16-Bit Microcontrollers with Large, Dual Partition Flash Program Memory and USB On-The-Go (OTG)

High-Performance CPU

- Modified Harvard Architecture
- Largest Program Memory Available for PIC24
(1024 Kbytes) for the Most Complex Applications
- 32 Kbytes SRAM for All Part Variants
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Fast RC Internal Oscillator:
- 96 MHz PLL option
- Multiple clock divide options
- Run-time self-calibration capability for maintaining better than $\pm 0.20 \%$ accuracy
- Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware

Fractional/Integer Multiplier

- 32-Bit by 16-Bit Hardware Divider
- 16-Bit x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Universal Serial Bus Features

- USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable - Can Act as Either Host or Peripheral
- Low-Speed (1.5 Mb/s) and Full-Speed ($12 \mathrm{Mb} / \mathrm{s}$) USB Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- USB Device mode Operation from FRC Oscillator No Crystal Oscillator Required
- Supports up to 32 Endpoints (16 bidirectional):
- USB module can use any RAM location on the device as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip USB Transceiver
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- On-Chip Pull-up and Pull-Down Resistors

Analog Features

- 10/12-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter:
- 12-bit conversion rate of 200 ksps
- Auto-scan and threshold compare features
- Conversion available during Sleep
- Three Rail-to-Rail, Enhanced Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
- Used for capacitive touch sensing, up to 24 channels
- Time measurement down to 100 ps resolution

Low-Power Features

- Sleep and Idle modes Selectively Shut Down Peripherals and/or Core for Substantial Power Reduction and Fast Wake-up
- Doze mode Allows CPU to Run at a Lower Clock Speed than Peripherals
- Alternate Clock modes Allow On-the-Fly Switching to a Lower Clock Speed for Selective Power Reduction
- Wide Range Digitally Controlled Oscillator (DCO) for Fast Start-up and Low-Power Operation

Special Microcontroller Features

- Large, Dual Partition Flash Program Array:
- Capable of holding two independent software applications, including bootloader
- Permits simultaneous programming of one partition while executing application code from the other
- Allows run-time switching between Active Partitions
- 10,000 Erase/Write Cycle Endurance, Typical
- Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Supply Voltage Range of 2.0 V to 3.6 V
- Operating Ambient Temperature Range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- On-Chip Voltage Regulators (1.8V) for Low-Power Operation
- Programmable Reference Clock Output
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Boundary Scan Support
- Fail-Safe Clock Monitor Operation:
- Detects clock failure and switches to on-chip, low-power RC Oscillator
- Power-on Reset (POR), Brown-out Reset (BOR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation

Peripheral Features

- Peripheral Pin Select (PPS) -Allows Independent I/O Mapping of Many Peripherals
- Up to 5 External Interrupt Sources
- Configurable Interrupt-on-Change on All I/O Pins:
- Each pin is independently configurable for rising edge or falling edge change detection
- Eight-Channel DMA Supports All Peripheral modules:
- Minimizes CPU overhead and increases data throughput
- Five 16-Bit Timers/Counters with Prescalers:
- Can be paired as 32-bit timers/counters
- Six Input Capture modules, Each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, Each with a Dedicated 16-Bit Timer
- Four Single Output CCPs (SCCPs) and Three Multiple Output CCPs (MCCPs):
- Independent 16/32-bit time base for each module
- Internal time base and period registers
- Legacy PIC24F Capture and Compare modes (16 and 32-bit)
- Special Variable Frequency Pulse and Brushless DC Motor Output modes
- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC) with Timestamping
- Three 3-Wire/4-Wire SPI modules:
- Support 4 Frame modes
- 8-level FIFO buffer
- Support I^{2} S operation
- Three $I^{2} \mathrm{C}$ modules Support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- Six UART modules:
- Support RS-485, RS-232 and LIN/J2602
- On-chip hardware encoder/decoder for IrDA ${ }^{\circledR}$
- Auto-wake-up on Auto-Baud Detect (ABD)
- 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Four Configurable Logic Cells (CLCs):
- Two inputs and one output, all mappable to peripherals or I/O pins
- AND/OR/XOR logic and D/JK flip-flop functions
- High-Current Sink/Source ($18 \mathrm{~mA} / 18 \mathrm{~mA}$) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5 V Tolerant Inputs on Multiple I/O Pins

PIC24FJ1024GA610/GB610 FAMILY
 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

TABLE 1: PIC24FJ1024GA610/GB610 GENERAL PURPOSE FAMILIES

Device	Memory		Pins		Analog			Digital								$\begin{aligned} & \text { U } \\ & \underset{\sim}{x} \end{aligned}$	O0000
	$\begin{aligned} & \frac{\varepsilon}{\pi} \\ & \frac{0}{0} \\ & \frac{\pi}{\vdots} \\ & \frac{0}{2} \end{aligned}$	Ti		\bigcirc			$\sum_{\bar{U}}^{D}$		\sum 0 0 \underline{U}	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & U \\ & \sum \end{aligned}$	ㄴ	$\overline{\bar{\omega}}$	$\stackrel{@}{\stackrel{\circledR}{4}}$		U		
PIC24FJ128GA606	128K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ256GA606	256K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ512GA606	512K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ1024GA606	1024K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ128GA610	128K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ256GA610	256K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ512GA610	512K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ1024GA610	1024K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	N
PIC24FJ128GB606	128K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ256GB606	256K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ512GB606	512K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ1024GB606	1024K	32K	64	53	16	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ128GB610	128K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ256GB610	256K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ512GB610	512K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y
PIC24FJ1024GB610	1024K	32K	100	85	24	3	Y	5/2	6/6	3/4	3	3	4/2	Y	4	Y	Y

Pin Diagrams ${ }^{(2)}$

64-Pin TQFP
 64-Pin QFN ${ }^{(1)}$

[^0]TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA606)

Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/RF3
2	SCL3/IC5/PMD6/RE6	34	RP30/RF2
3	SDA3/IC6/PMD7/RE7	35	INT0/RF6
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	SDA1/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	SCL1/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	VDD
7	$\overline{\text { MCLR }}$	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/OCM3B/RB4	44	RP3/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/RP6/RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/RP7/U6TX/RB7	50	RP23/PMACK1/RD2
19	AVdD	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/RP8/PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/ $\overline{U 5 R T S} / \mathrm{U}$ BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	VCAP
25	Vss	57	N/C
26	Vdd	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

Pin Diagrams ${ }^{(2)}$ (Continued)

64-Pin TQFP
 64-Pin QFN ${ }^{(1)}$

Legend: See Table 3 for a complete description of pin functions. Pinouts are subject to change.
Note 1: It is recommended to connect the metal pad on the bottom of the 64-pin QFN package to Vss.
2: Gray shading indicates 5.5 V tolerant input pins.

TABLE 3: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB606)

Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/USBID/RF3
2	SCL3/IC5/PMD6/RE6	34	Vbus/RF7
3	SDA3/IC6/PMD7/RE7	35	Vusb3v3
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	D-/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	D+/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	Vdd
7	$\overline{\text { MCLR }}$	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/SDA1/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4	44	RP3/SCL1/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/RP6/RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/RP7/U6TX/RB7	50	RP23/PMACK1/RD2
19	AVdD	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/RP8/PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/U5RTS/U5BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	Vcap
25	Vss	57	N/C
26	Vdd	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

Pin Diagrams ${ }^{(1)}$ (Continued)

100-Pin TQFP

Legend: See Table 4 for a complete description of pin functions. Pinouts are subject to change
Note 1: Gray shading indicates 5.5 V tolerant input pins.

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 TQFP)

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/RF3
2	Vdd	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15/RF8
4	SCL3/IC5/PMD6/RE6	54	RF7
5	SDA3/IC6/PMD7/RE7	55	INT0/RF6
6	RPI38/OCM1D/RC1	56	SDA1/RG3
7	RPI39/OCM2C/RC2	57	SCL1/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RPI41/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	$\overline{\text { MCLR }}$	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	RPI36/PMA22/RA14
17	TMS/OCM3D/CTED14/RA0	67	RPI35/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/RPI34/PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	RP3/PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/RP28/OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/RP11/U6CTS/ICM6/RD0
23	AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	75	Vss
26	PGEC2/AN6/RP6/RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/RP7/U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVdd	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/RP8/PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/RP9/T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	Vdd	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31/RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	VdD	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5/RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17/PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

Pin Diagrams ${ }^{(1)}$ (Continued)

100-Pin TQFP

Legend: See Table 5 for a complete description of pin functions. Pinouts are subject to change.
Note 1: Gray shading indicates 5.5 V tolerant input pins.

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 TQFP)

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/USBID/RF3
2	Vdd	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15/RF8
4	SCL3/IC5/PMD6/RE6	54	Vbus/RF7
5	SDA3/IC6/PMD7/RE7	55	Vusb3v3
6	RPI38/OCM1D/RC1	56	D-/RG3
7	RPI39/OCM2C/RC2	57	D+/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RP141/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	$\overline{\mathrm{MCLR}}$	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	RPI36/SCL1/PMA22/RA14
17	TMS/OCM3D/CTED14/RA0	67	RPI35/SDA1/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/RPI34/PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	RP3/PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
23	AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	74	SOSCO/C3INC/RP137/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	75	Vss
26	PGEC2/AN6/RP6/RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/RP7/U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVDD	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/RP8/PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/RP9/T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	Vdd	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31/RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	VdD	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5/RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17/PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

Pin Diagrams ${ }^{(1)}$ (Continued)

PIC24FJXXXGA610 121-Pin BGA

Legend: See Table 6 for a complete description of pin functions. Pinouts are subject to change.
Note 1: Gray shading indicates 5.5 V tolerant input pins.

TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 BGA)

Pin	Full Pin Name	Pin	Full Pin Name
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RPI41/OCM3C/PMCS2/RC4
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	PMDO/RE0	E4	RPI39/OCM2C/RC2
A5	PMD8/RG0	E5	N/C
A6	PMD10/RF1	E6	PMD9/RG1
A7	N/C	E7	N/C
A8	N/C	E8	RPI35/PMBE1/RA15
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/̄6RTS/U6BCLK/ICM5/RD8
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9
A11	RP24/U5TXIICM4/RD1	E11	RPI36/PMA22/RA14
B1	N/C	F1	$\overline{\text { MCLR }}$
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/ RG9
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7
B5	AN22/OCM1F/PMA17/RA7	F5	Vss
B6	U5CTS/OC6/PMD11/RF0	F6	N/C
B7	VCAP	F7	N/C
B8	RP20/PMRD/PMWR/RD5	F8	VdD
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8
C2	VDD	G2	AN21/RPI34/PMA19/RE9
C3	OCM2E/RG12	G3	TMS/OCM3D/CTED14/RA0
C4	CTED11/PMA16/RG14	G4	N/C
C5	AN23/OCM1E/RA6	G5	VdD
C6	N/C	G6	Vss
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	RP25/PMWR/PMENB/RD4	G8	N/C
C9	N/C	G9	TDO/RA5
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C11NB/RP28/OCM3B/RB4
D3	IC4/CTED4/PMD5/RE5	H3	N/C
D4	N/C	H4	N/C
D5	N/C	H5	N/C
D6	N/C	H6	VDD
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C
D8	OCM3F/PMD13/RD13	H8	RF7
D9	CLC3OUT/RP11/\6CTS/ICM6/RD0	H9	INT0/RF6
D10	N/C	H10	SCL1/RG2
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 BGA) (CONTINUED)

Pin	Full Pin Name	Pin	
J1	AN3/C2INA/RB3	K7	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/AN7/RP7/U6TX/RB7	K9	RP5/RD15
J4	AVDD	K10	RP16/RF3
J5	AN11/REFI/PMA12/RB11	K11	RP30/RF2
J6	TCK/RA1	L1	PGEC2/AN6/RP6/RB6
J7	AN12/U6RX/CTED2/PMA11/RB12	L2	CVREF-/VREF-/PMA7/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/TMPR/RP9/T1CK/RB9
J10	RP15/RF8	L5	CVREF/AN10/PMA13/RB10
J11	SDA1/RG3	L6	RP31/RF13
K1	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	L7	AN13/CTED1/PMA10/RB13
K2	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	L8	AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	CVREF+/VREF+/PMA6/RA10	L9	RPI43/RD14
K4	AN8/RP8/PWRGT/RB8	L10	RP10/PMA9/RF4
K5	N/C	L11	RP17/PMA8/RF5
K6	RPI32/CTED7/PMA18/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.

Pin Diagrams ${ }^{(1)}$ (Continued)

PIC24FJXXXGB610 121-Pin BGA

Legend: See Table 7 for a complete description of pin functions. Pinouts are subject to change.
Note 1: Gray shading indicates 5.5 V tolerant input pins.

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 BGA)

Pin	Full Pin Name	Pin	Full Pin Name
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RP141/OCM3C/PMCS2/RC4
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	PMDO/RE0	E4	RPI39/OCM2C/RC2
A5	PMD8/RG0	E5	N/C
A6	PMD10/RF1	E6	PMD9/RG1
A7	N/C	E7	N/C
A8	N/C	E8	RPI35/SDA1/PMBE1/RA15
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9
A11	RP24/U5TX/ICM4/RD1	E11	RPI36/SCL1/PMA22/RA14
B1	N/C	F1	$\overline{\text { MCLR }}$
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/ RG9
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7
B5	AN22/OCM1F/PMA17/RA7	F5	Vss
B6	U5CTS/OC6/PMD11/RF0	F6	N/C
B7	Vcap	F7	N/C
B8	RP20/PMRD/PMWR/RD5	F8	VDD
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8
C2	Vdd	G2	AN21/RPI34/PMA19/RE9
C3	OCM2E/RG12	G3	TMS/OCM3D/CTED14/RA0
C4	CTED11/PMA16/RG14	G4	N/C
C5	AN23/OCM1E/RA6	G5	VDD
C6	N/C	G6	Vss
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	RP25/PMWR/PMENB/RD4	G8	N/C
C9	N/C	G9	TDO/RA5
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4
D3	IC4/CTED4/PMD5/RE5	H3	N/C
D4	N/C	H4	N/C
D5	N/C	H5	N/C
D6	N/C	H6	VDD
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C
D8	OCM3F/PMD13/RD13	H8	Vbus/RF7
D9	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0	H9	Vusb3v3
D10	N/C	H10	D+/RG2
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.I

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 BGA) (CONTINUED)

Pin	Full Pin Name	Pin	Full Pin Name
J1	AN3/C2INA/RB3	K7	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/AN7/RP7/U6TX/RB7	K9	RP5/RD15
J4	AVDD	K10	RP16/USBID/RF3
J5	AN11/REFI/PMA12/RB11	K11	RP30/RF2
J6	TCK/RA1	L1	PGEC2/AN6/RP6/RB6
J7	AN12/U6RX/CTED2/PMA11/RB12	L2	CVREF-/VREF-/PMA7/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/TMPR/RP9/T1CK/RB9
J10	RP15/RF8	L5	CVREF/AN10/PMA13/RB10
J11	D-/RG3	L6	RP31/RF13
K1	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	L7	AN13/CTED1/PMA10/RB13
K2	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	L8	AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	CVREF+/VREF+/PMA6/RA10	L9	RPI43/RD14
K4	AN8/RP8/PWRGT/RB8	L11	RP17/PMA8/RF5
K5	N/C		
K6	RPI32/CTED7/PMA18/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.
Note: Pinouts are subject to change.I

Table of Contents

1.0 Device Overview 21
2.0 Guidelines for Getting Started with 16-Bit Microcontrollers 41
3.0 CPU 47
4.0 Memory Organization 53
5.0 Direct Memory Access Controller (DMA) 81
6.0 Flash Program Memory 89
7.0 Resets 97
8.0 Interrupt Controller 103
9.0 Oscillator Configuration 115
10.0 Power-Saving Features 135
11.0 I/O Ports 147
12.0 Timer1 183
13.0 Timer2/3 and Timer4/5 185
14.0 Input Capture with Dedicated Timers 191
15.0 Output Compare with Dedicated Timers 197
16.0 Capture/Compare/PWM/Timer Modules (MCCP and SCCP) 207
17.0 Serial Peripheral Interface (SPI) 225
18.0 Inter-Integrated Circuit $\left(I^{2} \mathrm{C}\right)$. 245
19.0 Universal Asynchronous Receiver Transmitter (UART) 253
20.0 Universal Serial Bus with On-The-Go Support (USB OTG) 263
21.0 Enhanced Parallel Master Port (EPMP) 297
22.0 Real-Time Clock and Calendar (RTCC) with Timestamp 309
23.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator 329
24.0 Configurable Logic Cell (CLC). 335
25.0 12-Bit A/D Converter with Threshold Detect 345
26.0 Triple Comparator Module. 367
27.0 Comparator Voltage Reference. 373
28.0 Charge Time Measurement Unit (CTMU) 375
29.0 High/Low-Voltage Detect (HLVD) 385
30.0 Special Features 387
31.0 Development Support 405
32.0 Instruction Set Summary 409
33.0 Electrical Characteristics 417
34.0 Packaging Information 439
Appendix A: Revision History 453
Index 455
The Microchip Web Site 461
Customer Change Notification Service 461
Customer Support 461
Product Identification System 463

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the "dsPIC33/PIC24 Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24FJ1024GA610/GB610 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.
In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU with Extended Data Space (EDS)" (DS39732)
- "Data Memory with Extended Data Space (EDS)" (DS39733)
- "Direct Memory Access Controller (DMA)" (DS39742)
- "PIC24F Flash Program Memory" (DS30009715)
- "Reset" (DS39712)
- "Interrupts" (DS70000600)
- "Oscillator" (DS39700)
- "Power-Saving Features" (DS39698)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS39711)
- "Timers" (DS39704)
- "Input Capture with Dedicated Timer" (DS70000352)
- "Output Compare with Dedicated Timer" (DS70005159)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS33035A)
- "Serial Peripheral Interface (SPI)" (DS70005185)
- "Inter-Integrated Circuit ${ }^{\text {TM }}\left(\mathbf{I}^{2} \mathbf{C}^{\text {TM }}\right)$ " (DS70000195)
- "UART" (DS39708)
- "USB On-The-Go (OTG)" (DS39721)
- "Enhanced Parallel Master Port (EPMP)" (DS39730)
- "RTCC with Timestamp" (DS70005193)
- "RTCC with External Power Control" (DS39745)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729)
- "12-Bit A/D Converter with Threshold Detect" (DS39739)
- "Scalable Comparator Module" (DS39734)
- "Dual Comparator Module" (DS39710)
- "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743)
- "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
- "Watchdog Timer (WDT)" (DS39697)
- "CodeGuard ${ }^{\text {TM }}$ Intermediate Security" (DS70005182)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)
- "Dual Partition Flash Program Memory" (DS70005156)

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ1024GB610
- PIC24FJ512GB610
- PIC24FJ256GB610
- PIC24FJ128GB610 • PIC24FJ128GA610
- PIC24FJ1024GB606 • PIC24FJ1024GA606
- PIC24FJ512GB606 - PIC24FJ512GA606
- PIC24FJ256GB606 • PIC24FJ256GA606
- PIC24FJ128GB606 • PIC24FJ128GA606

The PIC24FJ1024GA610/GB610 family introduces many new analog features to the extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSP).

Table 1-3 lists the functions of the various pins shown in the pinout diagrams.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16 -bit modified Harvard architecture, first introduced with Microchip's dsPIC ${ }^{\circledR}$ Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24 -bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17×17 hardware multiplier with support for integer math
- Hardware support for 32 by 16 -bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as ' C '
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

The PIC24FJ1024GA610/GB610 family of devices includes Retention Sleep, a low-power mode with essential circuits being powered from a separate low-voltage regulator.

This new low-power mode also supports the continuous operation of the low-power, on-chip Real-Time Clock/ Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.
Aside from this new feature, PIC24FJ1024GA610/GB610 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of the Idle and the Sleep modes

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ1024GA610/GB610 family offer six different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock (EC) modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Digitally Controlled Oscillator (DCO) with multiple frequencies and fast wake-up time
- A Fast Internal Oscillator (FRC), a nominal 8 MHz output, with multiple frequency divider options
- A separate Low-Power Internal RC Oscillator (LPRC), 31 kHz nominal, for low-power, timing-insensitive applications.
The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger device, or even in jumping from 64-pin to 100-pin devices.
The PIC24F family is pin-compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

1.2 DMA Controller

PIC24FJ1024GA610/GB610 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Eight independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Configurable Logic Cell: The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- Timing Modules: The PIC24FJ1024GA610/GB610 family provides five independent, general purpose, 16-bit timers (four of which can be combined into two 32-bit timers). The devices also include 3 multiple output and 4 single output advanced Capture/Compare/PWM/Timer peripherals, and 6 independent legacy Input Capture and 6 independent legacy Output Compare modules.
- Communications: The PIC24FJ1024GA610/ GB610 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are 3 independent $1^{2} \mathrm{C}$ modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, 6 independent UARTs with built-in IrDA ${ }^{\circledR}$ encoders/decoders and 3 SPI modules.
- Analog Features: All members of the PIC24FJ1024GA610/GB610 family include the new 12-bit A/D Converter (A/D) module and a triple comparator module. The A/D module incorporates a range of new features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- CTMU Interface: In addition to their other analog features, members of the PIC24FJ1024GA610/ GB610 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
- Enhanced Parallel Master/Parallel Slave Port:

This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4,8 or 16 bits and address widths of up to 23 bits in Master modes.

- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ1024GA610/GB610 family are available in 64 -pin, 100-pin and 121-pin packages. The general block diagram for all devices is shown in Figure 1-1.
The devices are differentiated from each other in six ways:

1. Flash program memory (128 Kbytes for PIC24FJ128GX6XX devices, 256 Kbytes for PIC24FJ256GX6XX devices, 512 Kbytes for PIC24FJ512GX6XX devices and 1024 Kbytes for PIC24FJ1024GX6XX devices).
2. Available I/O pins and ports (53 pins on 6 ports for 64 -pin devices and 85 pins on 7 ports for 100 -pin and 121-pin devices).
3. Available Interrupt-on-Change Notification (IOC) inputs (53 on 64-pin devices and 85 on 100-pin and 121-pin devices).
4. Available remappable pins (29 pins on 64-pin devices, 44 pins on 100-pin and 121-pin devices).
5. Available USB peripheral (available on PIC24FJXXXGB6XX devices; not available on PIC24FJXXXGA6XX devices).
6. Analog input channels (16 channels for 64 -pin devices and 24 channels for 100-pin and 121-pin devices).
All other features for devices in this family are identical. These are summarized in Table 1-1, Table 1-2 and Table 1-3.

A list of the pin features available on the PIC24FJ1024GA610/GB610 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ1024GA606/GB606: 64-PIN DEVICES

Features	PIC24FJ128GX606	PIC24FJ256GX606	PIC24FJ512GX606	PIC24FJ1024GX606
Operating Frequency	DC - 32 MHz			
Program Memory (bytes)	128K	256K	512K	1024K
Program Memory (instructions)	44,032	88,064	176,128	352,256
Data Memory (bytes)	32K			
Interrupt Sources (soft vectors/ NMI traps)	103 (97/6)			
I/O Ports	Ports B, C, D, E, F, G			
Total I/O Pins	53			
Remappable Pins	29 (28 I/O, 1 input only)			
Timers: Total Number (16-bit)	$5^{(1)}$			
32-Bit (from paired 16-bit timers)	2			
Input Capture Channels	$6^{(1)}$			
Output Compare/PWM Channels	$6^{(1)}$			
Input Change Notification Interrupt	53			
Serial Communications: UART	$6^{(1)}$			
SPI (3-wire/4-wire)	$3^{(1)}$			
$1^{2} \mathrm{C}$	3			
Configurable Logic Cell (CLC)	$4^{(1)}$			
Parallel Communications (EPMP/PSP)	Yes			
Capture/Compare/PWM/Timer Modules	3 Multiple Outputs and 4 Single Outputs			
JTAG Boundary Scan	Yes			
12/10-Bit Analog-to-Digital Converter (A/D) Module (input channels)	16			
Analog Comparators	3			
CTMU Interface	Yes			
Universal Serial Bus Controller	Yes (PIC24FJ1024GB606 devices only)			
Resets (and Delays)	Core POR, VDD POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)			
Instruction Set	76 Base Instructions, Multiple Addressing Mode Variations			
Packages	64-Pin TQFP and QFN			

Note 1: Some peripherals are accessible through remappable pins.

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ1024GX610: 100-PIN AND 121-PIN DEVICES

Features	PIC24FJ128GX610	PIC24FJ256GX610	PIC24FJ512GX610	PIC24FJ1024GX610
Operating Frequency	DC - 32 MHz			
Program Memory (bytes)	128K	256K	512K	1024K
Program Memory (instructions)	44,032	88,064	176,128	352,256
Data Memory (bytes)	32K			
Interrupt Sources (soft vectors/NMI traps)	103 (97/6)			
I/O Ports	Ports A, B, C, D, E, F, G			
Total I/O Pins	85			
Remappable Pins	44 (32 I/O, 12 input only)			
Timers: Total Number (16-bit)	$5^{(1)}$			
32-Bit (from paired 16-bit timers)	2			
Capture/Compare/PWM/Timer Modules	3 Multiple Outputs and 4 Single Outputs			
Input Capture Channels	$6^{(1)}$			
Output Compare/PWM Channels	$6^{(1)}$			
Input Change Notification Interrupt	85			
Serial Communications: UART	$6^{(1)}$			
SPI (3-wire/4-wire)	$3^{(1)}$			
$\mathrm{I}^{2} \mathrm{C}$	3			
Configurable Logic Cell (CLC	4			
Parallel Communications (EPMP/PSP)	Yes			
JTAG Boundary Scan	Yes			
12/10-Bit Analog-to-Digital Converter (A/D) Module (input channels)	24			
Analog Comparators	3			
CTMU Interface	Yes			
Universal Serial Bus Controller	Yes (PIC14FJ1024GB610 devices only)			
Resets (and delays)	Core POR, VdD POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)			
Instruction Set	76 Base Instructions, Multiple Addressing Mode Variations			
Packages	100-Pin TQFP and 121-Pin BGA			

Note 1: Some peripherals are accessible through remappable pins.

FIGURE 1-1: PIC24FJ1024GA610/GB610 FAMILY GENERAL BLOCK DIAGRAM

Note 1: Not all I/O pins or features are implemented on all device pinout configurations. See Table 1-3 for specific implementations by pin count.
2: BOR functionality is provided when the on-board voltage regulator is enabled.
3: Some peripheral I/Os are only accessible through remappable pins.

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
		GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
ANO	16	16	25	25	K2	K2	1	ANA	A/D Analog Inputs
AN1	15	15	24	24	K1	K1	1	ANA	
AN2	14	14	23	23	J2	J2	1	ANA	
AN3	13	13	22	22	J1	J1	1	ANA	
AN4	12	12	21	21	H2	H2	1	ANA	
AN5	11	11	20	20	H1	H1	1	ANA	
AN6	17	17	26	26	L1	L1	1	ANA	
AN7	18	18	27	27	J3	J3	1	ANA	
AN8	21	21	32	32	K4	K4	1	ANA	
AN9	22	22	33	33	L4	L4	1	ANA	
AN10	23	23	34	34	L5	L5	1	ANA	
AN11	24	24	35	35	J5	J5	1	ANA	
AN12	27	27	41	41	J7	J7	I	ANA	
AN13	28	28	42	42	L7	L7	1	ANA	
AN14	29	29	43	43	K7	K7	1	ANA	
AN15	30	30	44	44	L8	L8	1	ANA	
AN16	-	-	9	9	E1	E1	1	ANA	
AN17	-	-	10	10	E3	E3	1	ANA	
AN18	-	-	11	11	F4	F4	1	ANA	
AN19	-	-	12	12	F2	F2	1	ANA	
AN20	-	-	14	14	F3	F3	1	ANA	
AN21	-	-	19	19	G2	G2	1	ANA	
AN22	-	-	92	92	B5	B5	1	ANA	
AN23	-	-	91	91	C5	C5	1	ANA	
AVdD	19	19	30	30	J4	J4	P	-	Positive Supply for Analog modules
AVss	20	20	31	31	L3	L3	P	-	Ground Reference for Analog modules
C1INA	11	11	20	20	H1	H1	1	ANA	Comparator 1 Input A
C1INB	12	12	21	21	H2	H2	1	ANA	Comparator 1 Input B
C1INC	5,8	5,8	11,14	11,14	F4,F3	F4,F3	1	ANA	Comparator 1 Input C
C1IND	4	4	10	10	E3	E3	1	ANA	Comparator 1 Input D
C2INA	13	13	22	22	J1	J1	1	ANA	Comparator 2 Input A
C2INB	14	14	23	23	J2	J2	1	ANA	Comparator 2 Input B
C2INC	8	8	14	14	F3	F3	1	ANA	Comparator 2 Input C
C2IND	6	6	12	12	F2	F2	1	ANA	Comparator 2 Input D
C3INA	55	55	84	84	C7	C7	1	ANA	Comparator 3 Input A

$\begin{array}{ll}\text { Legend: } & \text { TTL }=\text { TTL input buffer } \\ & \text { ANA }=\text { Analog level input/output } \\ & \text { DIG }=\text { Digital input/output }\end{array}$

[^1]TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{aligned} & \text { Pin } \\ & \text { Function } \end{aligned}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
C3INB	54	54	83	83	D7	D7	1	ANA	Comparator 3 Input B
C3INC	8,48	8,48	14,74	14,74	F3,B11	F3,B11	1	ANA	Comparator 3 Input C
C3IND	47	47	73	73	C10	C10	1	ANA	Comparator 3 Input D
CLC3OUT	46	46	72	72	D9	D9	0	DIG	CLC3 Output
CLC4OUT	42	42	68	68	E9	E9	0	DIG	CLC4 Output
CLKI	39	39	63	63	F9	F9	-	-	Main Clock Input Connection
CLKO	40	40	64	64	F11	F11	0	DIG	System Clock Output
CTCMP	14	14	23	23	J2	J2	0	ANA	CTMU Comparator 2 Input (Pulse mode)
CTED1	28	28	42	42	L7	L7	1	ST	CTMU External Edge Inputs
CTED2	27	27	41	41	J7	J7	1	ST	
CTED3	-	-	1	1	B2	B2	1	ST	
CTED4	1	1	3	3	D3	D3	1	ST	
CTED5	29	29	43	43	K7	K7	1	ST	
CTED6	30	30	44	44	L8	L8	1	ST	
CTED7	-	-	40	40	K6	K6	1	ST	
CTED8	64	64	100	100	A1	A1	1	ST	
CTED9	63	63	99	99	A2	A2	1	ST	
CTED10	-	-	97	97	A3	A3	1	ST	
CTED11	-	-	95	95	C4	C4	1	ST	
CTED12	15	15	24	24	K1	K1	1	ST	
CTED13	14	14	23	23	J2	J2	1	ST	
CTED14	-	-	17	17	G3	G3	1	ST	
CTPLS	29	29	43	43	K7	K7	0	DIG	CTMU Pulse Output
CVREF	23	23	34	34	L5	L5	0	ANA	Comparator Voltage Reference Output
CVREF+	16	16	25,29	25,29	K2,K3	K2,K3	1	ANA	Comparator Voltage Reference (high) Input
CVref-	15	15	24,28	24,28	K1,L2	K1,L2	1	ANA	Comparator Voltage Reference (low) Input
D+	-	37	-	57	-	H10	1/O	XCVR	USB Signaling
D-	-	36	-	56	-	J11	I/O	XCVR	

Legend: TTL = TTL input buffer
ANA = Analog level input/output
DIG = Digital input/output

ST = Schmitt Trigger input buffer $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{aligned} & \text { Pin } \\ & \text { Function } \end{aligned}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
		GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { GA612 } \\ \text { 121-Pin } \\ \text { BGA } \end{array}$	GB612 121-Pin BGA			
IC4	1	1	3	3	D3	D3	1	ST	Input Capture
IC5	2	2	4	4	C1	C1	1	ST	
IC6	3	3	5	5	D2	D2	1	ST	
ICM1	4	4	10	10	12	12	1	ST	MCCP1 Input Capture
ICM2	6	6	12	12	14	14	1	ST	MCCP2 Input Capture
ICM3	11	11	20	20	23	23	1	ST	MCCP3 Input Capture
ICM4	49	49	76	76	91	91	1	ST	SCCP4 Input Capture
ICM5	42	42	68	68	80	80	1	ST	SCCP5 Input Capture
ICM6	46	46	72	72	86	86	1	ST	SCCP6 Input Capture
ICM7	51	51	78	78	93	93	1	ST	SCCP7 Input Capture
INTO	35	46	55	72	H9	D9	1	ST	External Interrupt Input 0
IOCAO	-	-	17	17	G3	G3	1	ST	PORTA Interrupt-on-Change
IOCA1	-	-	38	38	J6	J6	1	ST	
IOCA2	-	-	58	58	H11	H11	1	ST	
IOCA3	-	-	59	59	G10	G10	1	ST	
IOCA4	-	-	60	60	G11	G11	1	ST	
IOCA5	-	-	61	61	G9	G9	1	ST	
IOCA6	-	-	91	91	C5	C5	1	ST	
IOCA7	-	-	92	92	B5	B5	1	ST	
IOCA9	-	-	28	28	L2	L2	1	ST	
IOCA10	-	-	29	29	K3	K3	1	ST	
IOCA14	-	-	66	66	E11	E11	1	ST	
IOCA15	-	-	67	67	E8	E8	1	ST	

