Low-Voltage, 0.8- Ω ron, Dual SPST Analog Switch

FEATURES

- Low Voltage Operation (1.6 V to 3.6 V)
- Low On-Resistance - r $\mathrm{r}_{\mathrm{DS}(o n)}$: 0.8Ω @ 2.7 V
- High Current Handling Capacity:

150-mA Continuous

- Off-Isolation: $-56 \mathrm{~dB} @ 1 \mathrm{MHz}$
- Fast Switching: $25 \mathrm{~ns} \mathrm{t}_{\mathrm{ON}}$
- Low Charge Injection- $\mathrm{Q}_{\mathrm{INJ}}: 5.8 \mathrm{pC}$
- Low Power Consumption: $<1 \mu \mathrm{~W}$
- ESD Protection >2,000 V

BENEFITS

- High Accuracy
- High Bandwidth
- TTL and Low Voltage Logic Compatibility
- Low Power Consumption
- Reduced PCB Space (SOT23-8 and MSOP-8)

APPLICATIONS

- Mixed Signal Routing
- Portable and Battery Operated Systems
- Low Voltage Data Acquisition
- Modems
- PCMCIA Cards

DESCRIPTION

The DG2741/2742/2743 are low voltage, single supply, dual SPST analog switches. Designed for high performance switching of analog signals, the DG2741/2742/2743 provide low on-resistance (0.8Ω @ +2.7 V), fast speed (ton,$t_{\text {OFF }}$ @ 35 ns and 33 ns) and the ability to handle signals over the entire analog voltage range.

When operated on a $+3-\mathrm{V}$ supply, control pins are compatible with $1.8-\mathrm{V}$ digital logic. Additionally,on-resistance flatness and matching (0.18Ω and 0.08Ω, respectively) offer high accuracy between channels.

The DG2741 contains two normally open (NO) switches, the DG2742 contains two normally closed (NC) switches, and the DG2743 contains one normally open and one normally closed switch. Break-before-make is guaranteed.

Built on Vishay Siliconix's low voltage submicron CMOS process, the DG2741/2742/2743 were designed to offer solutions that extend beyond audio/video functions, to providing the performance required for today's demanding mixed-signal switching in portable applications.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION—DG2741

Device Marking: 2741

Device Marking: F3

TRUTH TABLE - DG2741	
Logic	Switch
0	Off
1	On

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION—DG2742/DG2743

Top View

Device Marking: 2742

Top View

TRUTH TABLE - DG2742	
Logic	Switch
0	On
1	Off

Device Marking: 2743

Device Marking: F5

TRUTH TABLE - DG2743		
Logic	Switch-1	Switch-2
0	Off	On
1	On	Off

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$		DG2741DQ-T1
		DG2742DQ-T1
		DG2743DQ-T1
	SOT23-8	DG2741DS-T1
		DG2742DS-T1
		DG2743DS-T1

New Product

ABSOLUTE MAXIMUM RATINGS

Reference to GND
V+ .. . -0.3 to +4 V

Continuous Current (NO, NC and COM Pins) $\pm 200 \mathrm{~mA}$
Peak Current $\pm 300 \mathrm{~mA}$
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
ESD per Method 3015.7 \qquad

Storage Temperature (D Suffix)
Power Dissipation (Packages) ${ }^{\text {c }}$
6-Pin SC-70 ${ }^{\text {C }}$ \qquad 250 mW

Notes:
a. Signals on NC, NO, or COM or IN exceeding $V+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$ of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (V+ = 1.8 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=1.8 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 1.0 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{aligned} & \text { Limits } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	ron	$\begin{gathered} \mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.9 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	Room Fulld		0.9	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	Ω
ron Flatness ${ }^{\text {d }}$	ron Flatness	$\mathrm{V}_{+}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0$ to $\mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		0.25		
r_{ON} Match ${ }^{\text {d }}$	$\Delta \mathrm{r}_{\mathrm{ON}}$		Room		0.05		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ ${ }^{1} \mathrm{NC}$ (off)	$\begin{gathered} \mathrm{V}+=1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.2 \mathrm{~V} / 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Fulld	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	ICOM(off)		Room Fulld	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\dagger}$	ICOM(on)	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Fulld	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	

Digital Control

Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.0			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5.5		pF
Input Current ${ }^{\dagger}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time ${ }^{\text {d }}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures 1 and 2	$\begin{aligned} & \text { Room } \\ & \text { Fulld } \end{aligned}$		33	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	toff		$\begin{aligned} & \text { Room } \\ & \text { Fulld } \end{aligned}$		27	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	3			
Charge Injection ${ }^{\text {d }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		20		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		55		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		91		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		88		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {O }}$		Room		105		

SPECIFICATIONS (V+ = 3.0 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \text { or } 1.4 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	Limits -40 to $85^{\circ} \mathrm{C}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	ron	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}} \\ \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room Full		0.4	$\begin{aligned} & 0.8 \\ & 0.9 \end{aligned}$	Ω
ron Flatness	${ }^{r} \mathrm{ON}$ Flatness	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5,2 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room		0.08	0.18	
ron MatchFlat	$\Delta r_{\text {ON }}$		Room		0.05	0.08	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	ICOM(off)		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current	ICOM(on)	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.5	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		5.5		pF
Input Current ${ }^{\dagger}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}+=2.7 \mathrm{~V}$, Figure 1 and 2	Room Full		20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	ns
Turn-Off Time	toff		Room Full		18	$\begin{aligned} & 28 \\ & 33 \end{aligned}$	
Break-Before-Make Time	t_{d}		Room	1			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\mathrm{INJ}}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, Figure 3	Room		5.8		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-56		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-89		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		81		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {O }}$		Room		103		

Power Supply

Power Supply Range	$\mathrm{V}+$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	1.5		3.6
Power Supply Current	$\mathrm{I}+$	V			

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 3-V leakage testing, not production tested.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

$V_{D}(V)$

$\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs. $\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{CC}}$ and Temperature

$V_{D}(V)$
Switching Frequency vs. Supply Current

Leakage Current vs. Analog Voltage

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense

$$
v_{\text {OUT }}=v_{\text {COM }}\left(\frac{R_{L}}{R_{\mathrm{L}}+R_{\mathrm{ON}}}\right)
$$

FIGURE 1. Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

FIGURE 2. Charge Injection

FIGURE 3. Off-Isolation

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

