tape

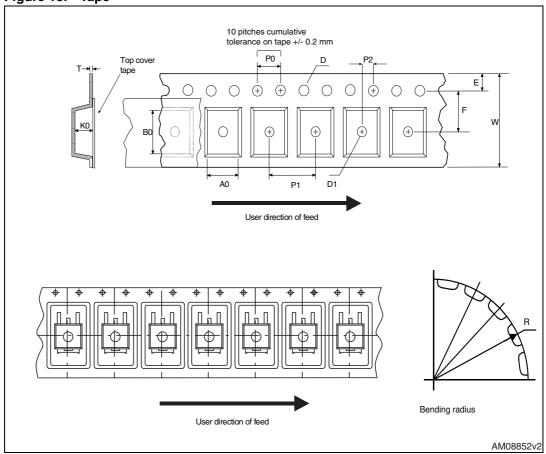
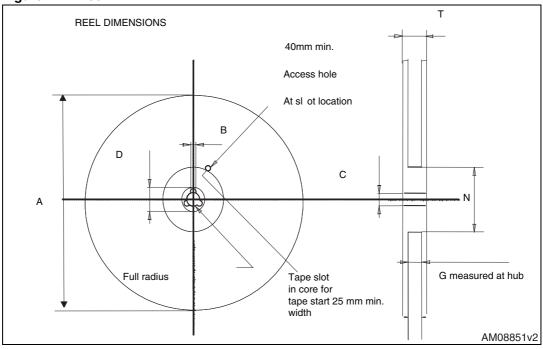



Figure 14. Reel

47/

Doc ID 023937 Rev 1

17/19

6 Revision history

Table 14. Document revision history

Date	Revision	Changes
18-Dec-2012	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 023937 Rev 1

19/19