Legend: TTL = TTL input buffer \quad ST = Schmitt Trigger input buffer
ANA = Analog level input/output
DIG $=$ Digital input/output

[^2]TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	$\begin{array}{\|c\|} \hline \text { GB606 } \\ \text { 64-Pin QFN/ } \\ \text { TQFP/QFP } \\ \hline \end{array}$	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
IOCB0	16	16	25	25	K2	K2	1	ST	PORTB Interrupt-on-Change
IOCB1	15	15	24	24	K1	K1	I	ST	
IOCB2	14	14	23	23	J2	J2	1	ST	
IOCB3	13	13	22	22	J1	J1	1	ST	
IOCB4	12	12	21	21	H2	H2	I	ST	
IOCB5	11	11	20	20	H1	H1	1	ST	
IOCB6	17	17	26	26	L1	L1	1	ST	
IOCB7	18	18	27	27	J3	J3	I	ST	
IOCB8	21	21	32	32	K4	K4	1	ST	
IOCB9	22	22	33	33	L4	L4	1	ST	
IOCB10	23	23	34	34	L5	L5	1	ST	
IOCB11	24	24	35	35	J5	J5	1	ST	
IOCB12	27	27	41	41	J7	J7	1	ST	
IOCB13	28	28	42	42	L7	L7	I	ST	
IOCB14	29	29	43	43	K7	K7	1	ST	
IOCB15	30	30	44	44	L8	L8	1	ST	
IOCC1	-	-	6	6	D1	D1	1	ST	PORTC Interrupt-on-Change
IOCC2	-	-	7	7	E4	E4	1	ST	
IOCC3	-	-	8	8	E2	E2	1	ST	
IOCC4	-	-	9	9	E1	E1	1	ST	
IOCC12	39	39	63	63	F9	F9	I	ST	
IOCC13	47	47	73	73	C10	C10	1	ST	
IOCC14	48	48	74	74	B11	B11	1	ST	
IOCC15	40	40	64	64	F11	F11	1	ST	

$\begin{array}{ll}\text { Legend: } & \text { TTL }=\text { TTL input buffer } \\ & \text { ANA }=\text { Analog level input/output } \\ & \text { DIG }=\text { Digital input/output }\end{array}$

[^3]TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
		GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
IOCD0	46	46	72	72	D9	D9	1	ST	PORTD Interrupt-on-Change
IOCD1	49	49	76	76	A11	A11	1	ST	
IOCD2	50	50	77	77	A10	A10	1	ST	
IOCD3	51	51	78	78	B9	B9	1	ST	
IOCD4	52	52	81	81	C8	C8	1	ST	
IOCD5	53	53	82	82	B8	B8	1	ST	
IOCD6	54	54	83	83	D7	D7	1	ST	
IOCD7	55	55	84	84	C7	C7	1	ST	
IOCD8	42	42	68	68	E9	E9	1	ST	
IOCD9	43	43	69	69	E10	E10	1	ST	
IOCD10	44	44	70	70	D11	D11	1	ST	
IOCD11	45	45	71	71	C11	C11	1	ST	
IOCD12	-	-	79	79	A9	A9	1	ST	
IOCD13	-	-	80	80	D8	D8	1	ST	
IOCD14	-	-	47	47	L9	L9	1	ST	
IOCD15	-	-	48	48	K9	K9	1	ST	
IOCE0	60	60	93	93	A4	A4	1	ST	PORTE Interrupt-on-Change
IOCE1	61	61	94	94	B4	B4	1	ST	
IOCE2	62	62	98	98	B3	B3	1	ST	
IOCE3	63	63	99	99	A2	A2	1	ST	
IOCE4	64	64	100	100	A1	A1	1	ST	
IOCE5	1	1	3	3	D3	D3	1	ST	
IOCE6	2	2	4	4	C1	C1	1	ST	
IOCE7	3	3	5	5	D2	D2	1	ST	
IOCE8	-	-	18	18	G1	G1	1	ST	
IOCE9	-	-	19	19	G2	G2	1	ST	

Legend: TTL = TTL input buffer
ANA = Analog level input/output
DIG = Digital input/output

ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{aligned} & \text { Pin } \\ & \text { Function } \end{aligned}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	$\begin{gathered} \text { GA606 } \\ \text { 64-Pin } \\ \text { QFN/TQFPI } \\ \text { QFP } \end{gathered}$	GB606 64-Pin QFN TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
IOCF0	58	58	87	87	B6	B6	1	ST	PORTF Interrupt-on-Change
IOCF1	59	59	88	88	A6	A6	1	ST	
IOCF2	34	-	52	52	K11	K11	1	ST	
IOCF3	33	33	51	51	K10	K10	1	ST	
IOCF4	31	31	49	49	L10	L10	1	ST	
IOCF5	32	32	50	50	L11	L11	1	ST	
IOCF6	35	-	55	-	H9	-	1	ST	
IOCF7	-	34	54	54	H8	H8	1	ST	
IOCF8	-	-	53	53	J10	J10	1	ST	
IOCF12	-	-	40	40	K6	K6	1	ST	
IOCF13	-	-	39	39	L6	L6	1	ST	
IOCG0	-	-	90	90	A5	A5	1	ST	PORTG Interrupt-on-Change
IOCG1	-	-	89	89	E6	E6	1	ST	
IOCG2	37	37	57	57	H10	H10	1	ST	
IOCG3	36	36	56	56	J11	J11	1	ST	
IOCG6	4	4	10	10	E3	E3	1	ST	
IOCG7	5	5	11	11	F4	F4	1	ST	
IOCG8	6	6	12	12	F2	F2	1	ST	
IOCG9	8	8	14	14	F3	F3	1	ST	
IOCG12	-	-	96	96	C3	C3	1	ST	
IOCG13	-	-	97	97	A3	A3	1	ST	
IOCG14	-	-	95	95	C4	C4	1	ST	
IOCG15	-	-	1	1	B2	B2	1	ST	
HLVDIN	64	64	100	100	A1	A1	1	ANA	High/Low-Voltage Detect Input
$\overline{\text { MCLR }}$	7	7	13	13	F1	F1	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OC4	54	54	83	83	D7	D7	0	DIG	Output Compare Outputs
OC5	55	55	84	84	C7	C7	O	DIG	
OC6	58	58	87	87	B6	B6	0	DIG	
OCM1A	4	4	10	10	E3	E3	0	DIG	MCCP1 Outputs
OCM1B	5	5	11	11	F4	F4	O	DIG	
OCM1C	-	-	1	1	B2	B2	0	DIG	
OCM1D	-	-	6	6	D1	D1	0	DIG	
OCM1E	-	-	91	91	C5	C5	0	DIG	
OCM1F	-	-	92	92	B5	B5	0	DIG	

$\begin{array}{ll}\text { Legend: } & \text { TTL }=\text { TTL input buffer } \\ & \text { ANA }=\text { Analog level input/output } \\ & \text { DIG }=\text { Digital input/output }\end{array}$
ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	$\begin{gathered} \text { GA606 } \\ \text { 64-Pin } \\ \text { QFN/TQFPI } \\ \text { QFP } \end{gathered}$	GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
OCM2A	6	6	12	12	F2	F2	0	DIG	MCCP2 Outputs
OCM2B	8	8	14	14	F3	F3	0	DIG	
OCM2C	-	-	7	7	E4	E4	0	DIG	
OCM2D	-	-	8	8	E2	E2	0	DIG	
OCM2E	-	-	96	96	C3	C3	0	DIG	
OCM2F	-	-	97	97	A3	A3	0	DIG	
OCM3A	11	11	20	20	H1	H1	0	DIG	MCCP3 Outputs
OСМ3B	12	12	21	21	H2	H2	0	DIG	
OCM3C	-	-	9	9	E1	E1	0	DIG	
OCM3D	-	-	17	17	G3	G3	0	DIG	
OCM3E	-	-	79	79	A9	A9	0	DIG	
OCM3F	-	-	80	80	D8	D8	0	DIG	
OSCI	39	39	63	63	F9	F9	1	ANA/ ST	Main Oscillator Input Connection
OSCO	40	40	64	64	F11	F11	0	ANA	Main Oscillator Output Connection
PGEC1	15	15	24	24	K1	K1	1	ST	ICSP ${ }^{\text {TM }}$ Programming Clock
PGEC2	17	17	26	26	L1	L1	1	ST	
PGEC3	11	11	20	20	H1	H1	1	ST	
PGED1	16	16	25	25	K2	K2	I/O	DIG/ST	ICSP Programming Data
PGED2	18	18	27	27	J3	J3	I/O	DIG/ST	
PGED3	12	12	21	21	H2	H2	I/O	DIG/ST	
PMAO/ PMALL	30	30	44	44	L8	L8	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	Parallel Master Port Address<0>1 Address Latch Low
PMA1/ PMALH	29	29	43	43	K7	K7	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	Parallel Master Port Address<1>/ Address Latch High
PMA14/ PMCS1	45	45	71	71	C11	C11	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	Parallel Master Port Address<14>1 Slave Chip Select/Chip Select 1 Strobe
PMA15/ PMCS2	44	44	70	70	D11	D11	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	Parallel Master Port Address<15>1 Chip Select 2 Strobe
PMA6	16	16	29	29	K3	K3	0	DIG	Parallel Master Port Address
PMA7	22	22	28	28	L2	L2	0	DIG	

$\begin{array}{ll}\text { Legend: } & \text { TTL }=\text { TTL input buffer } \\ & \text { ANA }=\text { Analog level input/output } \\ & \text { DIG }=\text { Digital input/output }\end{array}$

[^4]TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

PinFunction	Pin Number/Grid Locator						$1 / 0$	Input Buffer	Description
	$\begin{gathered} \text { GA606 } \\ \text { 64-Pin } \\ \text { QFN/TQFPI } \\ \text { QFP } \end{gathered}$	GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
PMA8	32	32	50	50	L11	L11	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	Parallel Master Port Address (Demultiplexed Master mode) or
PMA9	31	31	49	49	L10	L10	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	Address/Data (Multiplexed Master modes)
PMA10	28	28	42	42	L7	L7	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMA11	27	27	41	41	J7	J7	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMA12	24	24	35	35	J5	J5	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMA13	23	23	34	34	L5	L5	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMA16	-	-	95	95	C4	C4	0	DIG	
PMA17	-	-	92	92	B5	B5	O	DIG	
PMA18	-	-	40	40	K6	K6	0	DIG	
PMA19	-	-	19	19	G2	G2	0	DIG	
PMA2/ PMALU	8	8	14	14	F3	F3	O	DIG	Parallel Master Port Address<2>/ Address Latch Upper
PMA3	6	6	12	12	F2	F2	0	DIG	Parallel Master Port Address
PMA4	5	5	11	11	F4	F4	0	DIG	
PMA5	4	4	10	10	E3	E3	O	DIG	
PMA20	-	-	59	59	G10	G10	0	DIG	Parallel Master Port Address
PMA21	-	-	60	60	G11	G11	0	DIG	multiplexed Master mode) or
PMA22	-	-	66	66	E11	E11	0	DIG	Master modes)
PMACK1	50	50	77	77	A10	A10	1	ST/TTL	Parallel Master Port Acknowledge Input 1
PMACK2	43	43	69	69	E10	E10	1	ST/TTL	Parallel Master Port Acknowledge Input 2
PMBE0	51	51	78	78	B9	B9	0	DIG	Parallel Master Port Byte Enable 0 Strobe
PMBE1	-	-	67	67	E8	E8	O	DIG	Parallel Master Port Byte Enable 1 Strobe
PMCS1	-	-	18	18	G1	G1	0	DIG	Parallel Master Port Chip Select 1 Strobe
PMCS2	-	-	9	9	E1	E1	0	DIG	Parallel Master Port Chip Select 2 Strobe
PMPCS1	-	-	58	58	H11	H11	0	DIG	Parallel Master Port Chip Select 1
Legend:	TTL = TTL input buffer ANA = Analog level input/output DIG $=$ Digital input/output			ST = Schmitt Trigger input buffer $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer XCVR = Dedicated Transceiver					

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	$\begin{gathered} \text { GA606 } \\ \text { 64-Pin } \\ \text { QFN/TQFP/ } \\ \text { QFP } \end{gathered}$	GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
PMD0	60	60	93	93	A4	A4	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	61	94	94	B4	B4	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	Address/Data (Multiplexed Master modes)
PMD2	62	62	98	98	B3	B3	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	
PMD3	63	63	99	99	A2	A2	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD4	64	64	100	100	A1	A1	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD5	1	1	3	3	D3	D3	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD6	2	2	4	4	C1	C1	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD7	3	3	5	5	D2	D2	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD8	-	-	90	90	A5	A5	I/O	$\begin{gathered} \hline \text { DIG/ } \\ \text { ST/TTL } \end{gathered}$	
PMD9	-	-	89	89	E6	E6	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	
PMD10	-	-	88	88	A6	A6	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD11	-	-	87	87	B6	B6	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	
PMD12	-	-	79	79	A9	A9	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD13	-	-	80	80	D8	D8	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	
PMD14	-	-	83	83	D7	D7	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
PMD15	-	-	84	84	C7	C7	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	
$\begin{array}{\|l} \hline \text { PMRD } / 2 \\ \hline \text { PMWR } \\ \hline \end{array}$	53	53	82	82	B8	B8	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \\ \hline \end{array}$	Parallel Master Port Read Strobe/Write Strobe
PMWR/ PMENB	52	52	81	81	C8	C8	I/O	$\begin{array}{\|c\|} \hline \text { DIG/ } \\ \text { ST/TTL } \end{array}$	Parallel Master Port Write Strobe/Enable Strobe
PWRGT	21	21	32	32	K4	K4	0	DIG	Real-Time Clock Power Control Output
PWRLCLK	48	48	74	74	B11	B11	1	ST	Real-Time Clock 50/60 Hz Clock Input

Legend: TTL = TTL input buffer
ANA = Analog level input/output
ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
RA0	-	-	17	17	G3	G3	I/O	DIG/ST	PORTA Digital I/Os
RA1	-	-	38	38	J6	J6	I/O	DIG/ST	
RA2	-	-	58	58	H11	H11	I/O	DIG/ST	
RA3	-	-	59	59	G10	G10	I/O	DIG/ST	
RA4	-	-	60	60	G11	G11	I/O	DIG/ST	
RA5	-	-	61	61	G9	G9	I/O	DIG/ST	
RA6	-	-	91	91	C5	C5	I/O	DIG/ST	
RA7	-	-	92	92	B5	B5	I/O	DIG/ST	
RA9	-	-	28	28	L2	L2	I/O	DIG/ST	
RA10	-	-	29	29	K3	K3	I/O	DIG/ST	
RA14	-	-	66	66	E11	E11	I/O	DIG/ST	
RA15	-	-	67	67	E8	E8	I/O	DIG/ST	
RB0	16	16	25	25	K2	K2	I/O	DIG/ST	PORTB Digital I/Os
RB1	15	15	24	24	K1	K1	I/O	DIG/ST	
RB2	14	14	23	23	J2	J2	I/O	DIG/ST	
RB3	13	13	22	22	J1	J1	I/O	DIG/ST	
RB4	12	12	21	21	H2	H2	I/O	DIG/ST	
RB5	11	11	20	20	H1	H1	I/O	DIG/ST	
RB6	17	17	26	26	L1	L1	I/O	DIG/ST	
RB7	18	18	27	27	J3	J3	I/O	DIG/ST	
RB8	21	21	32	32	K4	K4	I/O	DIG/ST	
RB9	22	22	33	33	L4	L4	I/O	DIG/ST	
RB10	23	23	34	34	L5	L5	I/O	DIG/ST	
RB11	24	24	35	35	J5	J5	I/O	DIG/ST	
RB12	27	27	41	41	J7	J7	I/O	DIG/ST	
RB13	28	28	42	42	L7	L7	I/O	DIG/ST	
RB14	29	29	43	43	K7	K7	I/O	DIG/ST	
RB15	30	30	44	44	L8	L8	I/O	DIG/ST	
RC1	-	-	6	6	D1	D1	I/O	DIG/ST	PORTC Digital I/Os
RC2	-	-	7	7	E4	E4	I/O	DIG/ST	
RC3	-	-	8	8	E2	E2	I/O	DIG/ST	
RC4	-	-	9	9	E1	E1	I/O	DIG/ST	
RC12	39	39	63	63	F9	F9	I/O	DIG/ST	
RC13	47	47	73	73	C10	C10	I/O	DIG/ST	
RC14	48	48	74	74	B11	B11	I/O	DIG/ST	
RC15	40	40	64	64	F11	F11	I/O	DIG/ST	

Legend:	TTL $=$ TTL input buffer	ST $=$ Schmitt Trigger input buffer
	ANA $=$ Analog level input/output	$I^{2} C=I^{2} C /$ SMBus input buffer
	DIG $=$ Digital input/output	XCVR $=$ Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
RD0	46	46	72	72	D9	D9	I/O	DIG/ST	PORTD Digital I/Os
RD1	49	49	76	76	A11	A11	I/O	DIG/ST	
RD2	50	50	77	77	A10	A10	I/O	DIG/ST	
RD3	51	51	78	78	B9	B9	I/O	DIG/ST	
RD4	52	52	81	81	C8	C8	I/O	DIG/ST	
RD5	53	53	82	82	B8	B8	I/O	DIG/ST	
RD6	54	54	83	83	D7	D7	I/O	DIG/ST	
RD7	55	55	84	84	C7	C7	I/O	DIG/ST	
RD8	42	42	68	68	E9	E9	I/O	DIG/ST	
RD9	43	43	69	69	E10	E10	I/O	DIG/ST	
RD10	44	44	70	70	D11	D11	I/O	DIG/ST	
RD11	45	45	71	71	C11	C11	I/O	DIG/ST	
RD12	-	-	79	79	A9	A9	I/O	DIG/ST	
RD13	-	-	80	80	D8	D8	I/O	DIG/ST	
RD14	-	-	47	47	L9	L9	I/O	DIG/ST	
RD15	-	-	48	48	K9	K9	I/O	DIG/ST	
RE0	60	60	93	93	A4	A4	I/O	DIG/ST	PORTE Digital I/Os
RE1	61	61	94	94	B4	B4	I/O	DIG/ST	
RE2	62	62	98	98	B3	B3	I/O	DIG/ST	
RE3	63	63	99	99	A2	A2	I/O	DIG/ST	
RE4	64	64	100	100	A1	A1	I/O	DIG/ST	
RE5	1	1	3	3	D3	D3	I/O	DIG/ST	
RE6	2	2	4	4	C1	C1	I/O	DIG/ST	
RE7	3	3	5	5	D2	D2	I/O	DIG/ST	
RE8	-	-	18	18	G1	G1	I/O	DIG/ST	
RE9	-	-	19	19	G2	G2	I/O	DIG/ST	
REFI	24	24	35	35	J5	J5	1	ST	Reference Clock Input

Legend: TTL = TTL input buffer
ANA = Analog level input/output
DIG = Digital input/output

ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
RF0	58	58	87	87	B6	B6	I/O	DIG/ST	PORTF Digital I/Os
RF1	59	59	88	88	A6	A6	I/O	DIG/ST	
RF2	34	-	52	52	K11	K11	I/O	DIG/ST	
RF3	33	33	51	51	K10	K10	I/O	DIG/ST	
RF4	31	31	49	49	L10	L10	I/O	DIG/ST	
RF5	32	32	50	50	L11	L11	I/O	DIG/ST	
RF6	35	-	55	-	H9	-	I/O	DIG/ST	
RF7	-	34	54	54	H8	H8	I/O	DIG/ST	
RF8	-	-	53	53	J10	J10	I/O	DIG/ST	
RF12	-	-	40	40	K6	K6	I/O	DIG/ST	
RF13	-	-	39	39	L6	L6	I/O	DIG/ST	
RG0	-	-	90	90	A5	A5	I/O	DIG/ST	PORTG Digital I/Os
RG1	-	-	89	89	E6	E6	I/O	DIG/ST	
RG2	37	37	57	57	H10	H10	I/O	DIG/ST	
RG3	36	36	56	56	J11	J11	I/O	DIG/ST	
RG6	4	4	10	10	E3	E3	I/O	DIG/ST	
RG7	5	5	11	11	F4	F4	I/O	DIG/ST	
RG8	6	6	12	12	F2	F2	I/O	DIG/ST	
RG9	8	8	14	14	F3	F3	I/O	DIG/ST	
RG12	-	-	96	96	C3	C3	I/O	DIG/ST	
RG13	-	-	97	97	A3	A3	I/O	DIG/ST	
RG14	-	-	95	95	C4	C4	I/O	DIG/ST	
RG15	-	-	1	1	B2	B2	I/O	DIG/ST	

Legend: TTL = TTL input buffer
ANA = Analog level input/output
DIG = Digital input/output

ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
XCVR = Dedicated Transceiver

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						1/0	Input Buffer	Description
		GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \\ \hline \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
RP0	16	16	25	25	K2	K2	1/0	DIG/ST	Remappable Peripherals
RP1	15	15	24	24	K1	K1	I/O	DIG/ST	(input or output)
RP2	42	42	68	68	E9	E9	I/O	DIG/ST	
RP3	44	44	70	70	D11	D11	I/O	DIG/ST	
RP4	43	43	69	69	E10	E10	I/O	DIG/ST	
RP5	-	-	48	48	K9	K9	I/O	DIG/ST	
RP6	17	17	26	26	L1	L1	I/O	DIG/ST	
RP7	18	18	27	27	J3	J3	I/O	DIG/ST	
RP8	21	21	32	32	K4	K4	I/O	DIG/ST	
RP9	22	22	33	33	L4	L4	I/O	DIG/ST	
RP10	31	31	49	49	L10	L10	I/O	DIG/ST	
RP11	46	46	72	72	D9	D9	I/O	DIG/ST	
RP12	45	45	71	71	C11	C11	I/O	DIG/ST	
RP13	14	14	23	23	J2	J2	I/O	DIG/ST	
RP14	29	29	43	43	K7	K7	I/O	DIG/ST	
RP15	-	-	53	53	J10	J10	I/O	DIG/ST	
RP16	33	33	51	51	K10	K10	I/O	DIG/ST	
RP17	32	32	50	50	L11	L11	I/O	DIG/ST	
RP18	11	11	20	20	H1	H1	I/O	DIG/ST	
RP19	6	6	12	12	F2	F2	I/O	DIG/ST	
RP20	53	53	82	82	B8	B8	I/O	DIG/ST	
RP21	4	4	10	10	E3	E3	1/O	DIG/ST	
RP22	51	51	78	78	B9	B9	I/O	DIG/ST	
RP23	50	50	77	77	A10	A10	I/O	DIG/ST	
RP24	49	49	76	76	A11	A11	I/O	DIG/ST	
RP25	52	52	81	81	C8	C8	I/O	DIG/ST	
RP26	5	5	11	11	F4	F4	I/O	DIG/ST	
RP27	8	8	14	14	F3	F3	I/O	DIG/ST	
RP28	12	12	21	21	H2	H2	I/O	DIG/ST	
RP29	30	30	44	44	L8	L8	1/O	DIG/ST	
RP30	34	-	52	52	K11	K11	I/O	DIG/ST	
RP31	-	-	39	39	L6	L6	1/0	DIG/ST	

Legend: TTL = TTL input buffer
ANA = Analog level input/output
DIG = Digital input/output

[^5]TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	$\begin{aligned} & \text { GA606 } \\ & \text { 64-Pin } \\ & \text { QFN/TQFPI } \\ & \text { QFP } \end{aligned}$	GB606 64-Pin QFN/ TQFPIQFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFP/ } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	$\begin{gathered} \text { GB612 } \\ \text { 121-Pin } \\ \text { BGA } \end{gathered}$			
RPI32	-	-	40	40	K6	K6	1	DIG/ST	Remappable Peripherals (input only)
RPI33	-	-	18	18	G1	G1	1	DIG/ST	
RPI34	-	-	19	19	G2	G2	1	DIG/ST	
RPI35	-	-	67	67	E8	E8	1	DIG/ST	
RPI36	-	-	66	66	E11	E11	1	DIG/ST	
RPI37	48	48	74	74	B11	B11	1	DIG/ST	
RPI38	-	-	6	6	D1	D1	1	DIG/ST	
RPI39	-	-	7	7	E4	E4	1	DIG/ST	
RPI40	-	-	8	8	E2	E2	1	DIG/ST	
RP141	-	-	9	9	E1	E1	1	DIG/ST	
RPI42	-	-	79	79	A9	A9	1	DIG/ST	
RPI43	-	-	47	47	L9	L9	1	DIG/ST	
SCL1	37	44	57	66	H10	E11	I/O	$1^{2} \mathrm{C}$	I2C1 Synchronous Serial Clock Input/Output
SCL2	32	32	58	58	H11	H11	I/O	$1^{2} \mathrm{C}$	I2C2 Synchronous Serial Clock Input/Output
SCL3	2	2	4	4	C1	C1	I/O	$1^{2} \mathrm{C}$	I2C3 Synchronous Serial Clock Input/Output
SDA1	36	43	56	67	J11	E8	I/O	$1^{2} \mathrm{C}$	I2C1 Data Input/Output
SDA2	31	31	59	59	G10	G10	I/O	$\mathrm{I}^{2} \mathrm{C}$	I2C2 Data Input/Output
SDA3	3	3	5	5	D2	D2	I/O	$1^{2} \mathrm{C}$	I2C3 Data Input/Output
SOSCI	47	47	73	73	C10	C10	1	$\begin{aligned} & \hline \text { ANA/ } \\ & \text { ST } \end{aligned}$	Secondary Oscillator/Timer1 Clock Input
Sosco	48	48	74	74	B11	B11	0	ANA	Secondary Oscillator/Timer1 Clock Output
T1CK	22	22	33	33	L4	L4	1	ST	Timer1 Clock
TCK	27	27	38	38	J6	J6	1	ST	JTAG Test Clock/Programming Clock Input
TDI	28	28	60	60	G11	G11	1	ST	JTAG Test Data/Programming Data Input
TDO	24	24	61	61	G9	G9	0	DIG	JTAG Test Data Output
TMPR	22	22	33	33	L4	L4	1	ST	Tamper Detect Input
TMS	23	23	17	17	G3	G3	1	ST	JTAG Test Mode Select Input
U5CTS	58	58	87	87	B6	B6	1	ST	UART5 CTS Output
U5RTS/ U5BCLK	55	55	84	84	C7	C7	0	DIG	UART5 RTS Input
U5RX	54	54	83	83	D7	D7	1	ST	UART5 Receive Input
U5TX	49	49	76	76	A11	A11	0	DIG	UART5 Transmit Output
$\overline{\text { U6CTS }}$	46	46	72	72	D9	D9	1	ST	UART6 CTS Output
U6RTS/ U6BCLK	42	42	68	68	E9	E9	0	DIG	UART6 RTS Input
Legend:	$\begin{aligned} & \text { TTL = TTL input buffer } \\ & \text { ANA = Analog level input/output } \\ & \text { DIG = Digital input/output } \end{aligned}$			ST = Schmitt Trigger input buffer $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer XCVR = Dedicated Transceiver					

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

$\begin{gathered} \text { Pin } \\ \text { Function } \end{gathered}$	Pin Number/Grid Locator						I/O	Input Buffer	Description
	GA606 64-Pin QFN/TQFPI QFP	GB606 64-Pin QFN/ TQFP/QFP	$\begin{gathered} \text { GA610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	$\begin{gathered} \text { GB610 } \\ \text { 100-Pin } \\ \text { TQFPI } \\ \text { QFP } \end{gathered}$	GA612 121-Pin BGA	GB612 121-Pin BGA			
U6RX	27	27	41	41	J7	J7	1	ST	UART6 Receive Input
U6TX	18	18	27	27	J3	J3	0	DIG	UART6 Transmit Output
USBID	-	33	-	51	-	K10	1	ST	USB OTG ID Input
USBOEN	-	12	-	21	-	H2	O	DIG	USB Output Enable (active-low)
Vbus	-	34	-	54	-	H8	1	-	Vbus Supply Detect
VCAP	56	56	85	85	B7	B7	P	-	External Filter Capacitor Connection (regulator enabled)
VDD	10,26,38	10,26,38	$\begin{gathered} 2,16,37, \\ 46,62 \end{gathered}$	$\begin{gathered} \hline 2,16,37 \\ 46,62 \end{gathered}$	$\begin{gathered} \text { C2,F8, } \\ \text { G5,H6, } \\ \text { K8 } \end{gathered}$	$\begin{gathered} \text { C2,F8, } \\ \text { G5,H6, } \\ \text { K8 } \end{gathered}$	P	-	Positive Supply for Peripheral Digital Logic and I/O Pins
VREF+	16	16	25,29	25,29	K2,K3	K2,K3	1	ANA	Comparator and A/D Reference Voltage (high) Input
VREF-	15	15	24,28	24,28	K1,L2	K1,L2	1	ANA	Comparator and A/D Reference Voltage (low) Input
Vss	9,25,41	9,25,41	$\begin{array}{\|c\|} \hline 15,36,45, \\ 65,75 \end{array}$	$\begin{gathered} \hline 15,36,45, \\ 65,75 \end{gathered}$	$\begin{gathered} \text { B10,F5, } \\ \text { F10,G6, } \\ \text { G7 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { B10,F5, } \\ & \text { F10,G6, } \end{aligned}$ G7	P	-	Ground Reference for Peripheral Digital Logic and I/O Pins
VUsb3V3	-	35	-	55	-	H9	P	-	3.3V VUsB

Legend:
TTL $=$ TTL input buffer
ANA $=$ Analog level input/output
DIG $=$ Digital input/output

ST = Schmitt Trigger input buffer
$1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
XCVR = Dedicated Transceiver

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ1024GA610/GB610 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.
The following pins must always be connected:

- All Vdd and Vss pins (see Section 2.2 "Power Supply Pins")
- The USB transceiver supply, VUSB3V3, regardless of whether or not the USB module is used (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- $\overline{M C L R}$ pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pin (PIC24F J devices only) (see Section 2.4 "Voltage Regulator Pin (Vcap)")
These pins must also be connected if they are being used in the end application:
- PGECx/PGEDx pins used for In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used
(see Section 2.6 "External Oscillator Pins")
Additionally, the following pins may be required:
- Vref+/Vref- pins used when external voltage reference for analog modules is implemented
Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.
The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):
C1 through C6: $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic
C7: $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ or greater, ceramic
R1: $10 \mathrm{k} \Omega$
R2: 100Ω to 470Ω
Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of voltage regulator pin connections.
2: The example shown is for a PIC24F device with five VDD/Vss and AVdd/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, Vss, AVDD and AVss, is required.
Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: $\mathrm{A} 0.1 \mu \mathrm{~F}(100 \mathrm{nF})$, $16 \mathrm{~V}-50 \mathrm{~V}$ capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$.

2.3 Master Clear (MCLR) Pin

The $\overline{M C L R}$ pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.
During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{M C L R}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.
Any components associated with the $\overline{M C L R}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Note 1: $\mathrm{R} 1 \leq 10 \mathrm{k} \Omega$ is recommended. A suggested starting value is $10 \mathrm{k} \Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.
R2 $\leq 470 \Omega$ will limit any current flowing into $\overline{\mathrm{MCLR}}$ from the external capacitor, C , in the event of a $\overline{\text { MCLR }}$ pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the $\overline{M C L R}$ pin VIH and VIL specifications are met.

2.4 Voltage Regulator Pin (VcAP)

Note: This section applies only to PIC24FJ devices with an on-chip voltage regulator.

Refer to Section 30.3 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.
A low-ESR (<5 $)$ capacitor is required on the Vcap pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must use a capacitor of $10 \mu \mathrm{~F}$ connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.
Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.
The placement of this capacitor should be close to VcAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 33.0 "Electrical Characteristics" for additional information.

FIGURE 2-3: FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED Vcap

Note: Typical data measurement at $+25^{\circ} \mathrm{C}, 0 \mathrm{~V}$ DC bias.

TABLE 2-1: \quad SUITABLE CAPACITOR EQUIVALENTS (0805 CASE SIZE)

Make	Part \#	Nominal Capacitance	Base Tolerance	Rated Voltage
TDK	C2012X5R1E106K085AC	$10 \mu \mathrm{~F}$	$\pm 10 \%$	25 V
TDK	C2012X5R1C106K085AC	$10 \mu \mathrm{~F}$	$\pm 10 \%$	16 V
Kemet	C0805C106M4PACTU	$10 \mu \mathrm{~F}$	$\pm 10 \%$	16 V
Murata	GRM21BR61E106KA3L	$10 \mu \mathrm{~F}$	$\pm 10 \%$	25 V
Murata	GRM21BR61C106KE15	$10 \mu \mathrm{~F}$	$\pm 10 \%$	16 V

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.
Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.
Typical low-cost, $10 \mu \mathrm{~F}$ ceramic capacitors are available in $\mathrm{X} 5 \mathrm{R}, \mathrm{X} 7 \mathrm{R}$ and Y 5 V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as $\pm 10 \%$ to $\pm 20 \%$ (X5R and X7R) or $-20 \% /$ $+80 \%$ (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.
The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15 \%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $+22 \% /-82 \%$. Due to the extreme temperature tolerance, a $10 \mu \mathrm{~F}$ nominal rated Y 5 V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.
In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.
A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16 V for the 1.8 V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.
For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGECx/PGEDx), programmed into the device, match the physical connections for the ICSP to the Microchip debugger/ emulator tool.
For more information on available Microchip development tools connection requirements, refer to Section 31.0 "Development Support".

