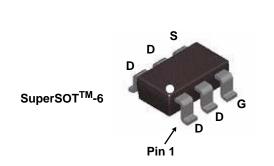
FAIRCHILD

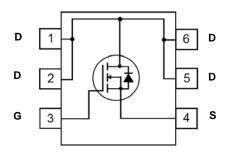
FDC855N

Single N-Channel, Logic Level, PowerTrench[®] MOSFET 30V, 6.1A, 27m Ω

Features

- Max $r_{DS(on)} = 27m\Omega$ at $V_{GS} = 10V$, $I_D = 6.1A$
- Max $r_{DS(on)} = 36m\Omega$ at $V_{GS} = 4.5V$, $I_D = 5.3A$
- SuperSOTTM -6 package: small footprint (72% smaller than standard SO-8; low profile (1mm thick).
- RoHS Compliant




General Description

This N-Channel Logic Level MOSFET is an efficient solution for low voltage and battery powered applications. Utilizing Fairchild Semiconductor's advanced PowerTrench[®] process, this device possesses minimized on-state resistance to optimize the power consumption. They are ideal for applications where in-line power loss is critical.

Application

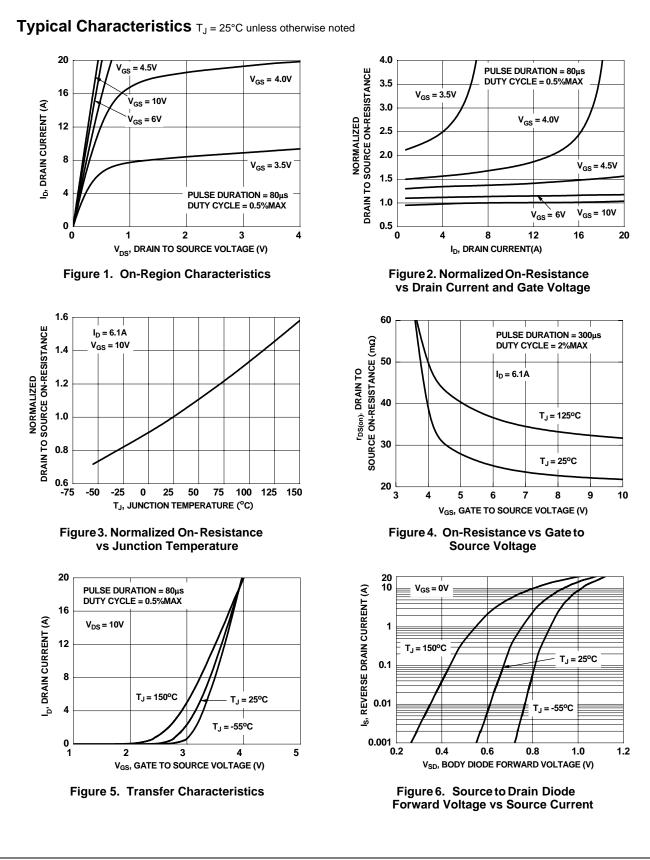
Power Management in Notebook, Hard Disk Drive

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		30	V	
V _{GS}	Gate to Source Voltage		±20	V	
I _D	Drain Current -Continuous $T_A = 25^{\circ}C$	(Note 1a)	6.1		
	-Pulsed		20	Α	
P _D	Power Dissipation (Steady State)	(Note 1a)	1.6	W	
	Power Dissipation (Steady State)	(Note 1b)	0.8		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
Thermal Ch	naracteristics				
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case (Note 1)		30	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (No		78	C/VV	

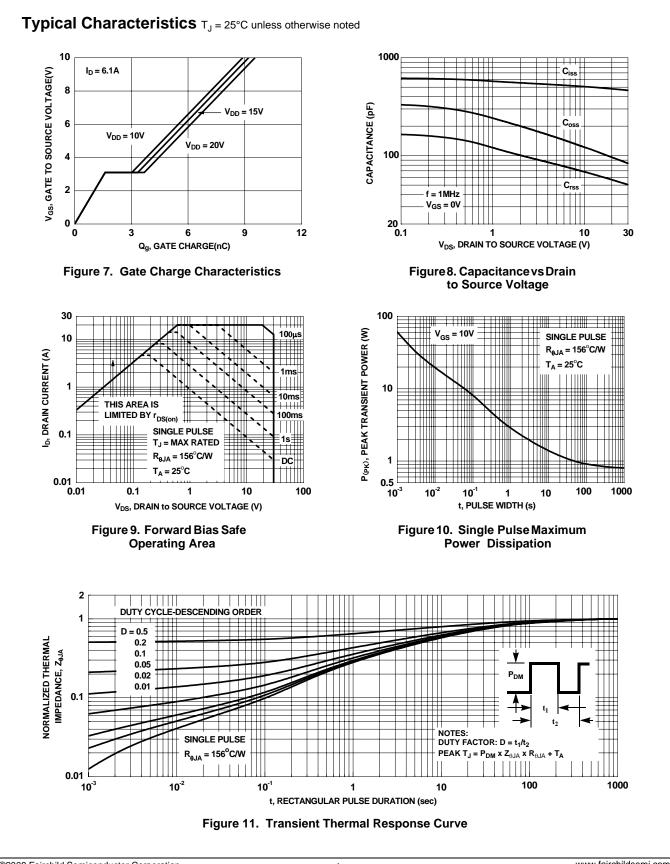
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.855	FDC855N	SuperSOT-6	7"	8 mm	3000 units


