MAY 2015 # **FQB1P50** # P-Channel QFET® MOSFET - 500 V, - 1.5 A, 10.5 Ω ### **Description** This P-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts. ### **Features** - - 1.5 A, 500 V, $R_{DS(on)}$ = 10.5 Ω (Max.) @ V_{GS} = 10 V, I_{D} = 0.75 A - Low Gate Charge (Typ. 11 nC) - Low Crss (Typ. 6.0 pF) - 100% Avalanche Tested - RoHS Compliant ## **Absolute Maximum Ratings** $T_C = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | | FQB1P50TM | Unit | |-----------------------------------|--|----------|-------------|------| | V _{DSS} | Drain-Source Voltage | | -500 | V | | I _D | Drain Current - Continuous (T _C = 25°C) | | -1.5 | Α | | | - Continuous (T _C = 100°C | C) | -0.95 | Α | | I _{DM} | Drain Current - Pulsed | (Note 1) | -6.0 | Α | | V _{GSS} | Gate-Source Voltage | | ± 30 | V | | E _{AS} | Single Pulsed Avalanche Energy | (Note 2) | 110 | mJ | | I _{AR} | Avalanche Current | (Note 1) | -1.5 | Α | | E _{AR} | Repetitive Avalanche Energy | (Note 1) | 6.3 | mJ | | dv/dt | Peak Diode Recovery dv/dt | (Note 3) | -4.5 | V/ns | | P _D | Power Dissipation (T _A = 25°C) * | | 3.13 | W | | | Power Dissipation (T _C = 25°C) | | 63 | W | | | - Derate above 25°C | | 0.51 | W/°C | | T _J , T _{STG} | Operating and Storage Temperature Range | Э | -55 to +150 | °C | | T _L | Maximum lead temperature for soldering, 1/8" from case for 5 seconds | | 300 | °C | ## **Thermal Characteristics** | Symbol | Parameter | FQB1P50TM | Unit | |-----------------|--|-----------|------| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case, Max | 1.98 | | | Ъ | Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper), Max. | 62.5 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient (1 in ² pad of 2 oz copper), Max. | 40 | | # **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|-----------|---------|-----------|------------|----------| | FQB1P50 | FQB1P50TM | D2-PAK | 330mm | 24mm | 800 | | _ | | | | | |----|---------|---------|-------|---------| | FI | arica | l Chara | actai | ristics | | _ | C 1 L C | . Vilai | 166 | เมอเเนอ | T_C = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Тур | Max | Unit | |---------------------------------------|--|--|------|-----|-----------|----------| | Off Cha | aracteristics | | | | | | | BV_{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$ | -500 | | | V | | ΔBV_{DSS}
/ ΔT_{J} | Breakdown Voltage Temperature
Coefficient | I_D = -250 μ A, Referenced to 25°C | | - | | V/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = -500 \text{ V}, V_{GS} = 0 \text{ V}$
$V_{DS} = -400 \text{ V}, T_C = 125 ^{\circ}\text{C}$ | | | -1
-10 | μA
μA | | I_{GSSF} | Gate-Body Leakage Current, Forward | $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ | | | -100 | nA | | I_{GSSR} | Gate-Body Leakage Current, Reverse | $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ | | | 100 | nA | ## On Characteristics | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$ | -3.0 | | -5.0 | V | |---------------------|-----------------------------------|---|------|------|------|---| | R _{DS(on)} | Static Drain-Source On-Resistance | V _{GS} = -10 V, I _D = -0.75 A | | 8.0 | 10.5 | Ω | | 9 _{FS} | Forward Transconductance | $V_{DS} = -50 \text{ V}, I_{D} = -0.75 \text{ A}$ | | 1.26 | | S | ## **Dynamic Characteristics** | C_{iss} | Input Capacitance | $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ |
270 | 350 | pF | |------------------|------------------------------|---|---------|-----|----| | C _{oss} | Output Capacitance | f = 1.0 MHz |
40 | 50 | pF | | C_{rss} | Reverse Transfer Capacitance | |
6.0 | 8.0 | pF | ## **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | V _{DD} = -250 V, I _D = -1.5 A, |
9.0 | 30 | ns | |---------------------|---------------------|--|---------|----|----| | t _r | Turn-On Rise Time | $R_G = 25 \Omega$ |
25 | 60 | ns | | t _{d(off)} | Turn-Off Delay Time | 1.G - 20 11 |
27 | 65 | ns | | t _f | Turn-Off Fall Time | (Note 4) |
30 | 70 | ns | | Q_g | Total Gate Charge | V _{DS} = -400 V, I _D = -1.5 A, |
11 | 14 | nC | | Q_{gs} | Gate-Source Charge | V _{GS} = -10 V |
2.0 | | nC | | Q_{qd} | Gate-Drain Charge | (Note 4) |
5.6 | | nC | Drain-Source Diode Characteristics and Maximum Ratings | Diaiii | Diani-Source Diode Onaracteristics and Maximum Nathigs | | | | | | | |-----------------|--|--|--|-----|------|----|--| | IS | Maximum Continuous Drain-Source Diode Forward Current | | | | -1.5 | Α | | | I _{SM} | Maximum Pulsed Drain-Source Diode Forward Current | | | | -6.0 | Α | | | V_{SD} | Drain-Source Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_{S} = -1.5 \text{ A}$ | | | -5.0 | V | | | t _{rr} | Reverse Recovery Time | $V_{GS} = 0 \text{ V, } I_{S} = -1.5 \text{ A,}$ | | 200 | | ns | | | Q_{rr} | Reverse Recovery Charge | $dI_{F} / dt = 100 A/\mu s$ | | 0.7 | | μC | | - 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 88mH, I_{AS} = -1.5A, V_{DD} = -50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} ≤ -1.5A, di/dt ≤ 200A/ μ s, V_{DD} ≤ BV $_{DSS}$, Starting T_J = 25°C - 4. Essentially independent of operating temperature ## **Typical Characteristics** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ## Typical Characteristics (Continued) Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature Figure 11. Transient Thermal Response Curve Figure 13. Resistive Switching Test Circuit & Waveforms Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT I_{SD} Driver Compliment of DUT Image: Section of the property (N-Channel) $\prod V_{GS}$ • dv/dt controlled by R_G • I_{SD} controlled by pulse period Gate Pulse Width V_{GS} Gate Pulse Period 10V (Driver) **Body Diode Reverse Current** I_{SD} (DUT) di/dt I_{FM} , Body Diode Forward Current V_{DS} V_{SD} (DUT) Body Diode Forward Voltage Drop Body Diode Recovery dv/dt ### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ F-PFS™ AttitudeEngine™ FRFET® Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED®** and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® Power Supply WebDesigner™ PowerTrench® PowerXSTI Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM SYSTEM TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* սSerDes™ UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童® * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. **ESBC™** **-**® Fairchild® FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. ### **ANTI-COUNTERFEITING POLICY** Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. ### PRODUCT STATUS DEFINITIONS ### Definition of Terms | Definition of Terms | | | | | | |--------------------------|-----------------------|---|--|--|--| | Datasheet Identification | | Definition | | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | Rev 177