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to Section 9.0 "Oscillator Configuration" for details).
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.
Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).
For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN943, "Practical PICmicro ${ }^{\circledR}$ Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:
SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

Fine-Pitch (Dual-Sided) Layouts:

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.
All PIC24F devices will have either one or more ADxPCFG registers, or several ANSx registers (one for each port); no device will have both. Refer to (Section 11.2 "Configuring Analog Port Pins (ANSx)") for more specific information.
The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic ' 0 ', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4 M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.
PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The $16^{\text {th }}$ Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.
The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space (EDS), to which the extended data RAM, EPMP memory space or program memory can be mapped.
The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.
For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, $A+B=C$) to be executed in a single cycle.
A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16 -bit x 16 -bit or 8 -bit $\times 8$-bit, integer multiplication. All multiply instructions execute in a single cycle.
The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16 -bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.
The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.
A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.
A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1: CPU CORE REGISTERS

Register(s) Name	
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register
DISICNT	Disable Interrupt Count Register
DSRPAG	Data Space Read Page Register
DSWPAG	Data Space Write Page Register

FIGURE 3-2: PROGRAMMER'S MODEL

Registers or bits are shadowed for PUSH.S and POP.S instructions.

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	R/W-0						
-	-	-	-	-	-	-	DC
bit 15							

R/W-0 ${ }^{(1)}$	R/W-0 ${ }^{(1)}$	R/W-0 ${ }^{(1)}$	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ${ }^{(2)}$	$\mathrm{IPL} 1^{(2)}$	IPL0 ${ }^{(2)}$	RA	N	OV	Z	C
bit $7 \times$ bit 0							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-9	Unimplemented: Read as '0'
bit 8	DC: ALU Half Carry/Borrow bit $1=$ A carry out from the $4^{\text {th }}$ low-order bit (for byte-sized data) or $8^{\text {th }}$ low-order bit (for word-sized data) of the result occurred $0=$ No carry out from the $4^{\text {th }}$ or $8^{\text {th }}$ low-order bit of the result has occurred
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(1,2)}$
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) $100=$ CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress $0=$ REPEAT loop not in progress
bit 3	N : ALU Negative bit 1 = Result was negative $0=$ Result was not negative (zero or positive)
bit 2	OV: ALU Overflow bit 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation $0=$ No overflow has occurred
bit 1	Z: ALU Zero bit 1 = An operation, which affects the Z bit, has set it at some time in the past $0=$ The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)
bit 0	C: ALU Carry/Borrow bit 1 = A carry out from the Most Significant bit (MSb) of the result occurred $0=$ No carry out from the Most Significant bit of the result occurred

Note 1: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2: The IPLx Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1 .

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit $15 \times$ bit 8							
U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
-	-	-	-	IPL3 ${ }^{(1)}$	$\mathrm{PSV}{ }^{(2)}$	-	-
bit $7 \times$ bit 0							

Legend:	$\mathrm{C}=$ Clearable bit	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared

bit 15-4 Unimplemented: Read as ' 0 '
bit $3 \quad$ IPL3: CPU Interrupt Priority Level Status bit ${ }^{(1)}$
1 = CPU Interrupt Priority Level is greater than 7
$0=$ CPU Interrupt Priority Level is 7 or less
bit 2 PSV: Program Space Visibility (PSV) in Data Space Enable
1 = Program space is visible in Data Space
$0=$ Program space is not visible in Data Space
bit 1-0 Unimplemented: Read as ' 0 '
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.
2: If $P S V=0$, any reads from data memory at 0×8000 and above will cause an address trap error instead of reading from the PSV section of program memory. This bit is not individually addressable.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.
The ALU can perform 8 -bit or 16 -bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.
The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16 -bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16 -bit x 16 -bit signed
- 16-bit x 16 -bit unsigned
- 16-bit signed x 5 -bit (literal) unsigned
- 16 -bit unsigned $\times 16$-bit unsigned
- 16-bit unsigned $\times 5$-bit (literal) unsigned
- 16 -bit unsigned $\times 16$-bit signed
- 8 -bit unsigned x 8 -bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

1. 32-bit signed/16-bit signed divide
2. 32-bit unsigned/16-bit unsigned divide
3. 16-bit signed/16-bit signed divide
4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W 1 . The 16 -bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair $(\mathrm{W}(\mathrm{m}+1): \mathrm{Wm})$ for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and singlecycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.
A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source register by one or more bits.
SL	Shift Left Source register by one or more bits.
LSR	Logical Shift Right Source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space during code execution.

4.1 Program Memory Space

The program address memory space of the PIC24FJ1024GA610/GB610 family devices is 4M instructions. The space is addressable by a 24 -bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and customer OTP sections of the configuration memory space.
The PIC24FJ1024GA610/GB610 family of devices supports a Single Partition mode and two Dual Partition modes. The Dual Partition modes allow the device to be programmed with two separate applications to facilitate bootloading or to allow an application to be programmed at run time without stalling the CPU.
Memory maps for the PIC24FJ1024GA610/GB610 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

TABLE 4-1: PROGRAM MEMORY SIZES AND BOUNDARIES ${ }^{(1)}$

Device	Program Memory Upper Boundary (Instruction Words)			$\begin{aligned} & \text { Write } \\ & \text { Blocks }{ }^{(2)} \end{aligned}$	$\begin{gathered} \text { Erase } \\ \text { Blocks }^{(2)} \end{gathered}$
	Single Partition Mode	Dual Partition Mode			
		Active Partition	Inactive Partition		
PIC24FJ1024GX6XX	OABFFEh (352K)	055FFEh (176K)	455FFEh (176K)	5504	688
PIC24FJ512GX6XX	055FFEh (176K)	02AFFEh (88k)	42AFFEh (88k)	2752	344
PIC24FJ256GX6XX	02AFFEh (88K)	0157FEh (44k)	4157FEh (44k)	1376	172
PIC24FJ128GX6XX	015FFEh (44K)	O0AFFEh (22k)	40AFFEh (22k)	688	86

Note 1: Includes Flash Configuration Words.
2: 1 Write Block = 128 Instruction Words; 1 Erase Block = 1024 Instruction Words.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).
Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.
In Single Partition mode, user program memory is arranged in a contiguous block starting at address, 000000h.

4.1.2 DUAL PARTITION FLASH PROGRAM MEMORY ORGANIZATION

In the Dual Partition modes, the device's memory is divided evenly into two physical sections, known as Partition 1 and Partition 2. Each of these partitions contains its own program memory and Configuration Words. During program execution, the code on only one of these panels is executed; this is the Active Partition. The other partition, or the Inactive Partition, is not used, but can be programmed.
The Active Partition is always mapped to logical address, 000000 h , while the Inactive Partition will always be mapped to logical address, 400000 h . Note that even when the code partitions are switched between Active and Inactive by the user, the address of the Active Partition will still be at 000000 h and the address of the Inactive Partition will still be at 400000 h .

The Boot Sequence Configuration Word (FBTSEQ) determines whether Partition 1 or Partition 2 will be active after Reset. If the part is operating in Dual Partition mode, the partition with the lower boot sequence number will operate as the Active Partition (FBTSEQ is unused in Single Partition mode). The partitions can be switched between Active and Inactive by reprogramming their boot sequence numbers, but the Active Partition will not change until a device Reset is performed. If both boot sequence numbers are the same, or if both are corrupted, the part will use Partition 1 as the Active Partition. If only one boot sequence number is corrupted, the device will use the partition without a corrupted boot sequence number as the Active Partition.

The user can also change which partition is active at run time using the BOOTSWP instruction. Issuing a BOOTSWP instruction does not affect which partition will be the Active Partition after a Reset. Figure 4-2 demonstrates how the relationship between Partitions 1 and 2, shown in red and blue respectively, and the Active and Inactive Partitions are affected by reprogramming the boot sequence number or issuing a BOOTSWP instruction.
The P2ACTIV bit (NVMCON<10>) can be used to determine which physical partition is the Active Partition. If P2ACTIV $=1$, Partition 2 is active; if P2ACTIV $=0$, Partition 1 is active.

4.1.3 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on a device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.
The PIC24FJ1024GA610/GB610 devices can have up to two Interrupt Vector Tables (IVT). The first is located from addresses, 000004h to 0000FFh. The Alternate Interrupt Vector Table (AIVT), which can be enabled by the AIVTDIS Configuration bit, is located from 000104h to 0001FFh if no Boot Segment (BS) is present. If the user has configured a Boot Segment, the AIVT will be located at the address, ($\overline{\mathrm{BSLIM}}<12: 0>\times 1024)-508$. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in Section 8.1 "Interrupt Vector Table".

4.1.4 CONFIGURATION BITS OVERVIEW

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.
Table 4-2 lists the Configuration register address range for each device in Single and Dual Partition modes. Table 4-2 lists all of the Configuration bits found in the PIC24FJ1024GA610/GB610 family devices, as well as their Configuration register locations. Refer to Section 30.0 "Special Features" in this data sheet for the full Configuration register description for each specific device.

FIGURE 4-2: RELATIONSHIP BETWEEN PARTITIONS 1/2 AND ACTIVE/INACTIVE PARTITIONS

TABLE 4-2: CONFIGURATION WORD ADDRESSES

Configuration Register	Single Partition Mode			
	PIC24FJ1024GX6XX	PIC24FJ512GX6XX	PIC24FJ256GX6XX	PIC24FJ128GX6XX
FSEC	0ABF00h	055F00h	02AF00h	015F00h
FBSLIM	0ABF10h	055F10h	02AF10h	015F10h
FSIGN	0ABF14h	055F14h	02AF14h	015F14h
FOSCSEL	0ABF18h	055F18h	02AF18h	015F18h
FOSC	0ABF1Ch	055F1Ch	02AF1Ch	015F1Ch
FWDT	0ABF20h	055F20h	02AF20h	015F20h
FPOR	0ABF24h	055F24h	02AF24h	015F24h
FICD	0ABF28h	055F28h	02AF28h	015F28h
FDEVOPT1	0ABF2Ch	055F2Ch	02AF2Ch	015F2Ch
FBOOT	801800h			
	Dual Partition Modes ${ }^{(1)}$			
FSEC ${ }^{(2)}$	055F00h/455F00h	02AF00h/42AF00h	015700h/415700h	00AF00h/40AF00h
FBSLIM ${ }^{(2)}$	055F10h/455F10h	02AF10h/42AF10h	015710h/415710h	00AF10h/40AF10h
FSIGN ${ }^{(2)}$	055F14h/455F14h	02AF14h/42AF14h	015714h/415714h	00AF14h/40AF14h
FOSCSEL	055F18h/455F18h	02AF18h/42AF18h	015718h/415718h	00AF18h/40AF18h
FOSC	055F1Ch/455F1Ch	02AF1Ch/42AF1Ch	01571Ch/41571Ch	00AF1Ch/40AF1Ch
FWDT	055F20h/455F20h	02AF20h/42AF20h	015720h/415720h	00AF20h/40AF20h
FPOR	055F24h/455F24h	02AF24h/42AF24h	015724h/415724h	00AF24h/40AF24h
FICD	055F28h/455F28h	02AF28h/42AF28h	015728h/415728h	00AF28h/40AF28h
FDEVOPT1	055F2Ch/455F2Ch	02AF2Ch/42AF2Ch	01572Ch/41572Ch	00AF2Ch/40AF2Ch
FBTSEQ ${ }^{(3)}$	055FFCh/455FFCh	02AFFCh/42AFFCh	0157FCh/4157FCh	00AFFCh/40AFFCh
FBOOT	801800h			

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.
2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.
3: FBTSEQ is a 24-bit Configuration Word, using all three bytes of the program memory width.

4.1.5 CODE-PROTECT CONFIGURATION BITS

The device implements intermediate security features defined by the FSEC register. The Boot Segment (BS) is the higher privilege segment and the General Segment (GS) is the lower privilege segment. The total user code memory can be split into BS or GS. The size of the segments is determined by the BSLIM<12:0> bits. The relative location of the segments within user space does not change, such that BS (if present) occupies the memory area just after the Interrupt Vector Table (IVT) and the GS occupies the space just after the BS (or if the Alternate IVT is enabled, just after it).
The Configuration Segment (CS) is a small segment (less than a page, typically just one row) within user Flash address space. It contains all user configuration data that is loaded by the NVM Controller during the Reset sequence.

4.1.6 CUSTOMER OTP MEMORY

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application Checksums
- Code Revision Information
- Product Information
- Serial Numbers
- System Manufacturing Dates
- Manufacturing Lot Numbers

Customer OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data is not cleared by a chip erase.
Do not write the OTP memory more than one time. Writing to the OTP memory more than once may result in a permanent ECC Double-Bit Error (ECCDBE) trap.
Therefore, writing to OTP memory should only be done after the firmware is debugged and the part is programmed in a production environment.

4.1.7 DUAL PARTITION CONFIGURATION WORDS

In Dual Partition modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16 -bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.
The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 32 Kbytes or 16K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.

The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16 -bit address range. EDS is discussed in detail in Section 4.2.5 "Extended Data Space (EDS)".
The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ1024GA610/ GB610 family devices implement 30 Kbytes of data RAM in the lower half of DS, from 0800h to 7FFF.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16 -bit wide blocks. Data is aligned in data memory and registers as 16 -bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

Note: Memory areas not shown to scale.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledR} MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode, [Ws++], will result in a value of $\mathrm{Ws}+1$ for byte operations and Ws +2 for word operations.
Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.
All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8 -bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.
All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8 -bit signed data to 16 -bit signed values. Alternatively, for 16 -bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.
Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8 -Kbyte area between 0000 h and 1 FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16 -bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.
SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ' 0 '. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-11.

TABLE 4-3: IMPLEMENTED REGIONS OF SFR DATA SPACE

SFR Space Address																
	xx00	xx10	xx20	xx30	xx40	xx50	xx60	xx70	xx80	xx90	xxA0	xxB0	xxC0	xxD0	xxE0	xxF0
000h	Core															
100h	OSC	Reset ${ }^{(1)}$	EPMP			CRC	REFO	PMD		Timers			CTM	RTCC		
200h	Capture			Compare			MCCP								Comp	ANCFG
300h	SCCP									UART						SPI
400h	SPI					-	CLC			$1^{2} \mathrm{C}$				DMA		
500h	DMA		-	-	-	USB						-	-	-	-	-
600h	-	-	-	-	-	1/O										-
700h	-	A/D					-	-	-	PPS						

Legend: - = No implemented SFRs in this block
Note 1: Includes HLVD control.

TABLE 4-4: SFR MAP: 0000h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
CPU CORE			INTERRUPT CONTROLLER (CONTINUED)		
WREG0	0000	0000	IEC1	009A	0000
WREG1	0002	0000	IEC2	009C	0000
WREG2	0004	0000	IEC3	009E	0000
WREG3	0006	0000	IEC4	00A0	0000
WREG4	0008	0000	IEC5	00A2	0000
WREG5	000A	0000	IEC6	00A4	0000
WREG6	000C	0000	IEC7	00A6	0000
WREG7	000E	0000	IPC0	00A8	4444
WREG8	0010	0000	IPC1	00AA	4444
WREG9	0012	0000	IPC2	00AC	4444
WREG10	0014	0000	IPC3	OOAE	4444
WREG11	0016	0000	IPC4	00B0	4444
WREG12	0018	0000	IPC5	00B2	4404
WREG13	001A	0000	IPC6	00B4	4444
WREG14	001C	0000	IPC7	00B6	4444
WREG15	001E	0800	IPC8	00B8	0044
SPLIM	0020	xxxx	IPC9	00BA	4444
PCL	002E	0000	IPC10	00BC	4444
PCH	0030	0000	IPC11	OOBE	4444
DSRPAG	0032	0000	IPC12	00C0	4444
DSWPAG	0034	0000	IPC13	00C2	0440
RCOUNT	0036	xxxx	IPC14	00C4	4400
SR	0042	0000	IPC15	00C6	4444
CORCON	0044	0004	IPC16	00C8	4444
DISICNT	0052	xxxx	IPC17	00CA	4444
TBLPAG	0054	0000	IPC18	00CC	0044
INTERRUPT CONTROLLER			IPC19	OOCE	0040
INTCON1	0080	0000	IPC20	00D0	4440
INTCON2	0082	8000	IPC21	00D2	4444
INTCON4	0086	0000	IPC22	00D4	4444
IFS0	0088	0000	IPC23	00D6	4400
IFS1	008A	0000	IPC24	00D8	4444
IFS2	008C	0000	IPC25	00DA	0440
IFS3	008E	0000	IPC26	00DC	0400
IFS4	0090	0000	IPC27	OODE	4440
IFS5	0092	0000	IPC28	00E0	4444
IFS6	0094	0000	IPC29	00E2	0044
IFS7	0096	0000	INTTREG	00E4	0000
IEC0	0098	0000			

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-5: SFR MAP: 0100h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
OSCILLATOR			PMD (CONTINUED)		
OSCCON	0100	xxx0	PMD5	0180	0000
CLKDIV	0102	30×0	PMD6	0182	0000
OSCTUN	0106	xxxx	PMD7	0184	0000
DCOTUN	0108	0000	PMD8	0186	0000
DCOCON	010A	0x00	TIMER		
OSCDIV	010C	0001	TMR1	0190	0000
OSCFDIV	010E	0000	PR1	0192	FFFF
RESET			T1CON	0194	0000
RCON	0110	0003	TMR2	0196	0000
HLVD			TMR3HLD	0198	0000
HLVDCON	0114	0600	TMR3	019A	0000
PMP			PR2	019C	FFFF
PMCON1	0128	0000	PR3	019E	FFFF
PMCON2	012A	0000	T2CON	01A0	0x00
PMCON3	012C	0000	T3CON	01A2	0x00
PMCON4	012E	0000	TMR4	01A4	0000
PMCS1CF	0130	0000	TMR5HLD	01A6	0000
PMCS1BS	0132	0000	TMR5	01A8	0000
PMCS1MD	0134	0000	PR4	01AA	FFFF
PMCS2CF	0136	0000	PR5	01AC	FFFF
PMCS2BS	0138	0000	T4CON	01AE	0x00
PMCS2MD	013A	0000	T5CON	01B0	0x00
PMDOUT1	013C	xxxx	CTMU		
PMDOUT2	013E	xxxx	CTMUCON1L	01C0	0000
PMDIN1	0140	xxxx	CTMUCON1H	01C2	0000
PMDIN2	0142	xxxx	CTMUCON2L	01C4	0000
PMSTAT	0144	008F	REAL-TIME CLOCK AND CALENDAR (RTCC)		
CRC			RTCCON1L	01CC	xxxx
CRCCON1	0158	00x0	RTCCON1H	01CE	xxxx
CRCCON2	015A	0000	RTCCON2L	01D0	xxxx
CRCXORL	015C	0000	RTCCON2H	01D2	xxxx
CRCXORH	015E	0000	RTCCON3L	01D4	xxxx
CRCDATL	0160	xxxx	RTCSTATL	01D8	00xx
CRCDATH	0162	xxxx	TIMEL	01DC	xx00
CRCWDATL	0164	$x \mathrm{xxx}$	TIMEH	01DE	xxxx
CRCWDATH	0166	xxxx	DATEL	01E0	xx0x
REFO			DATEH	01E2	xxxx
REFOCONL	0168	0000	ALMTIMEL	01E4	xx00
REFOCONH	016A	0000	ALMTIMEH	01E6	xxxx
REFOTRIML	016C	0000	ALMDATEL	01E8	xx0x
PMD			ALMDATEH	01EA	xxxx
PMD1	0178	0000	TSATIMEL	01EC	xx00
PMD2	017A	0000	TSATIMEH	01EE	xxxx
PMD3	017C	0000	TSADATEL	01F0	xx0x
PMD4	017E	0000	TSADATEH	01F2	xxxx

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-6: SFR MAP: 0200h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
INPUT CAPTURE			OUTPUT CAPTURE (CONTINUED)		
IC1CON1	0200	0000	OC4R	0254	xxxx
IC1CON2	0202	000D	OC4TMR	0256	xxxx
IC1BUF	0204	0000	OC5CON1	0258	0000
IC1TMR	0206	0000	OC5CON2	025A	000C
IC2CON1	0208	0000	OC5RS	025C	xxxx
IC2CON2	020A	000D	OC5R	025E	xxxx
IC2BUF	020C	0000	OC5TMR	0260	xxxx
IC2TMR	020E	0000	OC6CON1	0262	0000
IC3CON1	0210	0000	OC6CON2	0264	000C
IC3CON2	0212	000D	OC6RS	0266	Xxxx
IC3BUF	0214	0000	OC6R	0268	xxxx
IC3TMR	0216	0000	OC6TMR	026A	XXXX
IC4CON1	0218	0000	MULTIPLE OUTPUT CAPTURE/COMPARE/PWM		
IC4CON2	021A	000D	CCP1CON1L	026C	0000
IC4BUF	021C	0000	CCP1CON1H	026E	0000
IC4TMR	021E	0000	CCP1CON2L	0270	0000
IC5CON1	0220	0000	CCP1CON2H	0272	0100
IC5CON2	0222	000D	CCP1CON3L	0274	0000
IC5BUF	0224	0000	CCP1CON3H	0276	0000
IC5TMR	0226	0000	CCP1STATL	0278	00x0
IC6CON1	0228	0000	CCP1STATH	027A	0000
IC6CON2	022A	000D	CCP1TMRL	027C	0000
IC6BUF	022C	0000	CCP1TMRH	027E	0000
IC6TMR	022E	0000	CCP1PRL	0280	FFFF
OUTPUT COMPARE			CCP1PRH	0282	FFFF
OC1CON1	0230	0000	CCP1RAL	0284	0000
OC1CON2	0232	000C	CCP1RAH	0286	0000
OC1RS	0234	XXXX	CCP1RBL	0288	0000
OC1R	0236	XXXX	CCP1RBH	028A	0000
OC1TMR	0238	xxxx	CCP1BUFL	028C	0000
OC2CON1	023A	0000	CCP1BUFH	028E	0000
OC2CON2	023C	000C	CCP2CON1L	0290	0000
OC2RS	023E	xxxx	CCP2CON1H	0292	0000
OC2R	0240	xxxx	CCP2CON2L	0294	0000
OC2TMR	0242	xxxx	CCP2CON2H	0296	0100
OC3CON1	0244	0000	CCP2CON3L	0298	0000
OC3CON2	0246	000C	CCP2CON3H	029A	0000
OC3RS	0248	XXXX	CCP2STATL	029C	00x0
OC3R	024A	xxxx	CCP2STATH	029E	0000
OC3TMR	024C	xxxx	CCP2TMRL	02A0	0000
OC4CON1	024E	0000	CCP2TMRH	02A2	0000
OC4CON2	0250	000C	CCP2PRL	02A4	FFFF
OC4RS	0252	XXXX	CCP2PRH	02A6	FFFF

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-6: SFR MAP: 0200h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)			MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)		
CCP2RAL	02A8	0000	CCP3PRL	02C8	FFFF
CCP2RAH	02AA	0000	CCP3PRH	02CA	FFFF
CCP2RBL	02AC	0000	CCP3RAL	02CC	0000
CCP2RBH	02AE	0000	CCP3RAH	02CE	0000
CCP2BUFL	02B0	0000	CCP3RBL	02D0	0000
CCP2BUFH	02B2	0000	CCP3RBH	02D2	0000
CCP3CON1L	02B4	0000	CCP3BUFL	02D4	0000
CCP3CON1H	02B6	0000	CCP3BUFH	02D6	0000
CCP3CON2L	02B8	0000	COMPARATORS		
CCP3CON2H	02BA	0100	CMSTAT	02E6	0000
CCP3CON3L	02BC	0000	CVRCON	02E8	00xx
CCP3CON3H	02BE	0000	CM1CON	02EA	0000
CCP3STATL	02C0	00x0	CM2CON	02EC	0000
CCP3STATH	02C2	0000	CM3CON	02EE	0000
CCP3TMRL	O2C4	0000	ANALOG CONFIGURATION		
CCP3TMRH	02C6	0000	ANCFG	02F4	0000

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-7: SFR MAP: 0300h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
SINGLE OUTPUT CAPTURE/COMPARE/PWM			SINGLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)		
CCP4CON1L	0300	0000	CCP6STATH	0356	0000
CCP4CON1H	0302	0000	CCP6TMRL	0358	0000
CCP4CON2L	0304	0000	CCP6TMRH	035A	0000
CCP4CON2H	0306	0100	CCP6PRL	035C	FFFF
CCP4CON3L	0308	0000	CCP6PRH	035E	FFFF
CCP4CON3H	030A	0000	CCP6RAL	0360	0000
CCP4STATL	030C	00x0	CCP6RAH	0362	0000
CCP4STATH	030E	0000	CCP6RBL	0364	0000
CCP4TMRL	0310	0000	CCP6RBH	0366	0000
CCP4TMRH	0312	0000	CCP6BUFL	0368	0000
CCP4PRL	0314	FFFF	CCP6BUFH	036A	0000
CCP4PRH	0316	FFFF	CCP7CON1L	036C	0000
CCP4RAL	0318	0000	CCP7CON1H	036E	0000
CCP4RAH	031A	0000	CCP7CON2L	0370	0000
CCP4RBL	031C	0000	CCP7CON2H	0372	0100
CCP4RBH	031E	0000	CCP7CON3L	0374	0000
CCP4BUFL	0320	0000	CCP7CON3H	0376	0000
CCP4BUFH	0322	0000	CCP7STATL	0378	00x0
CCP5CON1L	0324	0000	CCP7STATH	037A	0000
CCP5CON1H	0326	0000	CCP7TMRL	037C	0000
CCP5CON2L	0328	0000	CCP7TMRH	037E	0000
CCP5CON2H	032A	0100	CCP7PRL	0380	FFFF
CCP5CON3L	032C	0000	CCP7PRH	0382	FFFF
CCP5CON3H	032E	0000	CCP7RAL	0384	0000
CCP5STATL	0330	00x0	CCP7RAH	0386	0000
CCP5STATH	0332	0000	CCP7RBL	0388	0000
CCP5TMRL	0334	0000	CCP7RBH	038A	0000
CCP5TMRH	0336	0000	CCP7BUFL	038C	0000
CCP5PRL	0338	FFFF	CCP7BUFH	038E	0000
CCP5PRH	033A	FFFF	UART		
CCP5RAL	033C	0000	U1MODE	0398	0000
CCP5RAH	033E	0000	U1STA	039A	0110
CCP5RBL	0340	0000	U1TXREG	039C	x0xx
CCP5RBH	0342	0000	U1RXREG	039E	0000
CCP5BUFL	0344	0000	U1BRG	03A0	0000
CCP5BUFH	0346	0000	U1ADMD	03A2	0000
CCP6CON1L	0348	0000	U2MODE	03AE	0000
CCP6CON1H	034A	0000	U2STA	03B0	0110
CCP6CON2L	034C	0000	U2TXREG	03B2	xxxx
CCP6CON2H	034E	0100	U2RXREG	03B4	0000
CCP6CON3L	0350	0000	U2BRG	03B6	0000
CCP6CON3H	0352	0000	U2ADMD	03B8	0000
CCP6STATL	0354	00x0	U3MODE	03C4	0000

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-7: SFR MAP: 0300h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
UART (CONTINUED)			UART (CONTINUED)		
U3STA	03 C 6	0110	U5BRG	03E4	0000
U3TXREG	03C8	xxxx	U5ADMD	03 E 6	0000
U3RXREG	03CA	0000	U6MODE	03E8	0000
U3BRG	03CC	0000	U6STA	03EA	0110
U3ADMD	03CE	0000	U6TXREG	03EC	xxxx
U4MODE	03D0	0000	U6RXREG	03EE	0000
U4STA	03D2	0110	U6BRG	03F0	0000
U4TXREG	03D4	xxxx	U6ADMD	03F2	0000
U4RXREG	03D6	0000	SPI		
U4BRG	03D8	0000	SPI1CON1	03F4	0x00
U4ADMD	03DA	0000	SPI1CON2	$03 \mathrm{F6}$	0000
U5MODE	03DC	0000	SPI1CON3	03F8	0000
U5STA	03DE	0110	SPI1STATL	03FC	0028
U5TXREG	03E0	xxxx	SPI1STATH	03FE	0000
U5RXREG	03E2	0000			

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-8: SFR MAP: 0400h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED)			CONFIGURABLE LOGIC CELL (CLC) (CONTINUED)		
SPI1BUFL	0400	0000	CLC3CONL	047C	0000
SPI1BUFH	0402	0000	CLC3CONH	047E	0000
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000
SPI1URDTL	040C	0000	CLC4CONL	0488	0000
SPI1URDTH	040E	0000	CLC4CONH	048A	0000
SPI2CON1	0410	0x00	CLC4SELL	048C	0000
SPI2CON2	0412	0000	CLC4GLSL	0490	0000
SPI2CON3	0414	0000	CLC4GLSH	0492	0000
SPI2STATL	0418	0028	$1^{2} \mathrm{C}$		
SPI2STATH	041A	0000	I2C1RCV	0494	0000
SPI2BUFL	041C	0000	I2C1TRN	0496	00FF
SPI2BUFH	041E	0000	I2C1BRG	0498	0000
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000
SPI3CON2	042E	0000	I2C2TRN	04A6	00FF
SPI3CON3	0430	0000	I2C2BRG	04A8	0000
SPI3STATL	0434	0028	I2C2CON1	04AA	1000
SPI3STATH	0436	0000	I2C2CON2	04AC	0000
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000
SPI3IMSK2	0442	0000	I2C3TRN	04B6	00FF
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000
CONFIGURABLE LOGIC CELL (CLC)			I2C3CON2	04BC	0000
CLC1CONL	0464	0000	I2C3STAT	04BE	0000
CLC1CONH	0466	0000	I2C3ADD	04C0	0000
CLC1SELL	0468	0000	I2C3MSK	04C2	0000
CLC1GLSL	046C	0000	DMA		
CLC1GLSH	046E	0000	DMACON	04C4	0000
CLC2CONL	0470	0000	DMABUF	04C6	0000
CLC2CONH	0472	0000	DMAL	04C8	0000
CLC2SELL	0474	0000	DMAH	04CA	0000
CLC2GLSL	0478	0000	DMACH0	04CC	0000
CLC2GLSH	047A	0000	DMAINT0	04CE	0000

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-8: SFR MAP: 0400h BLOCK (CONTINUED)

File Name	Address	All Resets	File Name	Address	All Resets
DMA (CONTINUED)			DMA (CONTINUED)		
DMASRC0	04D0	0000	DMACNT2	04E8	0001
DMADST0	04D2	0000	DMACH3	04EA	0000
DMACNT0	04D4	0001	DMAINT3	04EC	0000
DMACH1	04D6	0000	DMASRC3	04EE	0000
DMAINT1	04D8	0000	DMADST3	04F0	0000
DMASRC1	04DA	0000	DMACNT3	04F2	0001
DMADST1	04DC	0000	DMACH4	04F4	0000
DMACNT1	04DE	0001	DMAINT4	04F6	0000
DMACH2	04E0	0000	DMASRC4	04F8	0000
DMAINT2	04E2	0000	DMADST4	04FA	0000
DMASRC2	04E4	0000	DMACNT4	04FC	0001
DMADST2	04E6	0000	DMACH5	04FE	0000

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-9: SFR MAP: 0500h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
DMA (CONTINUED)			USB OTG (CONTINUED)		
DMAINT5	0500	0000	U1ADDR	056E	00xx
DMASRC5	0502	0000	U1BDTP1	0570	0000
DMADST5	0504	0000	U1FRML	0572	0000
DMACNT5	0506	0001	U1FRMH	0574	0000
DMACH6	0508	0000	U1TOK	0576	0000
DMAINT6	050A	0000	U1SOF	0578	0000
DMASRC6	050C	0000	U1BDTP2	057A	0000
DMADST6	050E	0000	U1BDTP3	057C	0000
DMACNT6	0510	0001	U1CNFG1	057E	0000
DMACH7	0512	0000	U1CNFG2	0580	0000
DMAINT7	0514	0000	U1EP0	0582	0000
DMASRC7	0516	0000	U1EP1	0584	0000
DMADST7	0518	0000	U1EP2	0586	0000
DMACNT7	051A	0001	U1EP3	0588	0000
USB OTG			U1EP4	058A	0000
U1OTGIR	0558	0000	U1EP5	058C	0000
U10TGIE	055A	0000	U1EP6	058E	0000
U1OTGSTAT	055C	0000	U1EP7	0590	0000
U1OTGCON	055E	0000	U1EP8	0592	0000
U1PWRC	0560	00x0	U1EP9	0594	0000
U1IR	0562	0000	U1EP10	0596	0000
U1IE	0564	0000	U1EP11	0598	0000
U1EIR	0566	0000	U1EP12	059A	0000
U1EIE	0568	0000	U1EP13	059C	0000
U1STAT	056A	0000	U1EP14	059E	0000
U1CON	056C	00x0	U1EP15	05A0	0000

Legend: $\quad-=$ unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

TABLE 4-10: SFR MAP: 0600h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
1/0			PORTD (CONTINUED)		
PADCON	065E	0000	ANSD	06A6	FFFF
IOCSTAT	0660	0000	IOCPD	06A8	0000
PORTA ${ }^{(1)}$			IOCND	06AA	0000
TRISA	0662	FFFF	IOCFD	06AC	0000
PORTA	0664	0000	IOCPUD	06AE	0000
LATA	0666	0000	IOCPDD	06B0	0000
ODCA	0668	0000	PORTE		
ANSA	066A	FFFF	TRISE	06B2	FFFF
IOCPA	066C	0000	PORTE	06B4	0000
IOCNA	066E	0000	LATE	06B6	0000
IOCFA	0670	0000	ODCE	06B8	0000
IOCPUA	0672	0000	ANSE	06BA	FFFF
IOCPDA	0674	0000	IOCPE	06BC	0000
PORTB			IOCNE	06BE	0000
TRISB	0676	FFFF	IOCFE	06C0	0000
PORTB	0678	0000	IOCPUE	06C2	0000
LATB	067A	0000	IOCPDE	06C4	0000
ODCB	067C	0000	PORTF		
ANSB	067E	FFFF	TRISF	06C6	FFFF
IOCPB	0680	0000	PORTF	06C8	0000
IOCNB	0682	0000	LATF	06CA	0000
IOCFB	0684	0000	ODCF	06CC	0000
IOCPUB	0686	0000	IOCPF	06D0	0000
IOCPDB	0688	0000	IOCNF	06D2	0000
PORTC			IOCFF	06D4	0000
TRISC	068A	FFFF	IOCPUF	06D6	0000
PORTC	068C	0000	IOCPDF 06D8 0000 PORTG		
LATC	068E	0000	PORTG		
ODCC	0690	0000	TRISG	06DA	FFFF
ANSC	0692	FFFF	PORTG	06DC	0000
IOCPC	0694	0000	LATG	06DE	0000
IOCNC	0696	0000	ODCG	06E0	0000
IOCFC	0698	0000	ANSG	06E2	FFFF
IOCPUC	069A	0000	IOCPG	06E4	0000
IOCPDC	069C	0000	IOCNG	06E6	0000
PORTD			IOCFG	06E8	0000
TRISD	069E	FFFF	IOCPUG	06EA	0000
PORTD	06A0	0000	IOCPDG	06EC	0000
LATD	06A2	0000			
ODCD	06A4	0000			

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.
Note 1: PORTA and all associated bits are unimplemented in 64 -pin devices and read as ' 0 '.