January 2008

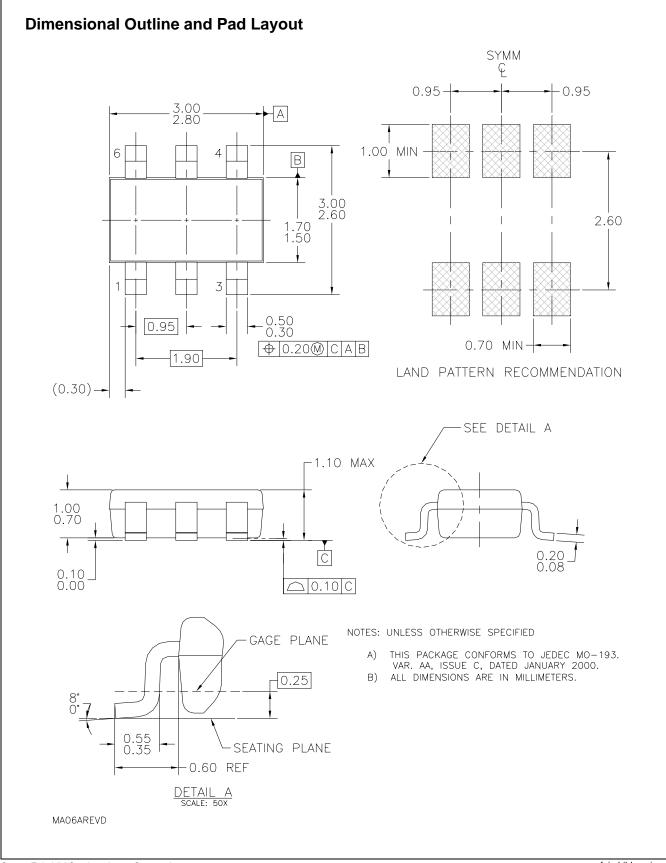
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics			L	L	
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V
∆BV _{DSS}	Breakdown Voltage Temperature		00			
ΔT_J	Coefficient	$I_D = 250\mu A$, referenced to $25^{\circ}C$		24		mV/°C
	Zara Cata Valtaga Drain Current	$V_{GS} = 0V, V_{DS} = 24V,$			1	
DSS	Zero Gate Voltage Drain Current	T _C = 125°C			250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	2.0	3.0	V
ΔV _{GS(th)}	Gate to Source Threshold Voltage		-			
ΔT_J	Temperature Coefficient	$I_D = 250\mu A$, referenced to 25°C		-6		mV/°C
		$V_{GS} = 10V, I_D = 6.1A$		20.7	27.0	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 5.3A$		28.2	36.0	mΩ
		$V_{GS} = 10V, I_D = 6.1A, T_J = 125^{\circ}C$		30.1	39.3	
9 _{FS}	Forward Transconductance	$V_{DD} = 10V, I_D = 6.1A$		20		S
Dynamic	Characteristics					
	Input Capacitance			493	655	pF
C _{oss}	Output Capacitance	— V _{DS} = 15V, V _{GS} = 0V,		108	145	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		62	95	pF
R _q	Gate Resistance	f = 1MHz		1.0		Ω
0		1 - 10012		1.0		32
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			6	12	ns
t _r	Rise Time	$V_{DD} = 15V, I_D = 6.1A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$		2	10	ns
t _{d(off)}	Turn-Off Delay Time			14	23	ns
t _f	Fall Time			2	10	ns
Qg	Total Gate Charge at 10V	$V_{GS}=0Vto10V$		9.2	13	nC
Qg	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 15V,$ $I_D = 6.1A$		4.9	7.0	nC
Q _{gs}	Gate to Source Charge			1.7		nC
Q _{gd}	Gate to Drain "Miller" Charge			3.1		nC
Drain-Sou	Irce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 1.3A (Note 2)		0.80	1.2	V
t _{rr}	Reverse Recovery Time			17	31	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 6.1A, di/dt = 100A/μs		6	12	nC
			b.	156°C/W whe	en mounted o	on a
	00000					

FDC855N N-Channel, Logic Level, PowerTrench[®] MOSFET


©2008 Fairchild Semiconductor Corporation FDC855N Rev.C

www.fairchildsemi.com

©2008 Fairchild Semiconductor Corporation FDC855N Rev.C


3

©2008 Fairchild Semiconductor Corporation FDC855N Rev.C

www.fairchildsemi.com

FDC855N N-Channel, Logic Level, PowerTrench[®] MOSFET

©2008 Fairchild Semiconductor Corporation FDC855N Rev.C

www.fairchildsemi.com

FDC855N N-Channel, Logic Level, PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM[™] **OPTOLOGIC[®] OPTOPLANAR[®]** R

PDP-SPM™ Power220[®] **POWEREDGE[®]** Power-SPM™ PowerTrench® Programmable Active Droop™ **QFET[®]** QS™ QT Optoelectronics™ Quiet Series[™] RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT[™]-3 SuperSOT™-6 SuperSOT[™]-8

SupreMOS™ SyncFET™

General The Power Franchise[®]

TinyBoost[™] TinyBoost[™] TinyBuck[™] TinyLogic[®] TINYOPTO[™] TinyPower[™] TinyPWM[™] TinyWire[™] µSerDes[™] UHC[®] Ultra FRFET[™] UniFET[™]

VCX™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.

PRODUCT STATUS DEFINITIONS