TABLE 4-11: SFR MAP: 0700h BLOCK

File Name	Address	All Resets	File Name	Address	All Resets
AID			PERIPHERAL PIN SELECT		
ADC1BUF0	0712	xxxx	RPINR0	0790	3F3F
ADC1BUF1	0714	xxxx	RPINR1	0792	3F3F
ADC1BUF2	0716	xxxx	RPINR2	0794	3F3F
ADC1BUF3	0718	xxxx	RPINR3	0796	3F3F
ADC1BUF4	071A	xxxx	RPINR4	0798	3F3F
ADC1BUF5	071C	xxxx	RPINR5	079A	3F3F
ADC1BUF6	071E	xxxx	RPINR6	079C	3F3F
ADC1BUF7	0720	xxxx	RPINR7	079E	3F3F
ADC1BUF8	0722	xxxx	RPINR8	07A0	003F
ADC1BUF9	0724	xxxx	RPINR11	07A6	3F3F
ADC1BUF10	0726	xxxx	RPINR12	07A8	3F3F
ADC1BUF11	0728	xxxx	RPINR14	07AC	3F3F
ADC1BUF12	072A	xxxx	RPINR15	07AE	003F
ADC1BUF13	072C	xxxx	RPINR17	07B2	3F00
ADC1BUF14	072E	xxxx	RPINR18	07B4	3F3F
ADC1BUF15	0730	xxxx	RPINR19	07B6	3F3F
ADC1BUF16	0732	xxxx	RPINR20	07B8	3F3F
ADC1BUF17	0734	xxxx	RPINR21	07BA	3F3F
ADC1BUF18	0736	xxxx	RPINR22	07BC	3F3F
ADC1BUF19	0738	xxxx	RPINR23	07BE	3F3F
ADC1BUF20	073A	xxxx	RPINR25	07C2	3F3F
ADC1BUF21	073C	xxxx	RPINR27	07C6	3F3F
ADC1BUF22	073E	xxxx	RPINR28	07C8	3F3F
ADC1BUF23	0740	xxxx	RPINR29	07CA	003F
ADC1BUF24	0742	xxxx	RPOR0	07D4	0000
ADC1BUF25	0744	xxxx	RPOR1	07D6	0000
AD1CON1	0746	0000	RPOR2	07D8	0000
AD1CON2	0748	0000	RPOR3	07DA	0000
AD1CON3	074A	0000	RPOR4	07DC	0000
AD1CHS	074C	0000	RPOR5	07DE	0000
AD1CSSH	074E	0000	RPOR6	07E0	0000
AD1CSSL	0750	0000	RPOR7	07E2	0000
AD1CON4	0752	0000	RPOR8	07E4	0000
AD1CON5	0754	0000	RPOR9	07E6	0000
AD1CHITH	0756	0000	RPOR10	07E8	0000
AD1CHITL	0758	0000	RPOR11	07EA	0000
AD1CTMENH	075A	0000	RPOR12	07EC	0000
AD1CTMENL	075C	0000	RPOR13	07EE	0000
AD1RESDMA	075E	0000	RPOR14	07F0	0000
NVM			RPOR15	07F2	0000
NVMCON	0760	0000			
NVMADR	0762	xxxx			
NVMADRU	0764	00xx			
NVMKEY	0766	0000			

Legend: - = unimplemented, read as ' 0 '; $x=$ undefined. Reset values are shown in hexadecimal.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through EPMP.

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".
Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read Page register (DSRPAG) or the Data Space Write Page register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA).

The data addressing range of the PIC24FJ1024GA610/ GB610 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-12 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the "dsPIC33/ PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730).

TABLE 4-12: TOTAL ACCESSIBLE DATA MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGX610	32 K	Up to 16 Mbytes
PIC24FJXXXGX606	32 K	Up to 64 K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE

Note 1: The range of addressable memory available is dependent on the device pin count and EPMP implementation.

4.2.5.1 Data Read from EDS

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register which is assigned with the offset address; then, the contents of the pointed EDS location can be read.
Figure 4-5 illustrates how the EDS space address is generated for read operations.
When the Most Significant bit (MSb) of EA is ' 1 ' and DSRPAG<9> $=0$, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24 -bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. For EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

FIGURE 4-5: EDS ADDRESS GENERATION FOR READ OPERATIONS

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
    mov #0x0002, w0
    mov w0, DSRPAG ;page 2 is selected for read
    mov #0x0800, w1 ;select the location (0x800) to be read
    bset w1, #15 ; set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
    mov.b [w1++], w2 ;read Low byte
    mov.b [w1++], w3 ;read High byte
;Read a word from the selected location
    mov [w1], w2 ;
;Read Double - word from the selected location
    mov.d [w1], w2 ;two word read, stored in w2 and w3
```


4.2.5.2 Data Write into EDS

In order to write data to EDS, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register, assigned with the offset address and the accessed location can be written.
Figure 4-2 illustrates how the EDS address is generated for write operations.
When the MSbs of EA are ' 1 ', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24 -bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double word to EDS.

The Data Space Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to
0×8000. While developing code in assembly, care must be taken to update the Data Space Page registers when an Address Pointer crosses the page boundary. The ' C ' compiler keeps track of the addressing, and increments or decrements the Page registers accordingly, while accessing contiguous data memory locations.

Note 1: All write operations to EDS are executed in a single cycle.
2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.

3: Use the DSRPAG register while performing Read/Modify/Write operations.

FIGURE 4-6: EDS ADDRESS GENERATION FOR WRITE OPERATIONS

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
    mov #0x0002, w0
    mov w0, DSWPAG ;page 2 is selected for write
    mov #0x0800, w1 ;select the location (0x800) to be written
    bset w1, #15 ; set the MSB of the base address, enable EDS mode
;Write a byte to the selected location
    mov #0x00A5, w2
    mov #0x003C, w3
    mov.b w2, [w1++] ;write Low byte
    mov.b w3, [w1++] ;write High byte
;Write a word to the selected location
    mov #0x1234, w2 ;
    mov w2, [W1] ;
;Write a Double - word to the selected location
    mov #0x1122, w2
    mov #0x4455, w3
    mov.d w2, [w1] ;2 EDS writes
```

TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
$\mathrm{x}^{(1)}$	$\mathrm{x}^{(1)}$	0000h to 1FFFh	$\begin{aligned} & \text { 000000h to } \\ & \text { 001FFFh } \end{aligned}$	Near Data Space ${ }^{(2)}$
		2000h to 7FFFh	002000h to 007FFFh	
001h	001h	8000h to FFFFh	008000h to 00FFFEh	EPMP Memory Space
002h	002h		$\begin{aligned} & \text { 010000h to } \\ & \text { 017FFEh } \end{aligned}$	
003h $\begin{aligned} & \text { • } \\ & \text { FFh } \end{aligned}$	003h $\begin{gathered} \text { • } \\ \text { 1FFh } \end{gathered}$		$\begin{aligned} & \text { 018000h to } \\ & \text { 0187FEh } \\ & \text { • } \\ & \text { FF8000h to } \\ & \text { FFFFFEh } \end{aligned}$	
000h	000h		Invalid Address	Address Error Trap ${ }^{(3)}$

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.
2: This Data Space can also be accessed by Direct Addressing.
3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are ' 0 ', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and postincrements for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

$$
\begin{array}{ll}
\text { Note: } & \text { A PC push during exception processing } \\
\text { will concatenate the SRL register to the } \\
\text { MSB of the PC prior to the push. }
\end{array}
$$

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to ' 0 ' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is
desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.
Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.
A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24 -bit wide program space and 16 -bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.
Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)
Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23 -bit or 24 -bit program address from 16-bit data registers. The solution depends on the interface method to be used.
For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16 -bit EA to arrive at a full 24 -bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).
For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16 K word page in the program space. When the Most Significant bit (MSb) of the EA is ' 1 ', and the MSb (bit 9) of DSRPAG is ' 1 ', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23 -bit program space address. The DSRPAG<8> bit decides whether the lower word (when bit is ' 0 ') or the higher word (when bit is ' 1 ') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-14 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, $\mathrm{P}<23: 0>$ refers to a program space word, whereas $D<15: 0>$ refers to a Data Space word.

TABLE 4-14: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data $E A<15>$ is always ' 1 ' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.
2: DSRPAG<9> is always ' 1 ' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is ' 0 ', the lower word is read, and when it is ' 1 ', the higher word is read.

FIGURE 4-8: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.
Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location ($\mathrm{P}<15: 0>$) to a data address ($\mathrm{D}<15: 0>$). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is ' 1 '; the lower byte is selected when it is ' 0 '.
2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address ($\mathrm{P}<23: 16>$) to a data address. Note that $D<15: 8>$, the 'phantom' byte, will always be ' 0 '.
In Byte mode, it maps the upper or lower byte of the program word to $D<7: 0>$ of the data address, as above. Note that the data will always be ' 0 ' when the upper 'phantom' byte is selected (byte select = 1).
In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in Section 6.0 "Flash Program Memory".
For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG $<7>=0$, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.
Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16 K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).
Program space access through the Data Space occurs when the MSb of EA is ' 1 ' and the DSRPAG<9> is also
' 1 '. The lower 8 bits of DSRPAG are concatenated to the $\mathrm{Wn}<14: 0>$ bits to form a 23 -bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is ' 0 ', the lower word, and when ' 1 ', the upper word of the program memory is accessed.
The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.
Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported.

Table 4-15 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.
For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced
Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

TABLE 4-15: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment
$\begin{gathered} \hline 200 \mathrm{~h} \\ \cdot \\ \text { • } \\ \text { • } \\ \text { 2FFh } \end{gathered}$	8000h to FFFFh	000000h to 007FFEh 7F8000h to 7FFFFEh	Lower words of 4 M program instructions; (8 Mbytes) for read operations only.
300h 3FFh		000001h to 007FFFh 7F8001h to 7FFFFFh	Upper words of 4M program instructions (4 Mbytes remaining; 4 Mbytes are phantom bytes) for read operations only.
000h		Invalid Address	Address error trap. ${ }^{(1)}$

Note 1: When the source/destination address is above 8000 h and DSRPAG/DSWPAG is ' 0 ', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

```
; Set the EDS page from where the data to be read
    mov #0x0202, w0
    mov w0, DSRPAG ;page 0x202, consisting lower words, is selected for read
    mov #0x000A, w1 ;select the location (0x0A) to be read
    bset w1, #15 ; set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
    mov.b [w1++], w2 ;read Low byte
    mov.b [w1++], w3 ;read High byte
;Read a word from the selected location
    mov [w1], w2 ;
;Read Double - word from the selected location
    mov.d [w1], w2 ;two word read, stored in w2 and w3
```

FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD

When DSRPAG<9:8> = 10 and $E A<15>=1$

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access Controller (DMA) is designed to service high-throughput data peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.
The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMAenabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals.

The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Eight Multiple Independent and Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for Each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.

FIGURE 5-1: DMA FUNCTIONAL BLOCK DIAGRAM

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction; in addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (fixed address or address blocks, with or without address increment/ decrement)
In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh), can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-sized transactions. When byte-sized transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

The DMA Controller can use any one of the device's interrupt sources to initiate a transaction. The DMA Trigger sources are listed in reverse order of their natural interrupt priority and are shown in Table 5-1.

Since the source and destination addresses for any transaction can be programmed independently of the Trigger source, the DMA Controller can use any Trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each Trigger.

- One-Shot: A single transaction occurs for each Trigger.
- Continuous: A series of back-to-back transactions occur for each Trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per Trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per Trigger, until the DMA channel is disabled.
All transfer modes allow the option to have the source and destination addresses, and counter value automatically reloaded after the completion of a transaction. Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range to source addresses to a range of destination addresses
The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.
In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.
For PIC24FJ1024GA610/GB610 family devices, the 12-bit A/D Converter module is the only PIA capable peripheral. Details for its use in PIA mode are provided in Section 25.0 "12-Bit A/D Converter with Threshold Detect".

FIGURE 5-2: TYPES OF DMA DATA TRANSFERS

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round-Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority, based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

1. Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
2. Program DMAH and DMAL with the appropriate upper and lower address boundaries for data RAM operations.
3. Select the DMA channel to be used and disable its operation (CHEN = 0).
4. Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
5. Program the DMACNTn register for the number of Triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
6. Set or clear the SIZE bit to select the data size.
7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
9. Enable the DMA channel by setting CHEN.
10. Enable the Trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMAOMD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 through DMACH7. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n
- DMADSTn: DMA Data Destination Source for Channel n
- DMACNTn: DMA Transaction Counter for Channel n

For PIC24FJ1024GA610/GB610 family devices, there are a total of 44 registers.

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0						
DMAEN	-	-	-	-	-	-	-
bit 15			bit 8				

U-0	R/W-0						
-	-	-	-	-	-	-	PRSSEL
bit 7							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplement	as '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$ Bit is unknown

bit 15	DMAEN: DMA Module Enable bit
	$1=$ Enables module 0
	$=$ Disables module and terminates all active DMA operation(s)
bit 14-1	Unimplemented: Read as ' 0 '
bit 0	PRSSEL: Channel Priority Scheme Selection bit
	$1=$ Round-robin scheme 0
	$=$ Fixed priority scheme

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
-	-	-	-	-	NULLW	RELOAD $^{(\mathbf{1})}$	CHREQ $^{(3)}$
bit 15					bit 8		

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAMODE1 | SAMODE0 | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE | CHEN |
| bit 7 | | | bit 0 | | | | |

Legend:	$\mathrm{r}=$ Reserved bit	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-13 Unimplemented: Read as ' 0 '
bit 12 Reserved: Maintain as ' 0 '
bit $11 \quad$ Unimplemented: Read as ' 0 '
bit 10 NULLW: Null Write Mode bit
1 = A dummy write is initiated to DMASRCn for every write to DMADSTn
$0=$ No dummy write is initiated
bit 9 RELOAD: Address and Count Reload bit ${ }^{(1)}$
1 = DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the start of the next operation
$0=$ DMASRCn, DMADSTn and DMACNTn are not reloaded on the start of the next operation ${ }^{(2)}$
bit 8 CHREQ: DMA Channel Software Request bit ${ }^{(3)}$
1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer $0=$ No DMA request is pending
bit 7-6 SAMODE<1:0>: Source Address Mode Selection bits
11 = DMASRCn is used in Peripheral Indirect Addressing and remains unchanged
$10=$ DMASRCn is decremented based on the SIZE bit after a transfer completion
01 = DMASRCn is incremented based on the SIZE bit after a transfer completion
00 = DMASRCn remains unchanged after a transfer completion
bit 5-4 DAMODE<1:0>: Destination Address Mode Selection bits
$11=$ DMADSTn is used in Peripheral Indirect Addressing and remains unchanged
$10=$ DMADSTn is decremented based on the SIZE bit after a transfer completion
01 = DMADSTn is incremented based on the SIZE bit after a transfer completion
00 = DMADSTn remains unchanged after a transfer completion
bit 3-2 TRMODE<1:0>: Transfer Mode Selection bits
11 = Repeated Continuous mode
10 = Continuous mode
01 = Repeated One-Shot mode
00 = One-Shot mode
bit 1 SIZE: Data Size Selection bit
1 = Byte (8-bit)
0 = Word (16-bit)
bit $0 \quad$ CHEN: DMA Channel Enable bit
$1=$ The corresponding channel is enabled
$0=$ The corresponding channel is disabled
Note 1: Only the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn.
2: DMASRCn, DMADSTn and DMACNTn are always reloaded in Repeated mode transfers (DMACHn<2> = 1), regardless of the state of the RELOAD bit.
3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

R-0	R/W-0						
DBUFWF ${ }^{(1)}$	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSELO
bit 15 bit							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ${ }^{(1,2)}$	LOWIF ${ }^{(1,2)}$	DONEIF ${ }^{(1)}$	HALFIF ${ }^{(1)}$	OVRUNIF ${ }^{(1)}$	-	-	HALFEN
bit $7 \times$ bit							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15 DBUFWF: DMA Buffered Data Write Flag bit ${ }^{(1)}$
$1=$ The content of the DMA buffer has not been written to the location specified in DMADSTn or DMASRCn in Null Write mode
$0=$ The content of the DMA buffer has been written to the location specified in DMADSTn or DMASRCn in Null Write mode
bit 14-8 CHSEL<6:0>: DMA Channel Trigger Selection bits
See Table 5-1 for a complete list.
bit $7 \quad$ HIGHIF: DMA High Address Limit Interrupt Flag bit ${ }^{(1,2)}$
1 = The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data RAM space
$0=$ The DMA channel has not invoked the high address limit interrupt
bit 6 LOWIF: DMA Low Address Limit Interrupt Flag bit ${ }^{(1,2)}$
1 = The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the SFR range (07FFh)
$0=$ The DMA channel has not invoked the low address limit interrupt
bit 5 DONEIF: DMA Complete Operation Interrupt Flag bit ${ }^{(1)}$
If CHEN = 1:
1 = The previous DMA session has ended with completion
$0=$ The current DMA session has not yet completed
If $\mathrm{CHEN}=0$:
1 = The previous DMA session has ended with completion
$0=$ The previous DMA session has ended without completion
bit 4 HALFIF: DMA 50\% Watermark Level Interrupt Flag bit ${ }^{(1)}$
$1=$ DMACNTn has reached the halfway point to 0000 h
$0=$ DMACNTn has not reached the halfway point
bit $3 \quad$ OVRUNIF: DMA Channel Overrun Flag bit ${ }^{(1)}$
1 = The DMA channel is triggered while it is still completing the operation based on the previous Trigger $0=$ The overrun condition has not occurred
bit 2-1 Unimplemented: Read as ' 0 '
bit $0 \quad$ HALFEN: Halfway Completion Watermark bit
1 = Interrupts are invoked when DMACNTn has reached its halfway point and at completion
$0=$ An interrupt is invoked only at the completion of the transfer
Note 1: Setting these flags in software does not generate an interrupt.
2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

TABLE 5-1: DMA TRIGGER SOURCES

CHSEL<6:0>	Trigger (Interrupt)	CHSEL<6:0>	Trigger (Interrupt)
0000000	Off	0110111	UART6 Error Interrupt
0000001	SCCP7 IC/OC Interrupt	0111000	UART5 TX Interrupt
0000010	SCCP7 Timer Interrupt	0111001	UART5 RX Interrupt
0000011	SCCP6 IC/OC Interrupt	0111010	UART5 Error Interrupt
0000100	SCCP6 Timer Interrupt	0111011	UART4 TX Interrupt
0000101	SCCP5 IC/OC Interrupt	0111100	UART4 RX Interrupt
0000110	SCCP5 Timer Interrupt	0111101	UART4 Error Interrupt
0000111	SCCP4 IC/OC Interrupt	0111110	UART3 TX Interrupt
0001000	SCCP4 Timer Interrupt	0111111	UART3 RX Interrupt
0001011	MCCP3 IC/OC Interrupt	1000000	UART3 Error Interrupt
0001100	MCCP3 Timer Interrupt	1000001	UART2 TX Interrupt
0001101	MCCP2 IC/OC Interrupt	1000010	UART2 RX Interrupt
0001110	MCCP2 Timer Interrupt	1000011	UART2 Error Interrupt
0001111	MCCP1 IC/OC Interrupt	1000100	UART1 TX Interrupt
0010000	MCCP1 Timer Interrupt	1000101	UART1 RX Interrupt
0010001	OC6 Interrupt	1000110	UART1 Error Interrupt
0010010	OC5 Interrupt	1001001	DMA Channel 7 Interrupt
0010011	OC4 Interrupt	1001010	DMA Channel 6 Interrupt
0010100	OC3 Interrupt	1001011	DMA Channel 5 Interrupt
0010101	OC2 Interrupt	1001100	DMA Channel 4 Interrupt
0010110	OC1 Interrupt	1001101	DMA Channel 3 Interrupt
0010111	IC6 Interrupt	1001110	DMA Channel 2 Interrupt
0011000	IC5 Interrupt	1001111	DMA Channel 1 Interrupt
0011001	IC4 Interrupt	1010000	DMA Channel 0 Interrupt
0011010	IC3 Interrupt	1010001	A/D Interrupt
0011011	IC2 Interrupt	1010010	USB Interrupt
0011100	IC1 Interrupt	1010011	PMP Interrupt
0100000	SPI3 Receive Interrupt	1010100	HLVD Interrupt
0100001	SPI3 Transmit Interrupt	1010101	CRC Interrupt
0100010	SPI3 General Interrupt	1011001	CLC4 Out
0100011	SPI2 Receive Interrupt	1011010	CLC3 Out
0100100	SPI2 Transmit Interrupt	1011011	CLC2 Out
0100101	SPI2 General Interrupt	1011100	CLC1 Out
0100110	SPI1 Receive Interrupt	1011110	RTCC Alarm Interrupt
0100111	SPI1 Transmit Interrupt	1011111	TMR5 Interrupt
0101000	SPI1 General Interrupt	1100000	TMR4 Interrupt
0101100	I2C3 Slave Interrupt	1100001	TMR3 Interrupt
0101101	I2C3 Master Interrupt	1100010	TMR2 Interrupt
0101110	I2C3 Bus Collision Interrupt	1100011	TMR1 Interrupt
0101111	I2C2 Slave Interrupt	1100110	CTMU Trigger
0110000	I2C2 Master Interrupt	1100111	Comparator Interrupt
0110001	I2C2 Bus Collision Interrupt	1101000	INT4 Interrupt
0110010	I2C1 Slave Interrupt	1101001	INT3 Interrupt
0110011	I2C1 Master Interrupt	1101010	INT2 Interrupt
0110100	I2C1 Bus Collision Interrupt	1101011	INT1 Interrupt
0110101	UART6 TX Interrupt	1101100	INTO Interrupt
0110110	UART6 RX Interrupt	1101101	Interrupt-on-Change (IOC) Interrupt

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ1024GA610/GB610 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
ICSP allows a PIC24FJ1024GA610/GB610 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear ($\overline{\mathrm{MCLR}}$). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.
The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected. ECC Double-Bit Errors (ECCDBE) result in a trap.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.
The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.
The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.
The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.
When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.
To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.
The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.
Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is not recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.
NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55 h and AAh to the NVMKEY register. Refer to Section 6.6 "Programming Operations" for further details.
The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.
In Dual Partition mode, programming or erasing the Inactive Partition will not stall the processor; the code in the Active Partition will still execute during the programming operation.
It is important to mask interrupts for a minimum of 5 instruction cycles during Flash programming. This can be done in Assembly using the DISI instruction (see Example 6-1).

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/S-0, HC ${ }^{(1)}$	R/W-0 ${ }^{(1)}$	R-0, $\mathrm{HSC}^{(1)}$	r-0	R-0, $\mathrm{HSC}^{(1,3)}$	R -0 ${ }^{(1)}$	U-0	U-0
WR	WREN	WRERR	-	SFTSWP	P2ACTIV	-	-
bit 15 bit 8							

U-0	U-0	U-0	U-0	R/W-0 ${ }^{(1)}$	R/W-0 ${ }^{(1)}$	R/W-0 ${ }^{(1)}$	R/W-0 ${ }^{(1)}$
-	-	-	-	NVMOP3 ${ }^{(2)}$	NVMOP2 ${ }^{(2)}$	NVMOP1 ${ }^{(2)}$	NVMOP0 ${ }^{(2)}$
bit $7 \times$ bit 0							

Legend:	S = Settable bit	$H C=$ Hardware Clearable bit	$r=$ Reserved bit
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$' 0$ ' $=$ Bit is cleared	$\mathrm{x}=$ Bit is unknown
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '	
HSC = Hardware Settable/Clearable bit			

bit 15	WR: Write Control bit ${ }^{(1,4)}$
	1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete $0=$ Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit ${ }^{(1)}$
	1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit ${ }^{(1)}$
	```1= An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally```
bit 12	Reserved: Maintain as ' 0 '
bit 11	SFTSWP: Soft Swap Status bit ${ }^{(1,3)}$
	In Single Partition Mode:
	Read as ' 0 '.
	In Dual Partition Mode:
	1 = Partitions have been successfully swapped using the B00TSWP instruction
	0 = Awaiting successful panel swap using the B00TSWP instruction
bit 10	P2ACTIV: Dual Partition Active Status bit ${ }^{(1)}$
	In Single Partition Mode:
	Read as '0'.
	In Dual Partition Mode:
	1 = Partition 2 is mapped into the active region
	$0=$ Partition 1 is mapped into the active region
bit 9-4	Unimplemented: Read as ' 0 '
Note 1	These bits can only be reset on a Power-on Reset.
	All other combinations of NVMOP<3:0> are unimplemented.
	This bit may be cleared by software or by any Reset.
	The WR bit should always be polled to indicate completion during any Flash memory program or erase operation while in Single Partition Mode.

## REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER (CONTINUED)

bit 3-0 NVMOP<3:0>: NVM Operation Select bits ${ }^{(1,2)}$
$1110=$ Chip erase user memory (does not erase Device ID, customer OTP or executive memory)
$1000=$ The next WR command will program FBOOT with the data held in the first 48 bits of the write latch and then will program the Dual Partition Signature (SIGN) bit in Flash. The device must be reset before the newly programmed mode can take effect.
0100 = Erase user memory and Configuration Words in the Inactive Partition (Dual Partition modes only)
0011 = Erase a page of program or executive memory
0010 = Row programming operation
0001 = Double-word programming operation
Note 1: These bits can only be reset on a Power-on Reset.
2: All other combinations of NVMOP<3:0> are unimplemented.
3: This bit may be cleared by software or by any Reset.
4: The WR bit should always be polled to indicate completion during any Flash memory program or erase operation while in Single Partition Mode.

### 6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

1. Read eight rows of program memory (1024 instructions) and store in data RAM.
2. Update the program data in RAM with the desired new data.
3. Erase the block (see Example 6-1):
a) Set the NVMOP<3:0> bits (NVMCON $<3: 0>$ ) to ' 0011 ' to configure for block erase. Set the WREN (NVMCON<14>) bit.
b) Write the starting address of the block to be erased into the NVMADRU/NVMADR registers.
c) Write 55 h to NVMKEY.
d) Write AAh to NVMKEY.
e) Set the WR bit ( $\mathrm{NVMCON}<15>$ ). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
4. Update the TBLPAG register to point to the programming latches on the device. Update the NVMADRU/NVMADR registers to point to the destination in the program memory.
5. Write the first 128 instructions from data RAM into the program memory buffers (see Table 6-1).
6. Write the program block to Flash memory:
a) Set the NVMOPx bits to ' 0010 ' to configure for row programming. Set the WREN bit.
b) Write 55 h to NVMKEY.
c) Write AAh to NVMKEY.
d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
7. Repeat Steps 4 through 6 using the next available 128 instructions from the block in data RAM, by incrementing the value in NVMADRU/NVMADR, until all 1024 instructions are written back to Flash memory.
For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 6-2.

TABLE 6-1: EXAMPLE PAGE ERASE

Step 1: Set the NVMCON register to erase a page.	
MOV	\#0x4003, W0
MOV	W0, NVMCON

## EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C’ LANGUAGE CODE)

```
// C example using MPLAB XC16
 unsigned long progAddr = 0xXXXXXX; // Address of row to write
 unsigned int offset;
//Set up pointer to the first memory location to be written
 NVMADRU = progAddr>>16; // Initialize PM Page Boundary SFR
 NVMADR = progAddr & 0xFFFF; // Initialize lower word of address
 NVMCON = 0x4003;
 asm("DISI #5");
 __builtin_write_NVM();
 // Initialize NVMCON
 // Block all interrupts with priority <7
 // for next 5 instructions
 // check function to perform unlock
 // sequence and set WR
```

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

DISI	\#5	Block all interrupts with priority <7   for next 5 instructions
MOV.B	\#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	\#0xAA, W1	
MOV	W1, NVMKEY	; Write the 0xAA key
BSET	NVMCON, \#WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, \#15	; and wait for it to be
BRA	\$-2	; completed

### 6.6.2 PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write two instruction words ( $2 \times 24$-bit) into the write latch. The TBLPAG register is loaded with the address of the write latches and the NVMADRU/NVMADR registers are loaded with the address of the first of the two instruction words to be programmed. The TBLWTL and TBLWTH
instructions write the desired data into the write latches. To configure the NVMCON register for a two-word write, set the NVMOPx bits (NVMCON<3:0>) to '0001'. The write is performed by executing the unlock sequence and setting the WR bit. An equivalent procedure in ' $C$ ', using the MPLAB ${ }^{\circledR}$ XC16 compiler and built-in hardware functions, is shown in Example 6-3.

TABLE 6-2: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY
\(\left.\begin{array}{|ll|}\hline Step 1: \& Initialize the TBLPAG register for writing to the latches. <br>
\hline MOV \& \#0xFA, W12 <br>

MOV \& W12, TBLPAG\end{array}\right]\)| Step 2: Load W0:W2 with the next two packed instruction words to program. |  |
| :--- | :--- |
| MOV | \#<LSW0>, W0 |
| MOV | \#<MSB1: MSB0>, W1 |
| MOV | \#<LSW1>, W2 |

EXAMPLE 6-3: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

```
// C example using MPLAB XC16
unsigned long progAddr = 0xXXXXXX; // Address of word to program
unsigned int progData1L = 0XXXXX; // Data to program lower word of word 1
unsigned char progData1H = 0xXX; // Data to program upper byte of word 1
unsigned int progData2L = 0xXXXX; // Data to program lower word of word 2
unsigned char progData2H = 0xXX; // Data to program upper byte of word 2
//Set up NVMCON for word programming
NVMCON = 0x4001; // Initialize NVMCON
TBLPAG = 0xFA; // Point TBLPAG to the write latches
//Set up pointer to the first memory location to be written
NVMADRU = progAddr>>16; // Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF; // Initialize lower word of address
//Perform TBLWT instructions to write latches
__builtin_tblwtl(0, progData1L); // Write word 1 to address low word
__builtin_tblwth(0, progData2H); // Write word 1 to upper byte
__builtin_tblwtl(1, progData2L); // Write word 2 to address low word
 __builtin_tblwth(1, progData2H); // Write word 2 to upper byte
asm("DISI #5");
 // Block interrupts with priority <7 for next 5
 // instructions
__builtin_write_NVM();
 // XC16 function to perform unlock sequence and set WR
```


### 7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- $\overline{M C L R}:$ Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits, except for the BOR and POR ( $\mathrm{RCON}<1: 0>$ ) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.
The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

## FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM



REGISTER 7-1: RCON: RESET CONTROL REGISTER


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit $15 \quad$ TRAPR: Trap Reset Flag bit ${ }^{(1)}$
1 = A Trap Conflict Reset has occurred
0 = A Trap Conflict Reset has not occurred
bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit ${ }^{(1)}$
1 = An illegal opcode detection, an illegal address mode or Uninitialized $W$ register is used as an Address Pointer and caused a Reset
$0=$ An illegal opcode or Uninitialized W register Reset has not occurred
bit 13 SBOREN: Software Enable/Disable of BOR bit
1 = BOR is turned on in software
$0=B O R$ is turned off in software
bit 12 RETEN: Retention Mode Enable bit ${ }^{(2)}$
1 = Retention mode is enabled while device is in Sleep modes ( 1.2 V regulator enabled)
$0=$ Retention mode is disabled
bit 11-10 Unimplemented: Read as ' 0 '
bit $9 \quad$ CM: Configuration Word Mismatch Reset Flag bit ${ }^{(1)}$
1 = A Configuration Word Mismatch Reset has occurred
0 = A Configuration Word Mismatch Reset has not occurred
bit $8 \quad$ VREGS: Fast Wake-up from Sleep bit ${ }^{(3)}$
1 = Fast wake-up is disabled (uses less power)
0 = Fast wake-up is enabled (uses more power)
bit 7 EXTR: External Reset ( $\overline{\mathrm{MCLR}})$ Pin bit ${ }^{(1)}$
1 = A Master Clear (pin) Reset has occurred
0 = A Master Clear (pin) Reset has not occurred
bit $6 \quad$ SWR: Software Reset (Instruction) Flag bit ${ }^{(1)}$
1 = A RESET instruction has been executed
$0=$ A RESET instruction has not been executed
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
2: If the $\overline{\text { LPCFG }}$ Configuration bit is ' 1 ' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect. Retention mode preserves the SRAM contents during Sleep.
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
4: If the FWDTEN <1:0> Configuration bits are ' 11 ' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

## REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

bit $5 \quad$ SWDTEN: Software Enable/Disable of WDT bit ${ }^{(4)}$
$1=$ WDT is enabled
0 = WDT is disabled
bit $4 \quad$ WDTO: Watchdog Timer Time-out Flag bit ${ }^{(1)}$
1 = WDT time-out has occurred
0 = WDT time-out has not occurred
bit 3 SLEEP: Wake from Sleep Flag bit ${ }^{(1)}$
1 = Device has been in Sleep mode
0 = Device has not been in Sleep mode
bit 2 IDLE: Wake-up from Idle Flag bit ${ }^{(1)}$
1 = Device has been in Idle mode
$0=$ Device has not been in Idle mode
bit 1
BOR: Brown-out Reset Flag bit ${ }^{(1)}$
1 = A Brown-out Reset has occurred (also set after a Power-on Reset)
$0=$ A Brown-out Reset has not occurred
bit 0
POR: Power-on Reset Flag bit ${ }^{(1)}$
1 = A Power-on Reset has occurred
0 = A Power-on Reset has not occurred
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
2: If the $\overline{\text { LPCFG }}$ Configuration bit is ' 1 ' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect. Retention mode preserves the SRAM contents during Sleep.
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
4: If the FWDTEN $<1: 0>$ Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

TABLE 7-1: RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR $(R C O N<14>)$	Illegal Opcode or Uninitialized W Register Access	POR
CM $(R C O N<9>)$	Configuration Mismatch Reset	POR
EXTR $(R C O N<7>)$	$\overline{\text { MCLR Reset }}$	POR
SWR $(R C O N<6>)$	RESET Instruction	POR
WDTO $(R C O N<4>)$	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP $(R C O N<3>)$	PWRSAV \#0 Instruction	POR
IDLE $(R C O N<2>)$	PWRSAV \#1 Instruction	-
BOR $(R C O N<1>)$	POR, BOR	-
POR $(R C O N<0>)$	POR	

Note: All Reset flag bits may be set or cleared by the user software.

### 7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The NVMCON register is only affected by a POR.

### 7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.
The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

### 7.3 Brown-out Reset (BOR)

PIC24FJ1024GA610/GB610 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN $<1: 0>$ (FPOR<1:0>) Configuration bits.
When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in Section 33.1 "DC Characteristics".

### 7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700).

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC $<2: 0>$ Configuration bits
(FOSCSEL<2:0>)	

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	$\overline{\text { SYSRST Delay }}$	System Clock Delay	Notes
POR	EC	TPOR + TSTARTUP + TRST	-	1, 2, 3
	ECPLL	TPOR + TSTARTUP + TRST	Tlock	1, 2, 3, 5
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	1, 2, 3, 4
	XTPLL, HSPLL	TPOR + TSTARTUP + TRSt	Tost + Tlock	1, 2, 3, 4, 5
	FRC, OSCFDIV	TPOR + TSTARTUP + TRST	TfRC	1, 2, 3, 6, 7
	FRCPLL	TPOR + TSTARTUP + TRST	Tfrrc + Tlock	1, 2, 3, 5, 6
	LPRC	TPOR + Tstartup + Trst	TLPRC	1, 2, 3, 6
	DCO	TPOR + TSTARTUP + TRST	Tdco	1, 2, 3, 8
BOR	EC	Tstartup + Trst	-	2, 3
	ECPLL	TSTARTUP + TRST	Tlock	2, 3, 5
	XT, HS, SOSC	TSTARTUP + TRST	Tost	2, 3, 4
	XTPLL, HSPLL	Tstartup + Trst	Tost + Tlock	2, 3, 4, 5
	FRC, OSCFDIV	Tstartup + TRST	TfRC	2, 3, 6, 7
	FRCPLL	Tstartup + Trst	TFRC + Tlock	2, 3, 5, 6
	LPRC	Tstartup + TRST	TLPRC	2, 3, 6
	DCO	TPOR + TSTARTUP + TRST	Tdco	1, 2, 3, 8
$\overline{\mathrm{MCLR}}$	Any Clock	TRST	-	3
WDT	Any Clock	TRST	-	3
Software	Any clock	TRST	-	3
Illegal Opcode	Any Clock	TRST	-	3
Uninitialized W	Any Clock	TRST	-	3
Trap Conflict	Any Clock	TRST	-	3

Note 1: $\quad$ TPOR $=$ Power-on Reset Delay ( $10 \mu \mathrm{~s}$ nominal).
2: Tstartup = TvREG.
3: $\quad$ TRST $=$ Internal State Reset Time ( $2 \mu \mathrm{~s}$ nominal).
4: Tost = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
5: Tlock = PLL Lock Time.
6: TFRC and TLPRC = RC Oscillator Start-up Times.
7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.
8: TDCO = DCO Start-up and Stabilization Times.

### 7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially lowfrequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

### 7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

### 8.0 INTERRUPT CONTROLLER

Note 1: This data sheet summarizes the features of the PIC24FJ1024GA610/ GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24FJ1024GA610/GB610 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24FJ1024GA610/GB610 family CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies


### 8.1 Interrupt Vector Table

The PIC24FJ1024GA610/GB610 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains 6 non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).
Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

### 8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ1024GA610/GB610 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 8-1: PIC24FJ1024GA610/GB610 FAMILY INTERRUPT VECTOR TABLE

	Reset - GOTO Instruction
	Reset - GOTO Address
	Oscillator Fail Trap Vector
	Address Error Trap Vector
	Generic Hard Trap Vector
	Stack Error Trap Vector
	Math Error Trap Vector
	Reserved
	Generic Soft Trap Vector
	Reserved
	Interrupt Vector 0
	Interrupt Vector 1
	:
	:
	:
	Interrupt Vector 52
	Interrupt Vector 53
	Interrupt Vector 54
	:
	:
	:
	Interrupt Vector 116
	Interrupt Vector 117

$0 \times 000000$
$0 \times 000002$
$0 \times 000004$
$0 \times 000006$
$0 \times 000008$
$0 \times 00000 \mathrm{~A}$
$0 \times 00000 \mathrm{C}$
$0 \times 00000 \mathrm{E}$
$0 \times 000010$
$0 \times 000012$
$0 \times 000014$
$0 \times 000016$
$:$
$:$
0
$0 \times 00007 \mathrm{C}$
$0 \times 00007 \mathrm{E}$
$0 \times 000080$
$:$
$:$
0
$0 \times 0000 \mathrm{FC}$
$0 \times 0000 \mathrm{FE}$

TABLE 8-1: INTERRUPT VECTOR DETAILS

Interrupt Source	$\begin{gathered} \text { IRQ } \\ \# \end{gathered}$	IVT Address	Interrupt Bit Location		
			Flag	Enable	Priority
Highest Natural Order Priority					
INT0 - External Interrupt 0	0	000014h	IFS0<0>	IEC0<0>	INTOInterrupt
IC1 - Input Capture 1	1	000016h	IFS0<1>	IEC0<1>	IC1Interrupt
OC1 - Output Compare 1	2	000018h	IFS0<2>	IEC0<2>	OC1Interrupt
T1 - Timer1	3	00001Ah	IFS0<3>	IEC0<3>	T1Interrupt
DMA0 - Direct Memory Access 0	4	00001Ch	IFS0<4>	IEC0<4>	DMAOInterrupt
IC2 - Input Capture 2	5	00001Eh	IFS0<5>	IEC0<5>	IC2Interrupt
OC2 - Output Compare 2	6	000020h	IFS0<6>	IEC0<6>	OC2Interrupt
T2 - Timer2	7	000022h	IFS0<7>	IEC0<7>	T2Interrupt
T3- Timer3	8	000024h	IFS0<8>	IEC0<8>	T3Interrupt
SPI1 - SPI1 General	9	000026h	IFS0<9>	IEC0<9>	SPI1Interrupt
SPI1TX - SPI1 Transfer Done	10	000028h	IFS0<10>	IEC0<10>	SPI1TXInterrupt
U1RX - UART1 Receiver	11	00002Ah	IFS0<11>	IEC0<11>	U1RXInterrupt
U1TX - UART1 Transmitter	12	00002Ch	IFS0<12>	IEC0<12>	U1TXInterrupt
ADC1 - A/D Converter 1	13	00002Eh	IFS0<13>	IEC0<13>	ADC1Interrupt
DMA1 - Direct Memory Access 1	14	000030h	IFS0<14>	IEC0<14>	DMA1Interrupt
NVM - NVM Program/Erase Complete	15	000032h	IFS0<15>	IEC0<15>	NVMInterrupt
SI2C1-I2C1 Slave Events	16	000034h	IFS1<0>	IEC1<0>	SI2C1Interrupt
MI2C1 - I2C1 Master Events	17	000036h	IFS1<1>	IEC1<1>	MI2C1 Interrupt
Comp - Comparator	18	000038h	IFS1<2>	IEC1<2>	CompInterrupt
IOC - Interrupt-on-Change Interrupt	19	00003Ah	IFS1<3>	IEC1<3>	IOCInterrupt
INT1 - External Interrupt 1	20	00003Ch	IFS1<4>	IEC1<4>	INT1 Interrupt
-	21	-	-	-	-
CCP5 - Capture/Compare 5	22	000040h	IFS1<6>	IEC1<6>	CCP5Interrupt
CCP6 - Capture/Compare 6	23	000042h	IFS1<7>	IEC1<7>	CCP6Interrupt
DMA2 - Direct Memory Access 2	24	000044h	IFS1<8>	IEC1<8>	DMA2Interrupt
OC3 - Output Compare 3	25	000046h	IFS1<9>	IEC1<9>	OC3Interrupt
OC4 - Output Compare 4	26	000048h	IFS1<10>	IEC1<10>	OC4Interrupt
T4 - Timer4	27	00004Ah	IFS1<11>	IEC1<11>	T4Interrupt
T5 - Timer5	28	00004Ch	IFS1<12>	IEC1<12>	T5Interrupt
INT2 - External Interrupt 2	29	00004Eh	IFS1<13>	IEC1<13>	INT2Interrupt
U2RX - UART2 Receiver	30	000050h	IFS1<14>	IEC1<14>	U2RXInterrupt
U2TX - UART2 Transmitter	31	000052h	IFS1<15>	IEC1<15>	U2TXInterrupt
SPI2 - SPI2 General	32	000054h	IFS2<0>	IEC2<0>	SPI2Interrupt
SPI2TX - SPI2 Transfer Done	33	000056h	IFS2<1>	IEC2<1>	SPI2TXInterrupt
-	34	-	-	-	-
-	35	-	-	-	-
DMA3 - Direct Memory Access 3	36	00005Ch	IFS2<4>	IEC2<4>	DMA3Interrupt
IC3 - Input Capture 3	37	00005Eh	IFS2<5>	IEC2<5>	IC3Interrupt
IC4 - Input Capture 4	38	000060h	IFS2<6>	IEC2<6>	IC4Interrupt
IC5 - Input Capture 5	39	000062h	IFS2<7>	IEC2<7>	IC5Interrupt
IC6 - Input Capture 6	40	000064h	IFS2<8>	IEC2<8>	IC6Interrupt

TABLE 8-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	$\begin{gathered} \text { IRQ } \\ \# \end{gathered}$	IVT Address	Interrupt Bit Location		
			Flag	Enable	Priority
OC5 - Output Compare 5	41	000066h	IFS2<9>	IEC2<9>	OC5Interrupt
OC6 - Output Compare 6	42	000068h	IFS2<10>	IEC2<10>	OC6Interrupt
CCT3 - Capture/Compare Timer3	43	00006Ah	IFS2<11>	IEC2<11>	CCT3Interrupt
CCT4 - Capture/Compare Timer4	44	00006Ch	IFS2<12>	IEC2<12>	CCT4Interrupt
PMP - Parallel Master Port	45	00006Eh	IFS2<13>	IEC2<13>	PMPInterrupt
DMA4 - Direct Memory Access 4	46	000070h	IFS2<14>	IEC2<14>	DMA4Interrupt
CCT5 - Capture/Compare Timer5	47	000072h	IFS2<15>	IEC2<15>	CCT5Interrupt
CCT6 - Capture/Compare Timer6	48	000074h	IFS3<0>	IEC3<0>	CCT6Interrupt
SI2C2 - I2C2 Slave Events	49	000076h	IFS3<1>	IEC3<1>	SI2C2Interrupt
MI2C2 - I2C2 Master Events	50	000078h	IFS3<2>	IEC3<2>	MI2C2Interrupt
CCT7 - Capture/Compare Timer7	51	00007Ah	IFS3<3>	IEC3<3>	CCT7Interrupt
-	52	-	-	-	-
INT3 - External Interrupt 3	53	00007Eh	IFS3<5>	IEC3<5>	INT3Interrupt
INT4 - External Interrupt 4	54	000080h	IFS3<6>	IEC3<6>	INT4Interrupt
-	55	-	-	-	-
-	56	-	-	-	-
-	57	-	-	-	-
SPI1RX - SPI1 Receive Done	58	000088h	IFS3<10>	IEC3<10>	SPI1RXInterrupt
SPI2RX - SPI2 Receive Done	59	00008Ah	IFS3<11>	IEC3<11>	SPI2RXInterrupt
SPI3RX - SPI3 Receive Done	60	00008Ch	IFS3<12>	IEC3<12>	SPI3RXInterrupt
DMA5 - Direct Memory Access 5	61	00008Eh	IFS3<13>	IEC3<13>	DMA5Interrupt
RTCC - Real-Time Clock and Calendar	62	000090h	IFS3<14>	IEC3<14>	RTCCInterrupt
CCP1 - Capture/Compare 1	63	000092h	IFS3<15>	IEC3<15>	CCP1Interrupt
CCP2 - Capture/Compare 2	64	000094h	IFS4<0>	IEC4<0>	CCP2Interrupt
U1E - UART1 Error	65	000096h	IFS4<1>	IEC4<1>	U1ErrInterrupt
U2E - UART2 Error	66	000098h	IFS4<2>	IEC4<2>	U2Errinterrupt
CRC - Cyclic Redundancy Check	67	00009Ah	IFS4<3>	IEC4<3>	CRCInterrupt
DMA6 - Direct Memory Access 6	68	00009Ch	IFS4<4>	IEC4<4>	DMA6Interrupt
DMA7 - Direct Memory Access 7	69	00009Eh	IFS4<5>	IEC4<5>	DMA7Interrupt
SI2C3- I2C3 Slave Events	70	0000A0h	IFS4<6>	IEC4<6>	SI2C3Interrupt
MI2C3-I2C3 Master Events	71	0000A2h	IFS4<7>	IEC4<7>	MI2C3Interrupt
HLVD - High/Low-Voltage Detect	72	0000A4h	IFS4<8>	IEC4<8>	HLVDInterrupt
CCP7 - Capture/Compare 7	73	0000A6h	IFS4<9>	IEC4<9>	CCP7Interrupt
-	74	74	-	-	-
-	75	75	-	-	-
-	76	76	-	-	-
CTMU - Interrupt	77	0000AEh	IFS4<13>	IEC4<13>	CTMUInterrupt
-	78	78	-	-	-
-	79	79	-	-	-
-	80	80	-	-	-
U3E - UART3 Error	81	0000B6h	IFS5<1>	IEC5<1>	U3Errinterrupt
U3RX - UART3 Receiver	82	0000B8h	IFS5<2>	IEC5<2>	U3RXInterrupt
U3TX - UART3 Transmitter	83	0000BAh	IFS5<3>	IEC5<3>	U3TXInterrupt

TABLE 8-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	$\begin{gathered} \text { IRQ } \\ \# \end{gathered}$	IVT Address	Interrupt Bit Location		
			Flag	Enable	Priority
I2C1BC - I2C1 Bus Collision	84	0000BCh	IFS5<4>	IEC5<4>	I2C1BCInterrupt
I2C2BC - I2C2 Bus Collision	85	0000BEh	IFS5<5>	IEC5<5>	I2C2BCInterrupt
USB1 - USB1 Interrupt	86	0000C0h	IFS5<6>	IEC5<6>	USB1Interrupt
U4E - UART4 Error	87	0000C2h	IFS5<7>	IEC5<7>	U4ErrInterrupt
U4RX - UART4 Receiver	88	0000C4h	IFS5<8>	IEC5<8>	U4RXInterrupt
U4TX - UART4 Transmitter	89	0000C6h	IFS5<9>	IEC5<9>	U4TXInterrupt
SPI3 - SPI3 General	90	0000C8h	IFS5<10>	IEC5<10>	SPI3Interrupt
SPI3TX - SPI3 Transfer Done	91	0000CAh	IFS5<11>	IEC5<11>	SPI3TXInterrupt
-	92	92	-	-	-
-	93	93	-	-	-
CCP3 - Capture/Compare 3	94	0000D0h	IFS5<14>	IEC5<14>	CCP3Interrupt
CCP4 - Capture/Compare 4	95	0000D2h	IFS5<15>	IEC5<15>	CCP4Interrupt
CLC1 - Configurable Logic Cell 1	96	0000D4h	IFS6<0>	IEC6<0>	CLC1Interrupt
CLC2 - Configurable Logic Cell 2	97	0000D6h	IFS6<1>	IEC6<1>	CLC2Interrupt
CLC3 - Configurable Logic Cell 3	98	0000D8h	IFS6<2>	IEC6<2>	CLC3Interrupt
CLC4 - Configurable Logic Cell 4	99	0000DAh	IFS6<3>	IEC6<3>	CLC4Interrupt
-	100	-	-	-	-
CCT1 - Capture/Compare Timer1	101	0000DEh	IFS6<5>	IEC6<5>	CCT1Interrupt
CCT2 - Capture/Compare Timer2	102	0000E0h	IFS6<6>	IEC6<6>	CCT2Interrupt
-	103	-	-	-	-
-	104	-	-	-	-
-	105	-	-	-	-
FST - FRC Self-Tuning Interrupt	106	0000E8h	IFS6<10>	IEC6<10>	FSTInterrupt
-	107	-	-	-	-
-	108	-	-	-	-
I2C3BC - I2C3 Bus Collision	109	0000EEh	IFS6<13>	IEC6<13>	I2C3BCInterrupt
RTCCTS - Real-Time Clock Timestamp	110	0000F0h	IFS6<14>	IEC6<14>	RTCCTSInterrupt
U5RX - UART5 Receiver	111	0000F2h	IFS6<15>	IEC6<15>	U5RXInterrupt
U5TX - UART5 Transmitter	112	0000F4h	IFS7<0>	IEC7<0>	U5TXInterrupt
U5E - UART5 Error	113	0000F6h	IFS7<1>	IEC7<1>	U5Errinterrupt
U6RX - UART6 Receiver	114	0000F8h	IFS7<2>	IEC7<2>	U6RXInterrupt
U6TX - UART6 Transmitter	115	0000FAh	IFS7<3>	IEC7<3>	U6TXInterrupt
U6E - UART6 Error	116	0000FCh	IFS7<4>	IEC7<4>	U6Errinterrupt
JTAG - JTAG	117	0000FEh	IFS7<5>	IEC7<5>	JTAGInterrupt

### 8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.
Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

### 8.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools


### 8.4 Interrupt Control and Status Registers

PIC24FJ1024GA610/GB610 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- INTTREG


### 8.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2 and INTCON4.
INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.
The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).
The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

### 8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

### 8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

### 8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

### 8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.
The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0 . Thus, the INTOIF bit is found in IFSO<0>, the INTOIE bit in IECO<0> and the INTOIP bits in the first position of IPC0 (IPC0<2:0>).

### 8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.
All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.


## REGISTER 8-1: SR: ALU STATUS REGISTER ${ }^{(1)}$

U-0	R/W-0						
-	-	-	-	-	-	-	DC
bit 15							


$\mathrm{R} / \mathrm{W}-0^{(3)}$	R/W-0 ${ }^{(3)}$	$\mathrm{R} / \mathrm{W}-0^{(3)}$	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ${ }^{(2)}$	$\mathrm{IPL1} 1^{(2)}$	IPLO ${ }^{(2)}$	RA	N	OV	Z	C
bit $7 \times$ bit							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-5
IPL<2:0>: CPU Interrupt Priority Level Status bits ${ }^{(2,3)}$
111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)
Note 1: For complete register details, see Register 3-1.
2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 $=1$.
3: The IPL<2:0> Status bits are read-only when the NSTDIS bit $($ INTCON1<15>) $=1$.

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER ${ }^{(1)}$

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	U-0	U-0	U-0	R/C-0	R/W-1	U-0	U-0
-	-	-	-	$1 \mathrm{PL3}{ }^{(2)}$	PSV	-	-


Legend:	$C=$ Clearable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ '= Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown


bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ${ }^{(2)}$
	$1=$ CPU Interrupt Priority Level is greater than 7         bit 2
PSV: Interrupt Priority Level is 7 or less	
bit 1-0	Unimplemented: Read as ' 0 '

Note 1: For complete register details, see Register 3-2.
2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1 .

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	-	-	-	-	-	-	-
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
-	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-
bit 7							bit 0

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15 NSTDIS: Interrupt Nesting Disable bit
1 = Interrupt nesting is disabled
$0=$ Interrupt nesting is enabled
bit 14-5 Unimplemented: Read as ' 0 '
bit 4 MATHERR: Math Error Status bit
1 = Math error trap has occurred 0 = Math error trap has not occurred
bit 3 ADDRERR: Address Error Trap Status bit
1 = Address error trap has occurred
0 = Address error trap has not occurred
bit 2 STKERR: Stack Error Trap Status bit
1 = Stack error trap has occurred
0 = Stack error trap has not occurred
bit 1 OSCFAIL: Oscillator Failure Trap Status bit
1 = Oscillator failure trap has occurred
$0=$ Oscillator failure trap has not occurred
bit 0
Unimplemented: Read as ' 0 '

## REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2


bit 15 GIE: Global Interrupt Enable bit
1 = Interrupts and associated interrupt enable bits are enabled
0 = Interrupts are disabled, but traps are still enabled
bit 14 DISI: DISI Instruction Status bit
$1=$ DISI instruction is active
$0=$ DISI instruction is not active
bit 13 SWTRAP: Software Trap Status bit
1 = Software trap is enabled
$0=$ Software trap is disabled
bit 12-9 Unimplemented: Read as ' 0 '
bit 8 AIVTEN: Alternate Interrupt Vector Table Enable bit
1 = Use Alternate Interrupt Vector Table (if enabled in Configuration bits)
0 = Use standard Interrupt Vector Table (default)
bit 7-5 Unimplemented: Read as ' 0 '
bit 4 INT4EP: External Interrupt 4 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
$0=$ Interrupt on positive edge
bit 3 INT3EP: External Interrupt 3 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
$0=$ Interrupt on positive edge
bit $0 \quad$ INTOEP: External Interrupt 0 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
$0=$ Interrupt on positive edge

## REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	U-0	U-0	U-0	U-0	U-0	R/C-0	R/C-0
-	-	-	-	-	-	ECCDBE	SGHT
bit 7				bit 0			


Legend:	$C=$ Clearable bit			
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '		
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared	$\quad x=$ Bit is unknown	
:---				

bit 15-2 Unimplemented: Read as ' 0 '
bit 1 ECCDBE: ECC Double-Bit Error Trap bit
1 = ECC Double-Bit Error trap has occurred
0 = ECC Double-Bit Error trap has not occurred
bit 0
SGHT: Software Generated Hard Trap Status bit
1 = Software generated hard trap has occurred
$0=$ Software generated hard trap has not occurred

REGISTER 8-6: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	-	VHOLD	-	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
R-0							
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit $15 \quad$ CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority
$0=$ No interrupt request is unacknowledged
bit 14
Unimplemented: Read as ' 0 '
bit 13 VHOLD: Vector Number Capture Configuration bit
1 = The VECNUMx bits contain the value of the highest priority pending interrupt
$0=$ The VECNUMx bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12
Unimplemented: Read as ' 0 '
bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits
1111 = CPU Interrupt Priority Level is 15
-
-
$0001=$ CPU Interrupt Priority Level is 1
0000 = CPU Interrupt Priority Level is 0
bit 7-0 VECNUM<7:0>: Vector Number of Pending Interrupt bits
$11111111=255$, Reserved; do not use
-
-
-
$00001001=9$, IC1 - Input Capture 1 $00001000=8$, INT0 - External Interrupt 0 00000111 = 7, Reserved; do not use $00000110=6$, Generic soft error trap $00000101=5$, Reserved; do not use $00000100=4$, Math error trap $00000011=3$, Stack error trap $00000010=2$, Generic hard trap 00000001 = 1, Address error trap $00000000=0$, Oscillator fail trap

### 9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The oscillator system for the PIC24FJ1024GA610/ GB610 family devices has the following features:

- A Total of Five External and Internal Oscillator Options as Clock Sources, providing 12 Different Clock modes
- An On-Chip USB PLL Block to provide a Stable 48 MHz Clock for the USB module, as well as a Range of Frequency Options for the System Clock
- Software-Controllable Switching Between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable System Clock Output for Synchronizing External Hardware
A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ1024GA610/GB610 FAMILY CLOCK DIAGRAM


### 9.1 CPU Clocking Scheme

The system clock source can be provided by one of five sources:

- Primary Oscillator (POSC) on the OSCl and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Digitally Controlled Oscillator (DCO)
- Fast Internal RC (FRC) Oscillator
- Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 96 MHz USB module PLL clock, or a $4 x, 6 x$ or $8 x$ PLL clock. If the 96 MHz PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. If the $4 x, 6 x$ or $8 x$ PLL multipliers are selected, the PLL clock can be used directly as a system clock. Refer to Section 9.6 "Oscillator Modes and USB Operation" for additional information. The internal FRC provides an 8 MHz clock source.

Each clock source (POSC, SOSC, DCO, FRC and LPRC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).
The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

### 9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 30.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a Power-on Reset. The OSCFDIV clock source is the default (unprogrammed) selection; the default input source to the OSCFDIV divider is the FRC clock source. Other oscillators may be chosen by programming these bit locations.
The Configuration bits allow users to choose between the various clock modes shown in Table 9-1.

### 9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Oscillator with Frequency Division   (OSCFDIV)	Internal/External	11	111	$\mathbf{1 , 2 , 3}$
Digitally Controlled Oscillator (DCO)	Internal	11	110	$\mathbf{3}$
Low-Power RC Oscillator (LPRC)	Internal	11	101	$\mathbf{3}$
Secondary (Timer1) Oscillator   (SOSC)	Secondary	11	100	$\mathbf{3}$
Primary Oscillator (XT) with PLL   Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL   Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	00	010	
Primary Oscillator (EC)	Primary	11	001	$\mathbf{3}$
Fast RC Oscillator with PLL Module   (FRCPLL)	Internal	11	000	$\mathbf{3}$
Fast RC Oscillator (FRC)	Internal	110		

Note 1: The input oscillator to the OSCFDIV Clock mode is determined by the RCDIV<2:0> (CLKDIV<10:8) bits. At POR, the default value selects the FRC module.
2: This is the default oscillator mode for an unprogrammed (erased) device.
3: OSCO pin function is determined by the OSCIOFCN Configuration bit.

### 9.3 Control Registers

The operation of the oscillator is controlled by five Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN
- OSCDIV
- OSCFDIV

In addition, two registers are used to control the DCO:

- DCOCON
- DCOTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See Section 9.4 "Clock Switching Operation" for more information.

The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5 \%$. It also controls the FRC self-tuning features described in Section 9.5 "FRC Active Clock Tuning".
The OSCDIV and OSCFDIV registers provide control for the system Oscillator Frequency Divider.

### 9.3.1 DCO OVERVIEW

The DCO (Digitally Controlled Oscillator) is a lowpower alternative to the FRC. It can generate a wider selection of operating frequencies and can be trimmed to correct process variations if an exact frequency is required. However, the DCO is not designed for use with USB applications and cannot meet USB timing restrictions.

## REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	$\mathrm{R}-\mathrm{x}^{(1)}$	$\mathrm{R}-\mathrm{x}^{(1)}$	$\mathrm{R}-\mathrm{x}^{(1)}$	U-0	R/W-x ${ }^{(1)}$	R/W-x ${ }^{(1)}$	R/W-x ${ }^{(1)}$
-	COSC2	COSC1	COSC0	-	NOSC2	NOSC1	NOSC0
							bit 8


R/W-0	R/W-0	$\mathrm{R}-0^{(3)}$	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ${ }^{(2)}$	LOCK	-	CF	POSCEN	SOSCEN	OSWEN
bit 7 bit 0							


Legend:	CO = Clearable Only bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

```
bit 15 Unimplemented: Read as '0'
bit 14-12 COSC<2:0>: Current Oscillator Selection bits (1)
 111 = Oscillator with Frequency Divider (OSCFDIV)
 1 1 0 = ~ D i g i t a l l y ~ C o n t r o l l e d ~ O s c i l l a t o r ~ (D C O)
 101 = Low-Power RC Oscillator (LPRC)
 100 = Secondary Oscillator (SOSC)
 011 = Primary Oscillator with PLL module (XTPLL, ECPLL)
 010 = Primary Oscillator (XT, HS, EC)
 001 = Fast RC Oscillator with PLL module (FRCPLL)
 000 = Fast RC Oscillator (FRC)
bit 11 Unimplemented: Read as '0'
bit 10-8 NOSC<2:0>: New Oscillator Selection bits (1)
 111 = Oscillator with Frequency Divider (OSCFDIV)
 110 = Digitally Controlled Oscillator (DCO)
 101 = Low-Power RC Oscillator (LPRC)
 100 = Secondary Oscillator (SOSC)
 011 = Primary Oscillator with PLL module (XTPLL, ECPLL)
 010 = Primary Oscillator (XT, HS, EC)
 001 = Fast RC Oscillator with PLL module (FRCPLL)
 000 = Fast RC Oscillator (FRC)
bit 7 CLKLOCK: Clock Selection Lock Enable bit
 If FSCM is Enabled (FCKSM<1:0> = 00):
 1 = Clock and PLL selections are locked
 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
 If FSCM is Disabled (FCKSM<1:0> =1x):
 Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit \(6 \quad\) IOLOCK: I/O Lock Enable bit \({ }^{(2)}\)
\(1=1 / O\) lock is active
\(0=1 / O\) lock is not active
bit 5 LOCK: PLL Lock Status bit \({ }^{(3)}\)
1 = PLL module is in lock or PLL module start-up timer is satisfied
\(0=\) PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit \(4 \quad\) Unimplemented: Read as ' 0 '
Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is ' 1 ', once the IOLOCK bit is set, it cannot be cleared.
3: This bit also resets to ' 0 ' during any valid clock switch or whenever a non-PLL Clock mode is selected.
```


## REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3	CF: Clock Fail Detect bit
	$1=\mathrm{FSCM}$ has detected a clock failure
	$0=$ No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode   0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables Secondary Oscillator
	0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	$1=$ Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits   $0=$ Oscillator switch is complete

Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is ' 1 ', once the IOLOCK bit is set, it cannot be cleared.
3: This bit also resets to ' 0 ' during any valid clock switch or whenever a non-PLL Clock mode is selected.

## REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2	DOZE1	DOZE0	DOZEN $^{(1)}$	RCDIV2	RCDIV1	RCDIV0
bit 15				bit 8			


R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	PLLEN	-	-	-	-	-
bit 7			bit 0				

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplement	as '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$

bit 15 ROI: Recover on Interrupt bit
1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1
0 = Interrupts have no effect on the DOZEN bit
bit 14-12 DOZE<2:0>: CPU Peripheral Clock Ratio Select bits
$111=1: 128$
$110=1: 64$
$101=1: 32$
$100=1: 16$
$011=1: 8$ (default)
$010=1: 4$
$001=1: 2$
000 = 1:1
bit 11 DOZEN: Doze Enable bit ${ }^{(1)}$
1 = DOZE<2:0> bits specify the CPU peripheral clock ratio
$0=$ CPU peripheral clock ratio is set to $1: 1$
bit 10-8 RCDIV<2:0>: System Frequency Divider Clock Source Select bits
$000=$ Fast RC Oscillator (FRC)
001 = Fast RC Oscillator (FRC) with PLL module (FRCPLL)
010 = Primary Oscillator (XT, HS, EC)
011 = Primary Oscillator (XT, HS, EC) with PLL module (XTPLL, HSPLL, ECPLL)
100 = Secondary Oscillator (SOSC)
101 = Low-Power RC Oscillator (LPRC)
110 = Digitally Controlled Oscillator (DCO)
111 = Reserved; do not use
bit 7-6 CPDIV<1:0>: System Clock Select bits (postscaler select from $96 \mathrm{MHz} \mathrm{PLL}, 32 \mathrm{MHz}$ clock branch)
$11=4 \mathrm{MHz}$ (divide-by-8) ${ }^{(2)}$
$10=8 \mathrm{MHz}\left(\right.$ divide-by-4) ${ }^{(2)}$
$01=16 \mathrm{MHz}$ (divide-by-2)
$00=32 \mathrm{MHz}$ (divide-by-1)
bit 5 PLLEN: USB PLL Enable bit
$1=\mathrm{PLL}$ is always active
$0=$ PLL is only active when a PLL Oscillator mode is selected (OSCCON<14:12> = 011 or 001 )
bit 4-0 Unimplemented: Read as ' 0 '
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.
2: This setting is not allowed while the USB module is enabled.

## REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

R/W-0	U-0	R/W-0	R/W-1	R-0	R/W-0	R-0	R/W-0
STEN	-	STSIDL	STSRC $^{(1)}$	STLOCK	STLPOL	STOR	STORPOL
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	TUN5 ${ }^{(2)}$	TUN4 ${ }^{(2)}$	TUN3 ${ }^{(2)}$	TUN2 ${ }^{(2)}$	TUN1 ${ }^{(2)}$	TUN0 ${ }^{(2)}$
bit 7 bit 0							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

## bit 15 STEN: FRC Self-Tune Enable bit

1 = FRC self-tuning is enabled; TUNx bits are controlled by hardware
$0=$ FRC self-tuning is disabled; application may optionally control the TUNx bits
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 STSIDL: FRC Self-Tune Stop in Idle bit
1 = Self-tuning stops during Idle mode
$0=$ Self-tuning continues during Idle mode
bit 12 STSRC: FRC Self-Tune Reference Clock Source bit ${ }^{(1)}$
1 = FRC is tuned to approximately match the USB host clock tolerance
$0=$ FRC is tuned to approximately match the 32.768 kHz SOSC tolerance
bit 11 STLOCK: FRC Self-Tune Lock Status bit
1 = FRC accuracy is currently within $\pm 0.2 \%$ of the STSRC reference accuracy
$0=$ FRC accuracy may not be within $\pm 0.2 \%$ of the STSRC reference accuracy
bit 10 STLPOL: FRC Self-Tune Lock Interrupt Polarity bit
1 = A self-tune lock interrupt is generated when STLOCK is ' 0 '
0 = A self-tune lock interrupt is generated when STLOCK is ' 1 '
bit 9 STOR: FRC Self-Tune Out of Range Status bit
$1=$ STSRC reference clock error is beyond the range of TUN $<5: 0>$; no tuning is performed
$0=$ STSRC reference clock is within the tunable range; tuning is performed
bit 8 STORPOL: FRC Self-Tune Out of Range Interrupt Polarity bit
1 = A self-tune out of range interrupt is generated when STOR is ' 0 '
$0=$ A self-tune out of range interrupt is generated when STOR is ' 1 '
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits ${ }^{(2)}$
011111 = Maximum frequency deviation
011110 =
-••
000001 =
000000 = Center frequency, oscillator is running at factory calibrated frequency
111111 =
-••
$100001=$
$100000=$ Minimum frequency deviation
Note 1: Use of either clock tuning reference source has specific application requirements. See Section 9.5 "FRC Active Clock Tuning" for details.
2: $\quad$ These bits are read-only when $\operatorname{STEN}=1$.

REGISTER 9-4: DCOTUN: DIGITALLY CONTROLLED OSCILLATOR TUNE REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15			bit 8				


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-		DCOTUN $<5: 0>^{(1)}$				
bit 7					bit 0		

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown


bit $15-6$	Unimplemented: Read as ‘ 0 '
bit $5-0$	DCOTUN $<5: 0>$ : DCO Tuning bits ${ }^{(1)}$
	$011111=$ Maximum frequency $(+4.65 \%$ adjustment $)$
	- $011110=$
	-
	$000001=$ Increase frequency by a single step $(+0.15 \%$ adjustment $)$
	$000000=$ Center frequency, oscillator is running at calibrated frequency
	$111111=$ Decrease frequency by a single step $(-0.15 \%$ adjustment $)$
	-
	-
	$100001=$
	$100000=$ Minimum frequency $(-4.80 \%$ adjustment $)$

Note 1: Frequency step-size will be greater for 15 MHz and 30 MHz options ( $\pm 9.2 \%$ adjustment range).

REGISTER 9-5: DCOCON: DIGITALLY CONTROLLED OSCILLATOR ENABLE REGISTER

U-0	U-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
		DCOEN		DCOFSEL3	DCOFSEL2	DCOFSEL1	DCOFSEL0
bit 15					bit 8		


U-0							
-	-	-	-	-	-	-	-
bit 7							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	0 ' = Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13 DCOEN: DCO Enable bit
1 = DCO continues to operate during Sleep mode
$0=$ DCO is inactive during Sleep mode
bit $12 \quad$ Unimplemented: Read as ' 0 '
bit 11-8 DCOFSEL<3:0>: DCO Frequency Select bits
$0000=1 \mathrm{MHz}$
$0001=2 \mathrm{MHz}$
$0010=3 \mathrm{MHz}$
$0011=4 \mathrm{MHz}$
$0100=5 \mathrm{MHz}$
$0101=6 \mathrm{MHz}$
$0110=7 \mathrm{MHz}$
$0111=8 \mathrm{MHz}$ (most accurate oscillator setting)
1000 = Reserved; do not use
1001 = Reserved; do not use
1010 = Reserved; do not use
1011 = Reserved; do not use
1100 = Reserved; do not use
1101 = Reserved; do not use
$1110=15 \mathrm{MHz}$
$1111=30 \mathrm{MHz}$
bit 7-0 Unimplemented: Read as '0’

## REGISTER 9-6: OSCDIV: OSCILLATOR DIVISOR REGISTER

U-0	R/W-0						
-			DIV<14:8>				
bit 15						bit 8	


R/W-0	R/W-1						
		DIV<7:0>					
bit 7				bit 0			

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared	$\quad \mathrm{x}=$ Bit is unknown	
:---				


bit 15	Unimplemented: Read as ' 0 '
bit 14-0	DIV<14:0>: Reference Clock Divider bits
	Specifies the $1 / 2$ period of the reference clock in the source clocks (ex: Period of ref_clk_output = [Reference Source * 2] * DIV<14:0>).
	111111111111111 = Oscillator frequency divided by 65,534 (32,767 * 2)
	111111111111110 = Oscillator frequency divided by 65,532 (32,766 * 2)
	-
	-
	-
	000000000000011 = Oscillator frequency divided by 6 (3 * 2)
	$000000000000010=$ Oscillator frequency divided by 4 (2 * 2)
	$000000000000001=$ Oscillator frequency divided by 2 (1 * 2) (default)
	000000000000000 Oscillator frequency is unchanged (no divider)

REGISTER 9-7: OSCFDIV: OSCILLATOR FRACTIONAL DIVISOR REGISTER ${ }^{(1)}$

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | TRIM<0:7> |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


R/W-0	U-0						
TRIM8	-	-	-	-	-	-	-
bit 7							
bit 0							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown


bit 15-7	TRIM<0:8>: Trim bits
	Provides fractional additive to the DIV<14:0> value for the $1 / 2$ period of the oscillator clock. 0000_0000_0 = 0/512 (0.0) divisor added to DIVx value
	0000_0000_1 = 1/512 (0.001953125) divisor added to DIVx value
	0000_0001_0 = 2/512 (0.00390625) divisor added to DIVx value
	-
	-
	-
	$100000000=256 / 512(0.5000)$ divisor added to DIVx value
	-
	-
	-
	1111_1111_0 = 510/512 (0.99609375) divisor added to DIVx value
	1111_1111_1 = 511/512 (0.998046875) divisor added to DIVx value
bit 6-0	Unimplemented: Read as ' 0 '

Note 1: TRIMx values greater than zero are ONLY valid when DIVx values are greater than zero.

### 9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the five clock sources (POSC, SOSC, FRC, DCO and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

### 9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in FOSC must be programmed to '0'. (Refer to Section 30.1 "Configuration Bits" for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.
The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits ( $O S C C O N<14: 12>$ ) will reflect the clock source selected by the FNOSCx Configuration bits.
The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at ' 0 ' at all times.

### 9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
2. If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

1. Disable interrupts during the OSCCON register unlock and write sequence.
2. Execute the unlock sequence for the OSCCON high byte by writing 78 h and 9 Ah to OSCCON<15:8> in two back-to-back instructions.
3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
4. Execute the unlock sequence for the OSCCON low byte by writing 46 h and 57 h to OSCCON<7:0> in two back-to-back instructions.
5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
6. Continue to execute code that is not clock-sensitive (optional).
7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
8. Check to see if OSWEN is ' 0 '. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

## EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

```
;Place the new oscillator selection in W0
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOv.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOv.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0
```


### 9.5 FRC Active Clock Tuning

PIC24FJ1024GA610/GB610 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the "USB 2.0 Specification" regarding full-speed USB devices.

Note: The self-tune feature maintains sufficient accuracy for operation in USB Device mode. For applications that function as a USB host, a high-accuracy clock source $( \pm 0.05 \%)$ is still required.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC $=0$, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

> Note: To use the USB as a reference clock tuning source (STSRC = 1), the microcontroller must be configured for USB device operation and connected to a non-suspended USB host or hub port.
> If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than $0.2 \%$ in either direction, or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than $1.5 \%$ ). The STLOCK and STOR status bits ( $O S C T U N<11,9>$ ) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

[^6]
### 9.6 Oscillator Modes and USB Operation

The PLL block can generate a wide range of clocks used for both parts with USB functionality (PIC24FJ1024GB610 family) and non-USB functionality (PIC24FJ1024GA610 family). All of the available PLL modes are available for both families whether or nor USB is enabled or present.
When used in a USB application, the 48 MHz internal clock must be running at all times which requires the VCO of the PLL to run at 96 MHz . This, in turn, forces the system clock (that drives the CPU and peripherals) to route the 96 MHz through a fixed divide-by-3 block (generating 32 MHz ) and then through a selection of four fixed divisors ('postscaler'). The postscaler output becomes the system clock.
The input to the PLL VCO must be 4 MHz when used in a USB application, which restricts the frequency input sources to be used with a small set of fixed frequency dividers (see Figure 9-2). For example, if a 12 MHz crystal is used, the PLLMODE<3:0> Configuration bits must be set for divide-by-3 to generate the required 4 MHz . A popular baud rate crystal is 11.0592 MHz , but this value cannot be used for USB operation as there are no divisors available to generate 4 MHz exactly. See Table 9-3 for the possible combinations of input clock and PLLMODEx bit settings for USB operation.
Non-USB operation allows the input frequency of the PLL VCO not to be restricted to 4 MHz with a fixed $24 x$ multiplier ratio. The multiplier ratios can be selected as $4 x, 6 x$ or $8 x$ and there is no clock prescaler. The postscaler (CPDIV<1:0>) is available and can be used to reduce the system clock to meet the 32 MHz maximum specification. Note that the minimum input frequency to the VCO is 2 MHz , but the range is 2 MHz to 8 MHz . Therefore, it is possible to select a multiplier ratio that exceeds the 32 MHz maximum specification for the system clock. This allows the system clock to be any frequency between $8 \mathrm{MHz}(2 \mathrm{MHz}$ input clock with 4 x multiplier ratio) and $32 \mathrm{MHz}(4 \mathrm{MHz}$ input clock with $8 x$ multiplier ratio). For example, a common crystal frequency is 3.58 MHz ('color burst') and this can be used with the $6 x$ multiplier to generate a system clock of 21.48 MHz . The VCO frequency becomes the system clock.

Note 1: The maximum operating frequency of the system clock is 32 MHz . It is up to the user to select the proper multiplier ratio with the selected clock source frequency. Exceeding a system clock of 32 MHz may permanently damage the part

The PLL block is shown in Figure 9-2. In this system, the input from the Primary Oscillator is divided down by a PLL prescaler to generate a 4 MHz output. This is used to drive an on-chip, 96 MHz PLL frequency multiplier to drive the two clock branches. One branch uses a fixed, divide-by-2 frequency divider to generate the 48 MHz USB clock. The other branch uses a fixed, divide-by-3 frequency divider and configurable PLL prescaler/ divider to generate a range of system clock frequencies. The CPDIV<1:0> bits select the system clock speed; available clock options are listed in Table 9-2.
The USB PLL prescaler does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL divider to generate the required 4 MHz output using the PLLMODE<3:0> Configuration bits. This limits the choices for Primary Oscillator frequency to a total of 8 possibilities, as shown in Table 9-3.

TABLE 9-2: SYSTEM CLOCK OPTIONS DURING USB OPERATION

MCU Clock Division   (CPDIV<1:0>)	Microcontroller   Clock Frequency
None (00)	32 MHz
$\div 2(01)$	16 MHz
$\div 4(10)^{(\mathbf{1})}$	8 MHz
$\div 8(11)^{\mathbf{( 1 )}}$	4 MHz

Note 1: System clock frequencies below 16 MHz are too slow to allow USB operation. The USB module must be disabled to use this option. See Section 9.6.1 "Considerations for USB Operation".

TABLE 9-3: VALID PRIMARY OSCILLATOR CONFIGURATIONS FOR USB OPERATIONS ${ }^{(1)}$

Input Oscillator   Frequency	Clock Mode	PLL Mode   (PLLMODE<3:0>)
48 MHz	ECPLL	$\div 12(0111)$
32 MHz	HSPLL, ECPLL	$\div 8(0110)$
24 MHz	HSPLL, ECPLL	$\div 6(0101)$
20 MHz	HSPLL, ECPLL	$\div 5(0100)$
16 MHz	HSPLL, ECPLL	$\div 4(0011)$
12 MHz	HSPLL, ECPLL	$\div 3(0010)$
8 MHz	ECPLL, XTPLL,   FRCPLL	$\div 2(0001)$
4 MHz	ECPLL, XTPLL,   FRCPLL	$\div 1(0000)$

Note 1: USB operation restricts the VCO input frequency to be 4 MHz .
2: This requires the use of the FRC self-tune feature to maintain the required clock accuracy.

FIGURE 9-2: PLL BLOCK


Note 1: This MUX is controlled by the COSC<2:0> bits when running from the PLL or the NOSC<2:0> bits when preparing to switch to the PLL.
2: The PLLMODE<3:0> bits are in the configuration area. See the FOSCSEL Configuration register (Register 30-6) for more information.

### 9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ1024GA610/GB610 devices, users must always observe these rules in configuring the system clock:

- The system clock frequency must be 16 MHz or 32 MHz . System clock frequencies below 16 MHz are not allowed for USB module operation.
- The Oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy, required by the "USB 2.0 Specification" throughout the application's operating range, are either the self-tune system or manually changing the $\mathrm{TUN}<5: 0>$ bits.
- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or $8 \mathrm{MHz}($ RCDIV<2:0> $=001$ or 000) and that the USB PLL prescaler is configured appropriately.
- All other Oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).


### 9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain Oscillator modes, the device clock in the PIC24FJ1024GA610/GB610 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFCN, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-4 for more information.

This reference clock output is controlled by the REFOCONL, REFOCONH and REFOTRIML registers. Setting the ROEN bit (REFOCONL<15>) makes the clock signal available on the REFO pin. The RODIV<14:0> bits (REFOCONH<14:0>) enable the selection of different clock divider options. The ROTRIM<0:8> bits (REFOTRIML<7:15>) allow the user to provide a fractional addition to the RODIVx value. The ROSWEN bit (REFOCONL<9>) indicates that the clock divider has been successfully switched. In order to switch the divider or trim the REFO frequency, the user should ensure that this bit reads as ' 0 '. Write the updated values to ROTRIMx and RODIVx bits, set the ROSWEN bit and then wait until it is cleared before assuming that the REFO clock is valid.
The ROSEL<3:0> bits (REFOCONL<3:0>) determine which clock source is used for the reference clock output. The ROSLP bit (REFOCONL<11>) determines if the reference source is available on REFO when the device is in Sleep mode.
To use the reference clock output in Sleep mode, both the ROSLP bit must be set and the clock selected by the ROSELx bits must be enabled for operation during Sleep mode, if possible. Clearing the ROSELx bits allows the reference output frequency to change as the system clock changes during any clock switches. The ROOUT bit enables/disables the reference clock output on the REFO pin.
The ROACTIVE bit (REFOCONL<8>) indicates that the module is active; it can be cleared by disabling the module (setting ROEN to ' 0 '). The user must not change the reference clock source, or adjust the trim or divider when the ROACTIVE bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIVE bit is ' 1 '.
The PLLSS Configuration bit (FOSC<4>), when cleared, can be used to generate a REFO clock with the PLL that is independent of the system clock. The PLL cannot be used in the primary clock chain. For example, if the system clock is using the FRC at 8 MHz , the PLL can use the FRC as the input and generate 32 MHz ( 4 x PLL mode) out of REFO.
The PLLSS Configuration bit (FOSC<4>), when cleared, can be used to generate a REFO clock with the PLL that is independent of the system clock. The PLL cannot be used in the primary clock chain. For example, if the system clock is using FRC at 8 MHz , the PLL can use the FRC as the input and generate 32 MHz ( 4 x PLL mode) out of REFO.

### 9.8 Secondary Oscillator

### 9.8.1 BASIC SOSC OPERATION

PIC24FJ1024GA610/GB610 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC or Timer1) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as 1 second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.
To use the Secondary Oscillator, the SOSCSEL bit (FOSC<3>) must be set to ' 1 '. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

### 9.8.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency when in High-Power mode:

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of $35 \mathrm{~K} ; 50 \mathrm{~K}$ maximum

In addition, the two external crystal loading capacitors should be in the range of $18-22 \mathrm{pF}$, which will be based on the PC board layout. The capacitors should be COG, $5 \%$ tolerance and rated 25 V or greater.
The accuracy and duty cycle of the SOSC can be measured on the REFO pin, and is recommended to be in the range of $40-60 \%$ and accurate to $\pm 0.65 \mathrm{~Hz}$.

### 9.8.3 LOW-POWER SOSC OPERATION

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. Low-Power mode is selected by Configuration bit, SOSCHP (FDEVOPT1<3>). The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. This mode can be used with lower load capacitance crystals ( $6 \mathrm{pF}-9 \mathrm{pF}$ ) having higher ESR ratings (50K-80K) to reduce Sleep current in the RTCC. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly. PC board layout issues, stray capacitance and other factors will need to be carefully controlled in order for the crystal to operate.

## REGISTER 9-8: REFOCONL: REFERENCE OSCILLATOR CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-0
ROEN	-	ROSIDL	ROOUT	ROSLP	-	ROSWEN	ROACTIVE
bit 15				bit 8			


U-0									U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	-	ROSEL3	ROSEL2	ROSEL1	ROSEL0								
bit 7					bit 0										

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

ROEN: Reference Oscillator Enable bit
1 = Reference Oscillator module is enabled
0 = Reference Oscillator is disabled
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 ROSIDL: REFO Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7-4
bit 3-0

ROOUT: Reference Clock Output Enable bit
1 = Reference clock is driven out on the REFO pin
$0=$ Reference clock is not driven out on the REFO pin
ROSLP: Reference Oscillator Output Stop in Sleep bit
1 = Reference Oscillator continues to run in Sleep
0 = Reference Oscillator is disabled in Sleep
Unimplemented: Read as ' 0 '
ROSWEN: Reference Clock RODIVx/ROTRIMx Switch Enable bit
1 = Switch clock divider; clock divider switching is currently in progress
0 = Clock divider switch has been completed
ROACTIVE: Reference Clock Request Status bit
1 = Reference clock is active (user should not change the REFO settings)
$0=$ Reference clock is inactive (user can update the REFO settings)

ROSEL<3:0>: Reference Clock Source Select bits
1111-1001 = Reserved
$1000=$ REFI pin
0111 = Reserved
0110 = PLL (4/6/8x or 96 MHz )
0101 = SOSC
0100 = LPRC
0011 = FRC
0010 = POSC
0001 = Peripheral clock
0000 = System clock

## REGISTER 9-9: REFOCONH: REFERENCE OSCILLATOR CONTROL REGISTER HIGH

U-0	R/W-0						
-			RODIV<14:8>				
bit 15						bit 8	


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | RODIV<7:0> |  |  |  |  |  |
| bit 7 |  |  |  |  | bit 0 |  |  |


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit $15 \quad$ Unimplemented: Read as ' 0 '
bit 14-0 RODIV<14:0>: Reference Clock Divider bits
Specifies $1 / 2$ period of the reference clock in the source clocks
(ex: Period of Output = [Reference Source * 2] * RODIV<14:0>; this equation does not apply to RODIV<14:0> = 0).
$111111111111111=$ REFO clock is the base clock frequency divided by 65,534 ( 32,767 * 2 )
$111111111111110=$ REFO clock is the base clock frequency divided by 65,532 (32,766 * 2 )
-
-
-
$000000000000011=$ REFO clock is the base clock frequency divided by 6 ( 3 * 2 )
$000000000000010=$ REFO clock is the base clock frequency divided by 4 ( 2 * 2 )
$000000000000001=$ REFO clock is the base clock frequency divided by 2 ( 1 * 2 )
$000000000000000=$ REFO clock is the same frequency as the base clock (no divider)

REGISTER 9-10: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER LOW

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROTRIM<0:7> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-0 | U-0 |
| ROTRIM8 | - | - | - | - | - | - | - |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-7 ROTRIM<0:8>: REFO Trim bits
These bits provide a fractional additive to the RODIVx value for the $1 / 2$ period of the REFO clock.
$000000000=0 / 512$ ( 0.0 divisor added to the RODIVx value)
$000000001=1 / 512$ ( 0.001953125 divisor added to the RODIVx value)
$000000010=2 / 512$ ( 0.00390625 divisor added to the RODIVx value)
-
-
-
$100000000=256 / 512$ ( 0.5000 divisor added to the RODIVx value)
-
-
$111111110=510 / 512$ ( 0.99609375 divisor added to the RODIVx value) $111111111=511 / 512$ ( 0.998046875 divisor added to the RODIVx value)
bit 6-0 Unimplemented: Read as '0'

### 10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features" (DS39698), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ1024GA610/GB610 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

### 10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC $<2: 0>$ bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

### 10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU
and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.
The XC16 C compiler offers "built-in" functions for the power-saving modes as follows:
Idle();
// places part in Idle
Sleep();
// places part in Sleep

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

### 10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no l/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.
The device will wake-up from Sleep mode on any of the these events:
- On any interrupt source that is individually enabled
- On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	\#SLEEP_MODE	; Put the device into SLEEP mode
PWRSAV	\#IDLE_MODE	; Put the device into IDLE mode

### 10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.
The device will wake from Idle mode on any of these events:
- Any interrupt that is individually enabled.
- Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

### 10.2.4 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ1024GA610/GB610 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2 V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.
Retention Sleep uses less power than standard Sleep mode, but takes more time to recover and begin execution. An additional 10-15 $\mu$ S (typical) is required to charge VCAP from 1.2 V to 1.8 V and start to execute instructions when exiting Retention Sleep.
The VREGS bit allows the control of speed to exit from the Sleep modes (regular and Retention) at the cost of more power. The regulator band gaps are enabled, which increases the current but reduces time to recover from Sleep by $\sim 10 \mu \mathrm{~S}$.
The low-voltage/retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit ( $\mathrm{RCON}<12>$ ). LPCFG must be programmed (= 0 ) and the RETEN bit must be set ( $=1$ ) for the regulator to be enabled.

### 10.2.5 SUMMARY OF LOW-POWER SLEEP MODES

The RETEN bit and the VREGS bit ( $\mathrm{RCON}<8>$ ) allow for four different Sleep modes, which will vary by wakeup time and power consumption. Refer to Table 10-1 for a summary of these modes. Specific information about the current consumption and wake times can be found in Section 33.0 "Electrical Characteristics".

TABLE 10-1: LOW-POWER SLEEP MODES

RETEN	VREGS	Mode	Relative Power   (1 = Lowest)
0	0	Sleep	3
0	1	Fast Wake-up	4
1	0	Retention Sleep	1
$\mathbf{1}$	1	Fast Retention	2

### 10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

### 10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.
PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	T5MD	T4MD	T3MD	T2MD	T1MD	-	-	-	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	-	-	ADCMD	0000
PMD2	-	-	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	-	-	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	-	-	-	-	-	CMPMD	RTCCMD	PMPMD	CRCMD	-	-	-	U3MD	I2C3MD	I2C2MD	-	0000
PMD4	-	-	-	-	-	-	-	-	-	-	U4MD	-	REFOMD	CTMUMD	LVDMD	USBMD ${ }^{(1)}$	0000
PMD5	-	-	-	-	-	-	-	-	-	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	0000
PMD6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SPI3MD	0000
PMD7	-	-	-	-	-	-	-	-	-	-	DMA1MD	DMAOMD	-	-	-	-	0000
PMD8	-	-	-	-	-	-	-	-	U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	-	-	0000

Legend: - = unimplemented, read as ' 0 ’. Reset values are shown in hexadecimal.
Note 1: USB is not present on PIC24FJXXXXGA6XX devices.

## REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	-	-	-
bit 15							


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	-	-	ADC1MD
bit 7			bit 0				

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15 T5MD: Timer5 Module Disable bit
1 = Module is disabled
0 = Module power and clock sources are enabled
bit $14 \quad$ T4MD: Timer4 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 13
bit 12
bit 11 T1MD: Timer1 Module Disable bit
$1=$ Module is disabled
$0=$ Module power and clock sources are enabled
bit 10-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ I2C1MD: I2C1 Module Disable bit
1 = Module is disabled
0 = Module power and clock sources are enabled
bit $6 \quad$ U2MD: UART2 Module Disable bit
1 = Module is disabled
0 = Module power and clock sources are enabled
bit $5 \quad$ U1MD: UART1 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit $4 \quad$ SPI2MD: SPI2 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 3 SPI1MD: SPI1 Module Disable bit
1 = Module is disabled
0 = Module power and clock sources are enabled
bit 2-1 Unimplemented: Read as ' 0 '
bit $0 \quad$ ADC1MD: A/D Converter Module Disable bit
$1=$ Module is disabled
$0=$ Module power and clock sources are enabled

## REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15				bit 8			


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
bit 7				bit 0			

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13 IC6MD: Input Capture 6 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 12 IC5MD: Input Capture 5 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 11 IC4MD: Input Capture 4 Module Disable bit
1 = Module is disabled
0 = Module power and clock sources are enabled
bit 10 IC3MD: Input Capture 3 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit $9 \quad$ IC2MD: Input Capture 2 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit $8 \quad$ IC1MD: Input Capture 1 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 7-6 Unimplemented: Read as ' 0 '
bit 5 OC6MD: Output Capture 6 Module Disable bit
1 = Module is disabled
$0=$ Module power and clock sources are enabled
bit 4 OC5MD: Output Capture 5 Module Disable bit 1 = Module is disabled
$0=$ Module power and clock sources are enabled
bit 3 OC4MD: Output Capture 4 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 2 OC3MD: Output Capture 3 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit 1 OC2MD: Output Capture 2 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled
bit $0 \quad$ OC1MD: Output Capture 1 Module Disable bit
$1=$ Module is disabled
0 = Module power and clock sources are enabled

## REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
-	-	-	-	-	CMPMD	RTCCMD	PMPMD
bit 15				bit 8			


R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
CRCMD	-	-	-	U3MD	I2C3MD	I2C2MD	-
bit 7				bit 0			


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown


bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Triple Comparator Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 9	RTCCMD: RTCC Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 8	PMPMD: Enhanced Parallel Master Port Disable bit   1 = Module is disabled   0 = Module power and clock sources are enabled
bit 7	CRCMD: CRC Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 6-4	Unimplemented: Read as '0'
bit 3	U3MD: UART3 Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 2	I2C3MD: I2C3 Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 1	I2C2MD: I2C2 Module Disable bit   1 = Module is disabled   0 = Module power and clock sources are enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15			bit 8				


U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
-	-	U4MD	-	REFOMD	CTMUMD	LVDMD	USBMD	
bit 7				bit 0				


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown



Note 1: USB is not present on PIC24FJXXXXGA6XX devices.

## REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

U-0							
U-0							
-	-	-	-	U-0	U-0	U-0	-
bit 15							


U-0	R/W-0						
-	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7				bit 0			

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown


bit 15-7	Unimplemented: Read as '0'
bit 6	CCP7MD: SCCP7 Module Disable bit   1 = Module is disabled   0 = Module power and clock sources are enabled
bit 5	CCP6MD: SCCP6 Module Disable bit   $1=$ Module is disabled   0 = Module power and clock sources are enabled
bit 4	CCP5MD: SCCP5 Module Disable bit   1 = Module is disabled   0 = Module power and clock sources are enabled
bit 3	CCP4MD: MCCP4 Module Disable bit   $1=$ Module is disabled   0 = Module power and clock sources are enabled
bit 2	CCP3MD: MCCP3 Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 1	CCP2MD: MCCP2 Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled
bit 0	CCP1MD: MCCP1 Module Disable bit   1 = Module is disabled   $0=$ Module power and clock sources are enabled

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	R/W-0						
-	-	-	-	-	-	-	SPI3MD
bit 7							


Legend:				
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	$' 0$ ' = Bit is cleared	$\quad \mathrm{x}=$ Bit is unknown	
:---				


bit 15-1	Unimplemented: Read as '0'
bit 0	SPI3MD: SPI3 Module Disable bit
	$1=$ Module is disabled      $\quad=$ Module power and clock sources are enabled

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0							
-	U-0	R/W-0	U-0	U-0	U-0	U-0	
bit 7	-	DMA1MD	DMAOMD	-	-	-	-

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared


bit 15-6	Unimplemented: Read as '0'
bit 5	DMA1MD: DMA1 Controller (Channels 4 through 7) Disable bit   1 = Controller is disabled   $0=$ Controller power and clock sources are enabled
bit 4	DMAOMD: DMA0 Controller (Channels 0 through 3) Disable bit   1 = Controller is disabled   $0=$ Controller power and clock sources are enabled
bit 3-0	Unimplemented: Read as '0'

## REGISTER 10-8: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U6MD | U5MD | CLC4MD | CLC3MD | CLC2MD | CLC1MD | - | - |
| bit 7 |  |  | bit 0 |  |  |  |  |


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared


bit 15-8	Unimplemented: Read as ' 0 '
bit 7	U6MD: UART6 Module Disable bit
	$1=$ Module is disabled
	0 = Module power and clock sources are enabled
bit 6	U5MD: UART5 Module Disable bit
	$1=$ Module is disabled
	0 = Module power and clock sources are enabled
bit 5	CLC4MD: CLC4 Module Disable bit
	$1=$ Module is disabled
	0 = Module power and clock sources are enabled
bit 4	CLC3MD: CLC3 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 3	CLC2MD: CLC2 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 2	CLC1MD: CLC1 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 1-0	Unimplemented: Read as ' 0 '

## NOTES:

### 11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports with Peripheral Pin Select (PPS)" (DS39711), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except Vdd, Vss, $\overline{M C L R}$ and OSCI/CLKI) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

### 11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a
peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.
All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.
Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros.
When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE


### 11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

### 11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the generation of outputs higher than VDD (e.g., 5 V ) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

### 11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-6), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.
When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

### 11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5 V , a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VdD. Voltage excursions beyond VDD on these pins should always be avoided.
Table 11-2 summarizes the different voltage tolerances. For more information, refer to Section 33.0 "Electrical Characteristics" for more details.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANS $=1$.
Analog Output	1	1	It is recommended to keep ANSx $=1$.
Digital Input	0	1	Firmware must wait at least one instruction cycle   after configuring a pin as a digital input before a valid   input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on   the pin if any is present.

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description
PORTA<15:14,5:0>	5.5 V	Tolerates input levels above VDD; useful for most standard logic.
PORTC<3:1>		
PORTD<15:8,5:0>		
PORTE<8:5,3:0>		
PORTF<13:12,8:0>		
PORTG<15:12,1:0>		
PORTA<10:9,7:6>	VDD	Only VDD input levels are tolerated.
PORTB<15:0>		
PORTC<15:13,4> ${ }^{(1)}$		
PORTD<7:6>		
PORTE<9,4>		
PORTG<9:6,3:2> ${ }^{(2)}$		

Note 1: PORTC<12> has OSCI pin function.
2: PORTG<3:2> have USB function on PIC24FJXXXXGBXXX devices.

## REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	U-0
-	-	-	-	-	ANSA<10:9>(1)	-	
bit 15			bit 8				


R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSA $<7: 6 \gg^{(1)}$	-	-	-	-	-	-	
bit 7							


Legend:			
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplement	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown


bit 15-11	Unimplemented: Read as '0'
bit 10-9	ANSA<10:9>: PORTA Analog Function Selection bits ${ }^{(1)}$
	1 = Pin is configured in Analog mode; I/O port read is disabled $0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 8	Unimplemented: Read as '0'
bit 7-6	ANSA<7:6>: PORTA Analog Function Selection bits ${ }^{(1)}$
	1 = Pin is configured in Analog mode; I/O port read is disabled $0=$ Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as ' 0 '
Note 1: ANSA<10:9,7> bits are not available on 64-pin devices.

## REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

| R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANSB<15:8> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-1 |
| ANSB<7:0> |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  | bit 0 |


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-0 ANSB<15:0>: PORTB Analog Function Selection bits
1 = Pin is configured in Analog mode; I/O port read is disabled
$0=$ Pin is configured in Digital mode; I/O port read is enabled

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER

U-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
-	ANSC<14:13>	-	-	-	-	-	
bit 15			bit 8				


U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0
-	-	-	ANSC4 ${ }^{(1)}$	-	-	-	-
bit $7 \times$ bit 0							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15 Unimplemented: Read as ' 0 '
bit 14-13 ANSC<14:13>: PORTC Analog Function Selection bits
$1=$ Pin is configured in Analog mode; I/O port read is disabled
$0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 12-5 Unimplemented: Read as ' 0 '
bit 4 ANSC4: PORTC Analog Function Selection bit ${ }^{(1)}$
$1=$ Pin is configured in Analog mode; I/O port read is disabled $0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 3-0 Unimplemented: Read as '0'
Note 1: ANSC4 is not available on 64-pin devices.

REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-1	U-0	U-0	U-0	U-0	U-0
-	-	-	-	-	-	-	-
bit 15			bit 8				


R/W-1 $\quad$ R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSD $<7: 6>$	-	-	-	-	-	-
bit 7				bit 0		


Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown


bit 15-14	Unimplemented: Read as ' 0 '
bit 13	Reserved: Read as ' 1 '
bit 12-8	Unimplemented: Read as ' 0 '
bit $7-6$	ANSD<7:6>: PORTD Analog Function Selection bits
	$1=$ Pin is configured in Analog mode; I/O port read is disabled   $\quad$= Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as ' 0 '

## REGISTER 11-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER

U-0									U-0	U-0	U-0	U-0	U-0	R/W-1	U-0
-	-	-	-	-	-	ANSE9 ${ }^{(1)}$	-								
bit 15			bit 8												


U-0									U-0	U-0	R/-1	U-0	U-0	U-0	U-0
-	-	-	ANSE4	-	-	-	-								
bit 7				bit 0											

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-10 Unimplemented: Read as ' 0 '
bit $9 \quad$ ANSE9: PORTE Analog Function Selection bit ${ }^{(1)}$
1 = Pin is configured in Analog mode; I/O port read is disabled
$0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 8-5 Unimplemented: Read as ' 0 '
bit 4 ANSE4: PORTE Analog Function Selection bit
$1=$ Pin is configured in Analog mode; I/O port read is disabled
$0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 3-0 Unimplemented: Read as ' 0 '
Note 1: ANSE9 is not available on 64-pin devices.

## REGISTER 11-6: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
-	-	-	-	-	-	ANSG<9:8>	
bit 15							


| R/W-1 $\quad$ R/W-1 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANSG<7:6> | - | - | - | - | - | - |
| bit 7 |  |  |  | bit 0 |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-10 Unimplemented: Read as ' 0 '
bit 9-6 ANSG<9:6>: PORTG Analog Function Selection bits
$1=$ Pin is configured in Analog mode; I/O port read is disabled
$0=$ Pin is configured in Digital mode; I/O port read is enabled
bit 5-0
Unimplemented: Read as ' 0 '

### 11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ1024GA610/GB610 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode when the clocks are disabled.
Interrupt-on-Change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of ' 1 ' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of ' 1 ' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of ' 1 ' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1<3>) must be set.
When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx<15:0> bits are cleared.
Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-ModifyWrite sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence.

The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.
At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.
Each Interrupt-on-Change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pullups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.
The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.
Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

## EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV	0xFFFF, w0	; Initial mask value 0xFFFF $->$ w0
XOR	IOCFX, W0	; W0 has '1' for each bit set in IOCFx
AND	IOCFX	; IOCFX \& W0 ->IOCFx

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

MOV	0xFF00, w0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISB	; and PORTB<7:0> as outputs
NOP		Delay 1 cycle
BTSS	PORTB, \#13	; Next Instruction

## EXAMPLE 11-3: PORT READ/WRITE IN ‘C’

TRISB $=0 \times 5 F 00 ;$	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
If (PORTBbits.RB13) \{ \};	// Next Instruction

REGISTER 11-7: PADCON: PORT CONFIGURATION REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
IOCON	-	-	-	-	-	-	-
bit 15							
bit 8							


U-0									U-0	U-0	U-0	U-0	U-0	R/W-0
-	-	-	-	-	-	-	PMPTTL							
bit 7														

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15 IOCON: Interrupt-on-Change Enable bit
1 = Interrupt-on-Change functionality is enabled
$0=$ Interrupt-on-Change functionality is disabled
bit 14-1 Unimplemented: Read as ' 0 '
bit $0 \quad$ PMPTTL: PMP Port Type bit
1 = TTL levels on PMP port pins
$0=$ Schmitt Triggers on PMP port pins

REGISTER 11-8: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
bit 15	bit 8								
U-0	R/HS/HC-0								
-	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF		
bit 7								$.$	bit 0
:---									


Legend:	HS = Hardware Settable bit	Hardware Clearable bit
$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-7 Unimplemented: Read as ' 0 '
bit 6 IOCPGF: Interrupt-on-Change PORTG Flag bit
1 = A change was detected on an IOC-enabled pin on PORTG
$0=$ No change was detected or the user has cleared all detected changes
bit $5 \quad$ IOCPFF: Interrupt-on-Change PORTF Flag bit
1 = A change was detected on an IOC-enabled pin on PORTF
$0=$ No change was detected or the user has cleared all detected changes
bit 4 IOCPEF: Interrupt-on-Change PORTE Flag bit
1 = A change was detected on an IOC-enabled pin on PORTE
$0=$ No change was detected or the user has cleared all detected changes
bit 3 IOCPDF: Interrupt-on-Change PORTD Flag bit
$1=$ A change was detected on an IOC-enabled pin on PORTD
$0=$ No change was detected or the user has cleared all detected changes
bit 2 IOCPCF: Interrupt-on-Change PORTC Flag bit
1 = A change was detected on an IOC-enabled pin on PORTC
$0=$ No change was detected or the user has cleared all detected changes
bit 1 IOCPBF: Interrupt-on-Change PORTB Flag bit
1 = A change was detected on an IOC-enabled pin on PORTB
$0=$ No change was detected or the user has cleared all detected changes
bit $0 \quad$ IOCPAF: Interrupt-on-Change PORTA Flag bit
1 = A change was detected on an IOC-enabled pin on PORTA
$0=$ No change was detected, or the user has cleared all detected change

REGISTER 11-9: IOCPx: INTERRUPT-ON-CHANGE POSITIVE EDGE $\times$ REGISTER ${ }^{(1,2)}$

$R / W-0$	U-0						
		$I O C P x<15: 8>$					
bit 15						bit 8	


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $I O C P x<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared

bit 15-0 IOCPx<15:0>: Interrupt-on-Change Positive Edge $x$ Enable bits
1 = Interrupt-on-Change is enabled on the IOCx pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
$0=$ Interrupt-on-Change is disabled on the IOCx pin for a positive going edge
Note 1: Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
2: Changing the value of this register while the module is enabled (IOCON =1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled ( $\mathrm{IOCON}=0$ ) when changing this register.

## REGISTER 11-10: IOCNx: INTERRUPT-ON-CHANGE NEGATIVE EDGE x REGISTER ${ }^{(1,2)}$

R/W-0	U-0						
		$I O C N x<15: 8>$					
bit 15					bit 8		


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $I O C N x<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-0 IOCNx<15:0>: Interrupt-on-Change Negative Edge $x$ Enable bits
1 = Interrupt-on-Change is enabled on the IOCx pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge
$0=$ Interrupt-on-Change is disabled on the IOCx pin for a negative going edge
Note 1: Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
2: Changing the value of this register while the module is enabled (IOCON =1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled ( $\mathrm{IOCON}=0$ ) when changing this register.

REGISTER 11-11: IOCFx: INTERRUPT-ON-CHANGE FLAG x REGISTER ${ }^{(1)}$

$R / W-0$	U-0						
			IOCFx<15:8>				
bit 15						bit 8	


| $R / W-0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | IOCFx<7:0> |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-0 IOCFx<15:0>: Interrupt-on-Change Flag $x$ bits
$1=$ An enabled change was detected on the associated pin; set when IOCPx = 1 and a positive edge was detected on the IOCx pin, or when IOCNx = 1 and a negative edge was detected on the IOCx pin
$0=$ No change was detected or the user cleared the detected change
Note 1: It is not possible to set the IOCFx register bits with software writes (as this would require the addition of significant logic). To test IOC interrupts, it is recommended to enable the IOC functionality on one or more GPIO pins and then use the corresponding LATx register bit(s) to trigger an IOC interrupt.

### 11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.
The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.
The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

### 11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where " n " is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.
PIC24FJ1024GA610/GB610 family devices support a larger number of remappable input/output pins than remappable input only pins. In this device family, there are up to 44 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP31, and RPI32 through RPI43.
See Table 1-1 for a summary of pinout options in each package offering.

### 11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for these peripherals:

- $\mathrm{I}^{2} \mathrm{C}$ (input and output)
- Input Change Notifications
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INTO

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

### 11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.
Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

### 11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.
The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

### 11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-12 through Register 11-35).

Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

## TABLE 11-3: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) ${ }^{(1)}$

Input Name	Function Name	Register	Function Mapping Bits
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>
Output Compare Trigger 2	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>
Timer2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4<5:0>	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4<13:8>	T5CKR<5:0>
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>
UART3 Receive	U3RX	RPINR17<13:8>	U3RXR<5:0>
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21<5:0>	SS1R<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21<13:8>	U3CTSR<5:0>
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23<5:0>	SS2R<5:0>
Generic Timer External Clock	TxCK	RPINR23<13:8>	TXCKR<5:0>
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>
UART4 Receive	U4RX	RPINR27<5:0>	U4RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27<13:8>	U4CTSR<5:0>
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29<5:0>	SS3R<5:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

### 11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-36 through Register 11-51). The value of the bit field
corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).
Because of the mapping technique, the list of peripherals for output mapping also includes a null value of ' 000000 ’. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 11-4: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)

Output Function Number	Function	Output Name
0	None (Pin Disabled)	
1	C10UT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	$\overline{\text { U2RTS }}$	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OCM4	CCP4 Output Compare
17	OCM5	CCP5 Output Compare
18	OCM6	CCP6 Output Compare
19	U3TX	UART3 Transmit
20	$\overline{\text { U3RTS }}$	UART3 Request-to-Send
21	U4TX	UART4 Transmit
22	$\overline{\text { U4RTS }}$	UART4 Request-to-Send
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	OCM7	CCP7 Output Compare
28	REFO	Reference Clock Output
29	CLC10UT	CLC1 Output
30	CLC2OUT	CLC2 Output
31	RTCC	RTCC Clock Output

### 11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

### 11.4.3.4 Mapping Exceptions for PIC24FJ1024GA610/GB610 Family Devices

Although the PPS registers theoretically allow for inputs to be remapped to up to 64 pins, or for outputs to be remapped from 32 pins, not all of these are implemented in all devices. For 100-pin or 121-pin variants of the PIC24FJ1024GA610/GB610 family devices, 32 remappable input/output pins are available and 12 remappable input pins are available. For 64-pin variants, 29 input/outputs and 1 input are available. The differences in available remappable pins are summarized in Table 11-5.
When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.


### 11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock


### 11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.
To set or clear IOLOCK, a specific command sequence must be executed:

1. Write 46 h to $\mathrm{OSCCON}<7: 0>$.
2. Write 57 h to $\mathrm{OSCCON}<7: 0>$.
3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

### 11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

### 11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.
In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

Device	RPn Pins (I/O)		RPIn Pins	
	Total	Unimplemented	Total	Unimplemented
PIC24FJXXXGB606	28	RP5, RP15, RP30, RP31	1	All except RPI37
PIC24FJXXXGX61X	32	-	12	-
PIC24FJXXXGA606	29	RP5, RP15, RP31	1	All except RPI37

### 11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.
The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.
This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.
Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in ' C ', or another high-level language, the unlock sequence should be performed by writing in-line assembly.
Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.
A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS


## EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS



### 11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ1024GA610/GB610 family of devices implements a total of 40 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (24)
- Output Remappable Peripheral Registers (16)

Note: Input and Output register values can only be changed if IOLOCK (OSCCON $<6>$ ) $=0$. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-12: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							


| U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | OCTRIG1R5 | OCTRIG1R4 | OCTRIG1R3 | OCTRIG1R2 | OCTRIG1R1 | OCTRIG1R0 |
| bit 7 |  |  |  |  | bit 0 |  |  |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 OCTRIG1R<5:0>: Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits

## REGISTER 11-13: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15					bit 8		


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

## REGISTER 11-14: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

| U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| - | - | OCTRIG2R5 | OCTRIG2R4 | OCTRIG2R3 | OCTRIG2R2 | OCTRIG2R1 | OCTRIG2R0 |
| bit 15 |  |  |  |  |  |  |  |


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 OCTRIG2R<5:0>: Assign Output Compare Trigger 2 to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 11-15: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0									U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0								
bit 15				bit 8											


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7				bit 0			


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
- $\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 T3CKR<5:0>: Assign Timer3 Clock to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 T2CKR<5:0>: Assign Timer2 Clock to Corresponding RPn or RPIn Pin bits

REGISTER 11-16: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							


U-0									U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0								
bit 7															

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 T5CKR<5:0>: Assign Timer5 Clock to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 T4CKR<5:0>: Assign Timer4 Clock to Corresponding RPn or RPIn Pin bits

REGISTER 11-17: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

| U-0 | $\mathrm{U}-0$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |


| U-0 | U-0 | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | - | - | - | - | - | - |
| bit 7 |  |  |  |  |  |  |  |


Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 Reserved: Maintain as ' 1 '
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 Reserved: Maintain as ' 1 '

REGISTER 11-18: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

U-0	U-0	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$
-	-	-	-	-	-	-	-
bit 15							


| U-0 | U-0 | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | $\mathrm{r}-1$ | -1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | - | - | - | - | - | - |
| bit 7 |  |  |  |  |  |  |  |


Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 Reserved: Maintain as ' 1 '
bit 7-6 Unimplemented: Read as '0'
bit 5-0 Reserved: Maintain as ' 1 '

REGISTER 11-19: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-20: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7				bit 0			


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-6 Unimplemented: Read as ' 0 '
bit 5-0 IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-21: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0													
U-0									R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0						
bit 15				bit 8									


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7				bit 0			

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 11-22: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | TCKIBR5 | TCKIBR4 | TCKIBR3 | TCKIBR2 | TCKIBR1 | TCKIBR0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | TCKIAR5 | TCKIAR4 | TCKIAR3 | TCKIAR2 | TCKIAR1 | TCKIAR0 |
| bit 7 |  |  |  |  | bit 0 |  |  |


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 TCKIBR<5:0>: Assign MCCP/SCCP Clock Input B to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 TCKIAR<5:0>: Assign MCCP/SCCP Clock Input A to Corresponding RPn or RPIn Pin bits

REGISTER 11-23: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	$\mathrm{U}-0$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$
-	-	-	-	-	-	-	-
bit 15							


$\mathrm{U}-0$								$\mathrm{U}-0$
$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$	$\mathrm{r}-1$				
-	-	-	-	-	-	-	-	
bit 7								


Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 Reserved: Maintain as ' 1 '
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 Reserved: Maintain as ' 1 '

REGISTER 11-24: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  | bit 8 |  |  |  |  |


$\mathrm{U}-0$								$\mathrm{U}-0$


Legend:	$\mathrm{r}=$ Reserved bit	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown


bit 15-6	Unimplemented: Read as ' 0 '
bit 5-0	Reserved: Maintain as ' 1 '

REGISTER 11-25: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15				bit 8			


U-0									U-0						
-	-	-	-	-	-	-	-								
bit 7															

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplement	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits
bit 7-0 Unimplemented: Read as ' 0 '

REGISTER 11-26: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15					bit 8		


U-0									U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0								
bit 7															

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 U1CTSR<5:0>: Assign UART1 Clear-to-Send ( $\overline{\mathrm{U1CTS}}$ ) to Corresponding RPn or RPIn Pin bits bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-27: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15				bit 8			


U-0									U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0								
bit 7				bit 0											


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-28: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15				bit 8			


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7				bit 0			

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	0 ' = Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-29: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15					bit 8		


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send ( $\overline{\text { U3CTS }}$ ) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-30: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15				bit 8			


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7				bit 0			

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-31: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	TXCKR5	TXCKR4	TXCKR3	TXCKR2	TXCKR1	TXCKR0
bit 15				bit 8			


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 TXCKR<5:0>: Assign General Timer External Input (TxCK) to Corresponding RPn or RPIn Pin bits bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-32: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

| U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 15 |  |  |  |  | bit 8 |  |  |


U-0									U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0							
bit 7					bit 0									

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 CLCINBR<5:0>: Assign CLC Input $B$ to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as '0'
bit 5-0 CLCINAR<5:0>: Assign CLC Input A to Corresponding RPn or RPIn Pin bits

REGISTER 11-33: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15					bit 8		


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 U4CTSR<5:0>: Assign UART4 Clear-to-Send Input ( $\overline{\text { U4CTS }})$ to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 U4RXR<5:0>: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-34: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							
U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1   - - SDI3R5 SDI3R4 SDI3R3 SDI3R2 SDI3R1 SDI3R0							
bit 7 7							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-35: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	-	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

$\begin{array}{ll}\text { bit 15-6 } & \text { Unimplemented: Read as ' } 0 \text { ' } \\ \text { bit 5-0 } & \text { SS3R<5:0>: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits }\end{array}$

REGISTER 11-36: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP0R5	RPOR4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP1R<5:0>: RP1 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP0R<5:0>: RP0 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-37: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	' 0 ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP3R<5:0>: RP3 Output Pin Mapping bits
Peripheral Output Number $n$ is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as '0'
bit 5-0 RP2R<5:0>: RP2 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

REGISTER 11-38: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP5R5 ${ }^{(1)}$	RP5R4 ${ }^{(1)}$	RP5R3 ${ }^{(1)}$	RP5R2 ${ }^{(1)}$	RP5R1 ${ }^{(1)}$	RP5R0 ${ }^{(1)}$
bit 15 bit 8							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP5R<5:0>: RP5 Output Pin Mapping bits ${ }^{(1)}$
Peripheral Output Number n is assigned to pin, RP5 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP4R<5:0>: RP4 Output Pin Mapping bits
Peripheral Output Number $n$ is assigned to pin, RP4 (see Table 11-4 for peripheral function numbers).
Note 1: This pin is not available on 64-pin devices.

REGISTER 11-39: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7				bit 0			

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP7R<5:0>: RP7 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP7 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP6R<5:0>: RP6 Output Pin Mapping bits
Peripheral Output Number $n$ is assigned to pin, RP6 (see Table 11-4 for peripheral function numbers).

REGISTER 11-40: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP9R<5:0>: RP9 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP9 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP8R<5:0>: RP8 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP8 (see Table 11-4 for peripheral function numbers).

REGISTER 11-41: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15					bit 8		


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7					bit 0		

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP11R<5:0>: RP11 Output Pin Mapping bits
Peripheral Output Number $n$ is assigned to pin, RP11 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as '0'
bit 5-0 RP10R<5:0>: RP10 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP10 (see Table 11-4 for peripheral function numbers).

REGISTER 11-42: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15 8							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP13R<5:0>: RP13 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP13 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP12R<5:0>: RP12 Output Pin Mapping bits
Peripheral Output Number $n$ is assigned to pin, RP12 (see Table 11-4 for peripheral function numbers).

## REGISTER 11-43: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP15R5 ${ }^{(1)}$	RP15R4 ${ }^{(1)}$	RP15R3 ${ }^{(1)}$	RP15R2 ${ }^{(1)}$	RP15R1 ${ }^{(1)}$	RP15R0 ${ }^{(1)}$
bit 15 bit 8							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP15R<5:0>: RP15 Output Pin Mapping bits ${ }^{(1)}$
Peripheral Output Number $n$ is assigned to pin, RP15 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP14R<5:0>: RP14 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).
Note 1: This pin is not available on 64-pin devices.

REGISTER 11-44: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP17R<5:0>: RP17 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP16R<5:0>: RP16 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

## REGISTER 11-45: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7				bit 0			

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared


bit 15-14 Unimplemented: Read as '0'   bit 13-8 RP19R<5:0>: RP19 Output Pin Mapping bits	
	Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).   bit 7-6
Unimplemented: Read as '0'	
bit 5-0	RP18R<5:0>: RP18 Output Pin Mapping bits  

REGISTER 11-46: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

| (C\|c|c|c|c|c|c|c|c|U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 <br> - - RP21R5 RP21R4 RP21R3 RP21R2 RP21R1 RP21R0 |
| :--- |
| bit 15 |
| U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 <br> - - RP20R5 RP20R4 RP20R3 RP20R2 RP20R1 RP20R0 <br> bit 7        |


Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP21R<5:0>: RP21 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP21 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP20R<5:0>: RP20 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).

REGISTER 11-47: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP23R<5:0>: RP23 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP22R<5:0>: RP22 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).

REGISTER 11-48: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15					bit 8		


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7							

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP25R<5:0>: RP25 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP25 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP24R<5:0>: RP24 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

REGISTER 11-49: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
bit 7				bit 0			

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared


bit 15-14 Unimplemented: Read as '0'   bit 13-8 RP27R<5:0>: RP27 Output Pin Mapping bits	
	Peripheral Output Number n is assigned to pin, RP27 (see Table 11-4 for peripheral function numbers).   bit 7-6
Unimplemented: Read as '0'	
bit 5-0	RP26R<5:0>: RP26 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP26 (see Table 11-4 for peripheral function numbers).

REGISTER 11-50: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15 bit 8							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit $7 \times$ bit 0							


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RP29R<5:0>: RP29 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP29 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 RP28R<5:0>: RP28 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP28 (see Table 11-4 for peripheral function numbers).

## REGISTER 11-51: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP31R5 ${ }^{(1)}$	RP31R4 ${ }^{(1)}$	RP31R3 ${ }^{(1)}$	RP31R2 ${ }^{(1)}$	RP31R1 ${ }^{(1)}$	RP31R0 ${ }^{(1)}$
bit 15							bit 8


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	RP30R5 ${ }^{(2)}$	RP30R4 ${ }^{(2)}$	RP30R3 ${ }^{(2)}$	RP30R2 ${ }^{(2)}$	RP30R1 ${ }^{(2)}$	RP30R0 ${ }^{(2)}$
7 bit 0							

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared

```
bit 15-14 Unimplemented: Read as '0'
bit 13-8 RP31R<5:0>: RP31 Output Pin Mapping bits (1)
 Peripheral Output Number n is assigned to pin, RP31 (see Table 11-4 for peripheral function numbers).
bit 7-6 Unimplemented: Read as '0'
bit 5-0 RP30R<5:0>: RP30 Output Pin Mapping bits (2)
 Peripheral Output Number n is assigned to pin, RP30 (see Table 11-4 for peripheral function numbers).
```

Note 1: These pins are not available in 64-pin devices.
2: These pins are not available on the PIC24FJXXXGB606.

## NOTES:

### 12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16 -bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16 -bit timer module.
To configure Timer1 for operation:

1. Clear the TON bit (= 0 ).
2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS, TECS<1:0> and TGATE bits.
4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
5. Load the timer period value into the PR1 register.
6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, $\mathrm{T} 1 \mathrm{IP}<2: 0>$, to set the interrupt priority.
7. Set the TON bit (= 1).

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM


## REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER ${ }^{(1)}$

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	-	TSIDL	-	-	-	TECS1	TECS0
bit 15				bit 8			


| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | TGATE | TCKPS1 | TCKPS0 | - | TSYNC | TCS | - |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15 TON: Timer1 On bit
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 TSIDL: Timer1 Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12-10
Unimplemented: Read as ' 0 '
bit 9-8 TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS =1)
$11=$ Generic timer (TxCK) external input
10 = LPRC Oscillator
$01=$ T1CK external clock input
00 = SOSC
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0 :
1 = Gated time accumulation is enabled
$0=$ Gated time accumulation is disabled
bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits
$11=1: 256$
$10=1: 64$
$01=1: 8$
$00=1: 1$
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1:
1 = Synchronizes the external clock input
$0=$ Does not synchronize the external clock input
When TCS = 0:
This bit is ignored.
bit 1 TCS: Timer1 Clock Source Select bit
1 = Extended clock is selected by the timer
0 = Internal clock (Fosc/2)
bit $0 \quad$ Unimplemented: Read as ' 0 '
Note 1: Changing the value of T1CON while the timer is running (TON =1) causes the timer prescale counter to reset and is not recommended.

### 13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer $2 / 3$ and Timer $4 / 5$ modules are 32 -bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.
As 32 -bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This Trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.
For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

1. Set the T 32 or T 45 bit ( $\mathrm{T} 2 \mathrm{CON}<3>$ or $\mathrm{T} 4 \mathrm{CON}<3>=1$ ).
2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (Isw).
5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or $\mathrm{T} 5 \mathrm{IP}<2: 0>$, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.
To configure any of the timers for individual 16-bit operation:

1. Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
4. Load the timer period value into the PRx register.
5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
6. Set the $\operatorname{TON}(T x C O N<15>=1)$ bit.

FIGURE 13-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM


Note 1: The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the T2CON and T4CON registers.
2: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
3: The A/D Event Trigger is available only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode.

FIGURE 13-2: TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM


Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 13-3: TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM


Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
2: The A/D Event Trigger is available only on Timer3.

## REGISTER 13-1: TXCON: TIMER2 AND TIMER4 CONTROL REGISTER ${ }^{(1)}$

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
TON	-	TSIDL	-	-	-	TECS1 $^{(2)}$	TECS0	
bit 15	bit 8							


U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
-	TGATE	TCKPS1	TCKPS0	T32 ${ }^{(3,4)}$	-	TCS ${ }^{(2)}$	-

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15 TON: Timerx On bit
When TxCON<3> = 1:
1 = Starts 32-bit Timerx/y
0 = Stops 32-bit Timerx/y
When TxCON<3> = 0:
1 = Starts 16-bit Timerx
0 = Stops 16-bit Timerx
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 TSIDL: Timerx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit 9-8 TECS<1:0>: Timerx Extended Clock Source Select bits (selected when TCS =1) $)^{(\mathbf{2})}$
When TCS = 1 :
11 = Generic timer (TxCK) external input
$10=$ LPRC Oscillator
$01=$ TyCK external clock input
00 = SOSC
When TCS = 0:
These bits are ignored; the timer is clocked from the internal system clock (Fosc/2).
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6 TGATE: Timerx Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
$0=$ Gated time accumulation is disabled
bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits
$11=1: 256$
$10=1: 64$
$01=1: 8$
$00=1: 1$
Note 1: Changing the value of $\operatorname{TxCON}$ while the timer is running $(T O N=1)$ causes the timer prescale counter to reset and is not recommended.
2: If TCS $=1$ and TECS<1:0> = x1, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
3: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.
4: This bit is labeled T45 in the T4CON register.

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER ${ }^{(1)}$ (CONTINUED)
bit $3 \quad$ T32: 32-Bit Timer Mode Select bit ${ }^{(3,4)}$
1 = Timerx and Timery form a single 32-bit timer
$0=$ Timerx and Timery act as two 16-bit timers
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
bit $2 \quad$ Unimplemented: Read as ' 0 '
bit 1 TCS: Timerx Clock Source Select bit ${ }^{(2)}$
1 = Timer source is selected by TECS<1:0>
$0=$ Internal clock (Fosc/2)
bit $0 \quad$ Unimplemented: Read as ' 0 '
Note 1: Changing the value of TxCON while the timer is running ( $\mathrm{TON}=1$ ) causes the timer prescale counter to reset and is not recommended.
2: If TCS $=1$ and TECS $<1: 0>=x 1$, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
3: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.
4: This bit is labeled T45 in the T4CON register.

## REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER ${ }^{(1)}$

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON $^{(2)}$	-	TSIDL $^{(2)}$	-	-	-	TECS1 $^{(2,3)}$	TECSO $^{(2,3)}$
bit 15							


U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
-	TGATE $^{(2)}$	TCKPS1 $^{(2)}$	TCKPS0 $^{(2)}$	-	-	TCS $^{(2,3)}$	-
bit 7							

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ = Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared

bit $15 \quad$ TON: Timery On bit ${ }^{(2)}$
1 = Starts 16-bit Timery
$0=$ Stops 16-bit Timery
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 TSIDL: Timery Stop in Idle Mode bit ${ }^{(2)}$
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit 9-8 TECS<1:0>: Timery Extended Clock Source Select bits (selected when TCS =1) ${ }^{(2,3)}$
11 = Generic timer (TxCK) external input
$10=$ LPRC Oscillator
$01=$ TyCK external clock input
00 = SOSC
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6 TGATE: Timery Gated Time Accumulation Enable bit ${ }^{(2)}$
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
$0=$ Gated time accumulation is disabled
bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits ${ }^{(2)}$
$11=1: 256$
$10=1: 64$
$01=1: 8$
$00=1: 1$
bit 3-2 Unimplemented: Read as ' 0 '
bit 1 TCS: Timery Clock Source Select bit ${ }^{(2,3)}$
1 = External clock from pin, TyCK (on the rising edge)
0 = Internal clock (Fosc/2)
bit $0 \quad$ Unimplemented: Read as ' 0 '
Note 1: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
2: When 32-bit operation is enabled ( $\mathrm{T} 2 \mathrm{CON}<3>$ or $\mathrm{T} 4 \mathrm{CON}<3>=1$ ), these bits have no effect on Timery operation; all timer functions are set through T2CON and T4CON.
3: If TCS $=1$ and TECS $<1: 0>=x 1$, the selected external timer input (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

### 14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS70000352), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ1024GA610/GB610 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.
Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to 6 Clock Sources Available for each module, Driving a Separate Internal 16-Bit Counter
The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.


### 14.1 General Operating Modes

### 14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a FreeRunning mode, the internal 16 -bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000 h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16 -bit value of the internal counter is written to the FIFO buffer.
In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.
Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to ' 00000 ' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/ Trigger source.
When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

## FIGURE 14-1: INPUT CAPTURE x BLOCK DIAGRAM



Note 1: The ICx input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

### 14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16 -bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32 -bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32 -bit register pairs and the even numbered module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.
Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

### 14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every $4^{\text {th }}$ or $16^{\text {th }}$ ). Interrupts can be independently configured to generate on each event or a subset of events.
To set up the module for capture operations:

1. Configure the ICx input for one of the available Peripheral Pin Select pins.
2. If Synchronous mode is to be used, disable the Sync source before proceeding.
3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/Trigger source.
5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
7. Select Synchronous or Trigger mode operation:
a) Check that the SYNCSELx bits are not set to '00000'.
b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
8. Set the ICMx bits ( $\operatorname{ICxCON} 1<2: 0>$ ) to the desired operational mode.
9. Enable the selected Sync/Trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

1. Set the IC32 bits for both modules (ICyCON2<8> and $\mathrm{ICxCON} 2<8>$ ), enabling the even numbered module first. This ensures the modules will start functioning in unison.
2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/Trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
3. Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its Trigger setting.
4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
5. Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
Note: For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
6. Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.
The module is ready to capture events when the time base and the Sync/Trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to ' 0 '.
For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

## REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
-	-	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	-	-
bit 15				bit 8			


| U-0 | R/W-0 | R/W-0 | R-0, HSC | R-0, HSC | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | ICI1 | ICI0 | ICOV | ICBNE | ICM2 $^{(1)}$ | ICM1 $^{(1)}$ | ICM0 $^{(1)}$ |
| bit 7 |  |  |  |  |  |  |  |


Legend:	HSC = Hardware Settable/Clearable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13 ICSIDL: Input Capture $x$ Stop in Idle Control bit
1 = Input Capture $x$ halts in CPU Idle mode
$0=$ Input Capture $\times$ continues to operate in CPU Idle mode
bit 12-10 ICTSEL<2:0>: Input Capture $\times$ Timer Select bits
111 = System clock (Fosc/2)
110 = Reserved
101 = Reserved
100 = Timer1
$011=$ Timer5
$010=$ Timer4
001 = Timer2
000 = Timer3
bit 9-7 Unimplemented: Read as ' 0 '
bit 6-5 $\quad$ ICI<1:0>: Input Capture $x$ Select Number of Captures per Interrupt bits
11 = Interrupt on every fourth capture event
$10=$ Interrupt on every third capture event
01 = Interrupt on every second capture event
$00=$ Interrupt on every capture event
bit 4 ICOV: Input Capture $x$ Overflow Status Flag bit (read-only)
1 = Input Capture x overflow has occurred
$0=$ No Input Capture $x$ overflow has occurred
bit 3 ICBNE: Input Capture x Buffer Empty Status bit (read-only)
$1=$ Input Capture $x$ buffer is not empty, at least one more capture value can be read
0 = Input Capture x buffer is empty
bit 2-0 ICM<2:0>: Input Capture $x$ Mode Select bits ${ }^{(\mathbf{1})}$
111 = Interrupt mode: Input Capture x functions as an interrupt pin only when the device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable)
$110=$ Unused (module is disabled)
$101=$ Prescaler Capture mode: Capture on every $16^{\text {th }}$ rising edge
$100=$ Prescaler Capture mode: Capture on every $4^{\text {th }}$ rising edge
011 = Simple Capture mode: Capture on every rising edge
$010=$ Simple Capture mode: Capture on every falling edge
001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0> bits do not control interrupt generation for this mode
$000=$ Input Capture $\times$ module is turned off
Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

## REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	R/W-0						
-	-	-	-	-	-	-	IC32
bit 15							


R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	-	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7					bit 0		


Legend:	HS = Hardware Settable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-9 Unimplemented: Read as '0'
bit $8 \quad$ IC32: Cascade Two Input Capture Modules Enable bit (32-bit operation)
1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules)
$0=I C x$ functions independently as a 16-bit module
bit $7 \quad$ ICTRIG: Input Capture $\times$ Sync/Trigger Select bit
1 = Triggers ICx from the source designated by the SYNCSELx bits
$0=$ Synchronizes ICx with the source designated by the SYNCSELx bits
bit 6 TRIGSTAT: Timer Trigger Status bit
1 = Timer source has been triggered and is running (set in hardware, can be set in software)
$0=$ Timer source has not been triggered and is being held clear
bit $5 \quad$ Unimplemented: Read as ' 0 '
Note 1: Use these inputs as Trigger sources only and never as Sync sources.
2: Never use an Input Capture $x$ module as its own Trigger source by selecting this mode.

## REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
$11111=$ IC6 interrupt ${ }^{(2)}$
$11110=$ IC5 interrupt ${ }^{(2)}$
$11101=$ IC4 interrupt ${ }^{(2)}$
$11100=$ CTMU Trigger ${ }^{(1)}$
$11011=A / D$ interrupt ${ }^{(1)}$
$11010=$ CMP3 Trigger ${ }^{(1)}$
11001 = CMP2 Trigger ${ }^{(1)}$
11000 = CMP1 Trigger $^{(1)}$
10111 = SCCP5 IC/OC interrupt
$10110=$ SCCP4 IC/OC interrupt
10101 = MCCP3 IC/OC interrupt
10100 = MCCP2 IC/OC interrupt
10011 = MCCP1 IC/OC interrupt
$10010=$ IC3 interrupt ${ }^{(2)}$
$10001=$ IC2 interrupt ${ }^{(2)}$
$10000=$ IC1 interrupt ${ }^{(2)}$
01111 = SCCP7 IC/OC interrupt
01110 = SCCP6 IC/OC interrupt
01101 = Timer3 match event
01100 = Timer2 match event
01011 = Timer1 match event
01010 = SCCP7 Sync/Trigger out
01001 = SCCP6 Sync/Trigger out
01000 = SCCP5 Sync/Trigger out
00111 = SCCP4 Sync/Trigger out
00110 = MCCP3 Sync/Trigger out
00101 = MCCP2 Sync/Trigger out
00100 = MCCP1 Sync/Trigger out
00011 = OC3 Sync/Trigger out
00010 = OC2 Sync/Trigger out
00001 = OC1 Sync/Trigger out
00000 = Off
Note 1: Use these inputs as Trigger sources only and never as Sync sources.
2: Never use an Input Capture $x$ module as its own Trigger source by selecting this mode.

## NOTES:

### 15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All devices in the PIC24FJ1024GA610/GB610 family feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce PulseWidth Modulated (PWM) waveforms for driving power applications.
Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- Two Separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event or Continuous PWM Waveform Generation
- Up to 6 cLock Sources Available for each module, Driving a Separate Internal 16-Bit Counter


### 15.1 General Operating Modes

### 15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a FreeRunning mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to $0 x 0000$ on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.
Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except ' 00000 '. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/Trigger source.

### 15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16 -Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32 -bit register pairs and the even numbered module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.
Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more details on cascading, refer to the "dsPIC33/ PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159).

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)


Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

### 15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.
To set up the module for compare operations:

1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
2. Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.
3. Write the rising edge value to $O C x R$ and the falling edge value to OCxRS.
4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
5. Set the $O C M<2: 0>$ bits for the appropriate compare operation (= $0 x x$ ).
6. For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger operation and TRIGSTAT to select a hardware or software Trigger. For Synchronous mode, clear OCTRIG.
7. Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
8. Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

For 32-bit cascaded operation, these steps are also necessary:

1. Set the OC32 bits for both registers (OCyCON2<8> and OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
2. Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
3. Configure the desired output and Fault settings for OCy.
4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
5. If Trigger mode operation is required, configure the Trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL<4:0> (OCxCON2<4:0>) bits.
6. Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.
Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.
Single-Shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

### 15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OC module you are using. Otherwise, configure the dedicated OCx output pins.
2. Calculate the desired duty cycles and load them into the OCxR register.
3. Calculate the desired period and load it into the OCxRS register.
4. Select the current $O C x$ as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits ( $\mathrm{OCxCON} 2<4: 0>$ ) and ' 0 ' to the OCTRIG bit ( $\mathrm{OCxCON} 2<7>$ ).
5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
7. Select the desired PWM mode in the $\mathrm{OCM}<2: 0>$ bits (OCxCON1<2:0>).
8. Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 15-2: OUTPUT COMPARE x BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)


Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

### 15.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 15-1.

## EQUATION 15-1: CALCULATING THE PWM PERIOD ${ }^{(1)}$

PWM Period $=[($ PRy $)+1 \cdot$ Tcy • $($ Timer Prescale Value $)$
Where:
PWM Frequency $=1 /[$ PWM Period $]$

Note 1: Based on Tcy = Tosc * 2; Doze mode and PLL are disabled.

Note: A PRy value of $N$ will produce a PWM period of $N+1$ time base count cycles. For example, a value of 7, written into the PRy register, will yield a period consisting of 8 time base cycles.

### 15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low ( $0 \%$ duty cycle).
- If OCxRS is greater than PRy, the pin will remain high ( $100 \%$ duty cycle).
See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.


## EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION ${ }^{(1)}$

$$
\text { Maximum PWM Resolution (bits) }=\frac{\log _{10}\left(\frac{\text { FCY }}{\text { FPWM •(Timer Prescale Value) })}\right)}{\log _{10}{ }^{(2)}} \text { bits }
$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

## EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS ${ }^{(1)}$

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz , where Fosc $=8 \mathrm{MHz}$ with PLL ( 32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
```
TCY =2 * TosC = 62.5 ns
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 }\mu\textrm{S
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)
19.2 \mus = (PR2 + 1) • 62.5 ns •1
PR2 = 306
```

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution $\left.=\log _{10}(\mathrm{FCY} / \mathrm{FPWM}) / \log _{10} 2\right)$ bits
$=\left(\log _{10}(16 \mathrm{MHz} / 52.08 \mathrm{kHz}) / \log _{10} 2\right)$ bits
$=8.3$ bits
Note 1: Based on Tcy $=2$ * Tosc; Doze mode and PLL are disabled.

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz$)^{(1)}$

PWM Frequency	$\mathbf{7 . 6 ~ H z}$	$\mathbf{6 1 ~ H z}$	$\mathbf{1 2 2 ~ H z}$	$\mathbf{9 7 7} \mathbf{~ H z}$	$\mathbf{3 . 9} \mathbf{~ k H z}$	$\mathbf{3 1 . 3} \mathbf{~ k H z}$	$\mathbf{1 2 5} \mathbf{~ k H z}$
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	$7 F F F h$	$0 F F F h$	$03 F F h$	$007 F h$	001 Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz$)^{(1)}$

PWM Frequency	$\mathbf{3 0 . 5 ~ H z}$	$\mathbf{2 4 4} \mathbf{~ H z}$	$\mathbf{4 8 8} \mathbf{~ H z}$	$\mathbf{3 . 9} \mathbf{~ k H z}$	$\mathbf{1 5 . 6} \mathbf{~ k H z}$	$\mathbf{1 2 5} \mathbf{~ k H z}$	$\mathbf{5 0 0} \mathbf{~ k H z}$
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	$7 F F F h$	$0 F F F h$	$03 F F h$	$007 F h$	001 Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

## REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | OCSIDL | OCTSEL2 | OCTSEL1 | OCTSEL0 | ENFLT2 ${ }^{(2)}$ | ENFLT1 ${ }^{(2)}$ |
| bit 15 |  |  |  |  | bit 8 |  |  |


R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0 ${ }^{(2)}$	OCFLT2 ${ }^{(2,3)}$	OCFLT1 ${ }^{(2,4)}$	OCFLT0 ${ }^{(2,4)}$	TRIGMODE	OCM2 ${ }^{(1)}$	OCM1 ${ }^{(1)}$	OCM0 ${ }^{(1)}$
bit 7							bit 0


Legend:	HSC = Hardware Settable/Clearable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13 OCSIDL: Output Compare $\times$ Stop in Idle Mode Control bit
1 = Output Compare $x$ halts in CPU Idle mode
$0=$ Output Compare $x$ continues to operate in CPU Idle mode
bit 12-10 OCTSEL<2:0>: Output Compare $x$ Timer Select bits
111 = Peripheral clock (Fcy)
110 = Reserved
101 = Reserved
$100=$ Timer1 clock (only synchronous clock is supported)
011 = Timer5 clock
010 = Timer4 clock
001 = Timer3 clock
000 = Timer2 clock
bit $9 \quad$ ENFLT2: Fault Input 2 Enable bit ${ }^{(2)}$
1 = Fault 2 (Comparator $1 / 2 / 3$ out) is enabled ${ }^{(3)}$
$0=$ Fault 2 is disabled
bit $8 \quad$ ENFLT1: Fault Input 1 Enable bit ${ }^{(2)}$
$1=$ Fault 1 (OCFB pin) is enabled ${ }^{(4)}$
$0=$ Fault 1 is disabled
bit $7 \quad$ ENFLTO: Fault Input 0 Enable bit ${ }^{(2)}$
$1=$ Fault 0 (OCFA pin) is enabled ${ }^{(4)}$
$0=$ Fault 0 is disabled
bit 6 OCFLT2: Output Compare $\times$ PWM Fault 2 (Comparator $1 / 2 / 3$ ) Condition Status bit ${ }^{(2,3)}$
$1=$ PWM Fault 2 has occurred
$0=$ No PWM Fault 2 has occurred
bit 5 OCFLT1: Output Compare x PWM Fault 1 (OCFB pin) Condition Status bit ${ }^{(2,4)}$
$1=$ PWM Fault 1 has occurred
$0=$ No PWM Fault 1 has occurred
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
2: The Fault input enable and Fault status bits are valid when $\mathrm{OCM}<2: 0>=111$ or 110.
3: The Comparator 1 output controls the OC1-OC3 channels, Comparator 2 output controls the OC4-OC6 channels, Comparator 3 output controls the OC7-OC9 channels.
4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

## REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 4 OCFLTO: PWM Fault 0 (OCFA pin) Condition Status bit ${ }^{(2,4)}$
1 = PWM Fault 0 has occurred
$0=$ No PWM Fault 0 has occurred
bit 3 TRIGMODE: Trigger Status Mode Select bit
1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
$0=$ TRIGSTAT is only cleared by software
bit 2-0 $\quad \mathbf{O C M}<\mathbf{2 : 0}$ >: Output Compare $\times$ Mode Select bits ${ }^{(1)}$
111 = Center-Aligned PWM mode on OCx ${ }^{(2)}$
$110=$ Edge-Aligned PWM mode on OCx ${ }^{(2)}$
101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low; toggle the OCx state continuously on alternate matches of OCxR and OCxRS
100 = Double Compare Single-Shot mode: Initialize the OCx pin low; toggle the OCx state on matches of OCxR and OCxRS for one cycle
011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
001 = Single Compare Single-Shot mode: Initialize OCx pin low; compare event forces the OCx pin high
$000=$ Output compare channel is disabled
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
2: The Fault input enable and Fault status bits are valid when $\mathrm{OCM}<2: 0>=111$ or 110 .
3: The Comparator 1 output controls the OC1-OC3 channels, Comparator 2 output controls the OC4-OC6 channels, Comparator 3 output controls the OC7-OC9 channels.
4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

## REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB1 $^{(3)}$	DCB0 $^{(3)}$	OC32
bit 15				bit 8			


R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7					bit 0		


Legend:	HS = Hardware Settable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown


bit 15	FLTMD: Fault Mode Select bit
	1 = Fault mode is maintained until the Fault source is removed and the corresponding OCFLTO bit is cleared in software   $0=$ Fault mode is maintained until the Fault source is removed and a new PWM period starts
bit 14	FLTOUT: Fault Out bit
	1 = PWM output is driven high on a Fault   $0=$ PWM output is driven low on a Fault
bit 13	FLTTRIEN: Fault Output State Select bit
	$1=$ Pin is forced to an output on a Fault condition   $0=$ Pin I/O condition is unaffected by a Fault
bit 12	OCINV: OCMP Invert bit
	$1=$ OCx output is inverted   $0=$ OCx output is not inverted
bit 11	Unimplemented: Read as '0'
bit 10-9	DCB<1:0>: PWM Duty Cycle Least Significant bits ${ }^{(3)}$
	11 = Delay OCx falling edge by $3 / 4$ of the instruction cycle
	10 = Delay OCx falling edge by $1 / 2$ of the instruction cycle
	01 = Delay OCx falling edge by $1 / 4$ of the instruction cycle
	$00=$ OCx falling edge occurs at the start of the instruction cycle
bit 8	OC32: Cascade Two OC Modules Enable bit (32-bit operation)
	1 = Cascade module operation is enabled
	0 = Cascade module operation is disabled
bit 7	OCTRIG: OCx Trigger/Sync Select bit
	1 = Triggers OCx from the source designated by the SYNCSELx bits
	$0=$ Synchronizes OCx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	1 = Timer source has been triggered and is running
	$0=$ Timer source has not been triggered and is being held clear
bit 5	OCTRIS: OCx Output Pin Direction Select bit
	1 = OCx pin is tri-stated
	$0=$ Output compare peripheral $x$ is connected to an OCx pin

Note 1: Never use an Output Compare $x$ module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
2: Use these inputs as Trigger sources only and never as Sync sources.
3: The $D C B<1: 0>$ bits are double-buffered in the PWM modes only $(O C M<2: 0>(O C x C O N 1<2: 0>)=111,110)$.

## REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
11111 = OCx Sync out ${ }^{(1)}$
$11110=$ OCTRIG1 pin
11101 = OCTRIG2 pin
11100 = CTMU Trigger ${ }^{(2)}$
$11011=$ A/D interrupt ${ }^{(2)}$
$11010=$ CMP3 Trigger ${ }^{(2)}$
11001 = CMP2 Trigger ${ }^{(2)}$
11000 = CMP1 Trigger ${ }^{(2)}$
10111 = SCCP5 IC/OC interrupt
10110 = SCCP4 IC/OC interrupt
$10101=$ MCCP3 IC/OC interrupt
10100 = MCCP2 IC/OC interrupt
$10011=$ MCCP1 IC/OC interrupt
$10010=$ IC3 interrupt ${ }^{(2)}$
$10001=$ IC2 interrupt ${ }^{(2)}$
$10000=$ IC1 interrupt ${ }^{(2)}$
01111 = SCCP7 IC/OC interrupt
01110 = SCCP6 IC/OC interrupt
01101 = Timer3 match event
01100 = Timer2 match event (default)
01011 = Timer1 match event
01010 = SCCP7 Sync/Trigger out
01001 = SCCP6 Sync/Trigger out
01000 = SCCP5 Sync/Trigger out
00111 = SCCP4 Sync/Trigger out
00110 = MCCP3 Sync/Trigger out
00101 = MCCP2 Sync/Trigger out
00100 = MCCP1 Sync/Trigger out
$00011=$ OC5 Sync/Trigger out ${ }^{(1)}$
$00010=$ OC3 Sync/Trigger out ${ }^{(1)}$
$00001=$ OC1 Sync/Trigger out ${ }^{(1)}$
00000 = Off, Free-Running mode with no synchronization and rollover at FFFFh
Note 1: Never use an Output Compare x module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
2: Use these inputs as Trigger sources only and never as Sync sources.
3: The $D C B<1: 0>$ bits are double-buffered in the PWM modes only $(O C M<2: 0>(O C x C O N 1<2: 0>)=111,110)$.

## NOTES:

### 16.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to the "dsPIC33/PIC24 Family Reference Manual", "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS33035A), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ1024GA610/GB610 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCPs) output modules provide only one PWM output. Multiple Capture/Compare/PWM (MCCPs) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical.

The SCCPx and MCCPx modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

A conceptual block diagram for the module is shown in Figure 16-1. All three modules share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.
Each module has a total of 8 control and status registers:

- CCPxCON1L (Register 16-1)
- CCPxCON1H (Register 16-2)
- CCPxCON2L (Register 16-3)
- CCPxCON2H (Register 16-4)
- CCPxCON3L (Register 16-5)
- CCPxCON3H (Register 16-6)
- CCPxSTATL (Register 16-7)
- CCPxSTATH (Register 16-8)

Each module also includes 8 buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRA (Primary Output Compare Data Buffer)
- CCPxRB (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

FIGURE 16-1: MCCPxISCCPx CONCEPTUAL BLOCK DIAGRAM


### 16.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 16-2.

There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI external clock inputs. The system clock is the default source (CLKSEL<2:0> = 000).

FIGURE 16-2: TIMER CLOCK GENERATOR


Note 1: Gating available in Timer modes only.

### 16.2 General Purpose Timer

Timer mode is selected when CCSEL $=0$ and $\mathrm{MOD}<3: 0>=0000$. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 16-1).

TABLE 16-1: TIMER OPERATION MODE

T32   (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

Dual 16-Bit Timer mode provides a simple timer function with two independent 16 -bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC<4:0> bits signal generated by other modules.
The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCPx Compare Event (CCPxIF) used by many other modules on the device.
The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments
by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

### 16.2.1 SYNC AND TRIGGER OPERATION

In both 16 -bit and 32 -bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC<4:0> bits (CCPxCON1H $<4: 0>$ ) to determine the input signal source. The difference is how that signal affects the timer.
In Sync operation, the Timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H $<7>$ ) is cleared. The SYNC<4:0> bits can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL<7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FJ1024GA610/GB610 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

FIGURE 16-3: DUAL 16-BIT TIMER MODE


FIGURE 16-4: 32-BIT TIMER MODE


### 16.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of
output pulses. Like most $\mathrm{PIC}^{\circledR} \mathrm{MCU}$ peripherals, the Output Compare x module can also generate interrupts on a compare match event.
Table 16-2 shows the various modes available in Output Compare modes.

TABLE 16-2: OUTPUT COMPARE/PWM MODES

MOD<3:0>   (CCPxCON1L<3:0>)	T32   (CCPxCON1L<5>)	Operating Mode	
0001	0	Output High on Compare (16-bit)	
0001	1	Output High on Compare (32-bit)	
0010	0	Output Low on Compare (16-bit)	Single Edge Mode
0010	1	Output Low on Compare (32-bit)	
0011	0	Output Toggle on Compare (16-bit)	
0011	1	Output Toggle on Compare (32-bit)	
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM Mode
0111	0	Variable Frequency Pulse (16-bit)	
1111	0	External Input Source Mode (16-bit)	

FIGURE 16-5: OUTPUT COMPARE x BLOCK DIAGRAM


### 16.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 16-6 depicts a simplified block diagram of the Input Capture mode.

Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.
To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 16-3.

TABLE 16-3: INPUT CAPTURE MODES

MOD<3:0>   (CCPxCON1L<3:0>)	T32   (CCPxCON1L<5>)	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)
0011	0	Every Rise/Fall (16-bit capture)
0011	1	Every Rise/Fall (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

FIGURE 16-6: INPUT CAPTURE x BLOCK DIAGRAM


### 16.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx or SCCPx modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.
On the PIC24FJ1024GA610/GB610 family of devices, only the CTMU discharge Trigger has access to the auxiliary output signal.

TABLE 16-4: AUXILIARY OUTPUT

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	X	xxxx	Auxiliary Output Disabled	No Output
01	0	0000	Time Base Modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare Modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11				Output Compare Signal
01	1	xxxx	Input Capture Modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

| R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCPON | - | CCPSIDL | CCPSLP | TMRSYNC | CLKSEL2 | CLKSEL1 | CLKSEL0 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TMRPS1 | TMRPS0 | T32 | CCSEL | MOD3 | MOD2 | MOD1 | MOD0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit $15 \quad$ CCPON: CCPx Module Enable bit
$1=$ Module is enabled with an operating mode specified by the MOD<3:0> control bits $0=$ Module is disabled
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 CCPSIDL: CCPx Stop in Idle Mode Bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12
bit 11
bit 10-8
LKSEL<2:0>: CCPx Time Base Clock Select bits
111 = TCKIA pin
$110=$ TCKIB pin
101 = PLL clock
$100=2 x$ peripheral clock
010 = SOSC clock
001 = Reference clock output
000 = System clock
For MCCP1 and SCCP4:
011 = CLC1 output
For MCCP2 and SCCP5:
011 = CLC2 output
For MCCP3 and SCCP6:
011 = CLC3 output
For SCCP7:
011 = CLC4 output
bit 7-6 TMRPS<1:0>: Time Base Prescale Select bits
$11=1: 64$ Prescaler
$10=1: 16$ Prescaler
$01=1: 4$ Prescaler
00 = 1:1 Prescaler
bit $5 \quad$ T32: 32-Bit Time Base Select bit
1 = Uses 32-bit time base for timer, single edge output compare or input capture function
$0=$ Uses 16 -bit time base for timer, single edge output compare or input capture function

## REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 4	CCSEL: Capture/Compare Mode Select bit   1 = Input capture peripheral   $0=$ Output compare/PWM/timer peripheral (exact function is selected by the MOD<3:0> bits)
bit 3-0	MOD<3:0>: CCPx Mode Select bits
	For CCSEL = 1 (Input Capture modes):
	1xxx = Reserved
	011x = Reserved
	0101 = Capture every 16th rising edge
	0100 = Capture every 4th rising edge
	0011 = Capture every rising and falling edge
	$0010=$ Capture every falling edge
	0001 = Capture every rising edge
	0000 = Capture every rising and falling edge (Edge Detect mode)
	For CCSEL $=0$ (Output Compare/Timer modes):
	1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>   1110 = Reserved
	110x = Reserved
	10xx = Reserved
	0111 = Variable Frequency Pulse mode
	0110 = Center-Aligned Pulse Compare mode, buffered
	0101 = Dual Edge Compare mode, buffered
	0100 = Dual Edge Compare mode
	0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
	0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
	$0001=16-\mathrm{Bit} / 32-\mathrm{Bit}$ Single Edge mode, drives output high on compare match
	$0000=16-\mathrm{Bit} / 32-\mathrm{Bit}$ Timer mode, output functions are disabled

REGISTER 16-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OPSSRC $^{(1)}$	RTRGEN $^{(2)}$	-	-	OPS3 $^{(3)}$	OPS2 $^{(3)}$	OPS1 $^{(3)}$	OPS0 $^{(3)}$		
bit 15									
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0   TRIGEN ONESHOT ALTSYNC SYNC4 SYNC3 SYNC2 SYNC1 SYNC0   bit 7								$.$	bit 0
:---									


Legend:				
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '		
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared	$\quad x=$ Bit is unknown	
:---				


bit 15	OPSSRC: Output Postscaler Source Select bit ${ }^{(1)}$
	1 = Output postscaler scales module Trigger output events   $0=$ Output postscaler scales time base interrupt events
bit 14	RTRGEN: Retrigger Enable bit ${ }^{(2)}$
	$\begin{aligned} & 1=\text { Time base can be retriggered when TRIGEN bit }=1 \\ & 0=\text { Time base may not be retriggered when TRIGEN bit }=1 \end{aligned}$
bit 13-12	Unimplemented: Read as '0'
bit 11-8	OPS3<3:0>: CCPx Interrupt Output Postscale Select bits ${ }^{(3)}$
	1111 = Interrupt every 16th time base period match
	1110 = Interrupt every 15th time base period match
	0100 = Interrupt every 5th time base period match
	0011 = Interrupt every 4th time base period match or 4th input capture event
	0010 = Interrupt every 3rd time base period match or 3rd input capture event
	0001 = Interrupt every 2nd time base period match or 2nd input capture event
	0000 = Interrupt after each time base period match or input capture event
bit 7	TRIGEN: CCPx Trigger Enable bit
	1 = Trigger operation of time base is enabled
	$0=$ Trigger operation of time base is disabled
bit 6	ONESHOT: One-Shot Mode Enable bit
	1 = One-Shot Trigger mode is enabled; Trigger duration is set by OSCNT<2:0> $0=$ One-Shot Trigger mode is disabled
bit 5	ALTSYNC: CCPx Clock Select bit
	$1=$ An alternate signal is used as the module synchronization output signal   $0=$ The module synchronization output signal is the Time Base Reset/rollover event
bit 4-0	SYNC<4:0>: CCPx Synchronization Source Select bits
	See Table 16-5 for the definition of inputs.

Note 1: This control bit has no function in Input Capture modes.
2: $\quad$ This control bit has no function when TRIGEN $=0$.
3: Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

TABLE 16-5: SYNCHRONIZATION SOURCES

SYNC<4:0>	Synchronization Source
11111	None; Timer with Rollover on CCPxPR Match or FFFFh
11110	Reserved
11101	Reserved
11100	CTMU Trigger
11011	A/D Start Conversion
11010	CMP3 Trigger
11001	CMP2 Trigger
11000	CMP1 Trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 Out
10010	CLC3 Out
10001	CLC2 Out
10000	CLC1 Out
01111	Reserved
01110	Reserved
01101	Reserved
01100	Reserved
01011	INT2 Pad
01010	INT1 Pad
01001	INT0 Pad
01000	SCCP7 Sync Out
00111	SCCP6 Sync Out
00110	SCCP5 Sync Out
00101	SCCP4 Sync Out
00100	MCCP3 Sync Out
00011	MCCP2 Sync Out
00010	MCCP1 Sync Out
00001	MCCPx/SCCPx Sync Out ${ }^{(1)}$
00000	MCCPx/SCCPx Timer Sync Out ${ }^{(1)}$

Note 1: CCP1 when connected to CCP1, CCP2 when connected to CCP2, etc.

REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0		
PWMRSEN	ASDGM	-	SSDG	-	-	-	-		
bit 15									
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0   ASDG7 ASDG6 ASDG5 ASDG4 ASDG3 ASDG2 ASDG1 ASDG0   bit 7								$.$	bit 0
:---									

## Legend:

$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15 PWMRSEN: CCPx PWM Restart Enable bit
1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
$0=$ ASEVT bit must be cleared in software to resume PWM activity on output pins
bit 14 ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit
1 = Waits until the next Time Base Reset or rollover for shutdown to occur
$0=$ Shutdown event occurs immediately
bit $13 \quad$ Unimplemented: Read as ' 0 '
bit 12 SSDG: CCPx Software Shutdown/Gate Control bit
1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM bit still applies)
$0=$ Normal module operation
bit 11-8 Unimplemented: Read as ' 0 '
bit 7-0 ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits
1 = ASDGx Source n is enabled (see Table 16-6 for auto-shutdown/gating sources)
$0=$ ASDGx Source $n$ is disabled

TABLE 16-6: AUTO-SHUTDOWN SOURCES

ASDG<7:0>	Auto-Shutdown Source						
	MCCP1	MCCP2	MCCP3	SCCP4	SCCP5	SCCP6	SCCP7
1xxx xxxx	OCFB						
x1xx xxxx	OCFA						
xx1x xxxx	CLC1	CLC2	CLC3	CLC1	CLC2	CLC3	CLC4
xxx1 xxxx	SCCP4 OC Out			MCCP1 OC Out			
xxxx 1xxx	SCCP5 OC Out			MCCP2 OC Out			
xxxx x1xx	CMP3 Out						
xxxx xx1x	CMP2 Out						
xxxx xxx1	CMP1 Out						

REGISTER 16-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
OENSYNC	-	OCFEN $^{(1,2)}$	OCEEN $^{(1,2)}$	OCDEN $^{(1,2)}$	OCCEN $^{(1,2)}$	OCBEN $^{(1)}$	OCAEN
bit 15							


| R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICGSM1 | ICGSM0 | - | AUXOUT1 | AUXOUT0 | ICS2 | ICS1 | ICS0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15 OENSYNC: Output Enable Synchronization bit
1 = Update by output enable bits occurs on the next Time Base Reset or rollover $0=$ Update by output enable bits occurs immediately
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13-8 OCxEN: Output Enable/Steering Control bits ${ }^{(1,2)}$
$1=$ OCMx pin is controlled by the CCPx module and produces an output compare or PWM signal
$0=\mathrm{OCMx}$ pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin
bit 7-6 ICGSM<1:0>: Input Capture Gating Source Mode Control bits
11 = Reserved
$10=$ One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events
bit $5 \quad$ Unimplemented: Read as ' 0 '
bit 4-3 AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits
11 = Input capture or output compare event; no signal in Timer mode
$10=$ Signal output is defined by module operating mode (see Table 16-4)
01 = Time base rollover event (all modes)
00 = Disabled
bit 2-0 ICS<2:0>: Input Capture Source Select bits
111 = CLC4 output
$110=$ CLC3 output
101 = CLC2 output
100 = CLC1 output
011 = Comparator 3 output
010 = Comparator 2 output
001 = Comparator 1 output
$000=$ Input Capture $\times(I C M x)$ I/O pin
Note 1: OCFEN through OCBEN (bits<13:9>) are implemented in MCCPx modules only.
2: OCFEN through OCCEN (bits<13:10>) are not available on 64-pin parts.

REGISTER 16-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS ${ }^{(1)}$

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	DT<5:0>					
bit 7							bit 0

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared


bit 15-6	Unimplemented: Read as ' 0 '
bit 5-0	DT<5:0>: CCPx Dead-Time Select bits
	$111111=$ Inserts 63 dead-time delay periods between complementary output signals
	$111110=$ Inserts 62 dead-time delay periods between complementary output signals
	$\ldots$
	$000010=$ Inserts 2 dead-time delay periods between complementary output signals
	$000001=$ Inserts 1 dead-time delay period between complementary output signals
	$000000=$ Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

## REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	-	OUTM2 $^{(\mathbf{1})}$	OUTM1 $^{(1)}$	OUTM0 $^{(\mathbf{1})}$
bit 15							


| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| - | - | POLACE | POLBDF $^{(1)}$ | PSSACE1 | PSSACE0 | PSSBDF1 $1^{(1)}$ | PSSBDF0 ${ }^{(\mathbf{1})}$ |
| bit 7 |  |  |  | bit 0 |  |  |  |


Legend:			
$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplement	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown


bit 15	OETRIG: CCPx Dead-Time Select bit
	1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered   $0=$ Normal output pin operation
bit 14-12	OSCNT<2:0>: One-Shot Event Count bits
	111 = Extends one-shot event by 7 time base periods (8 time base periods total)
	$110=$ Extends one-shot event by 6 time base periods ( 7 time base periods total)
	$101=$ Extends one-shot event by 5 time base periods (6 time base periods total)
	$100=$ Extends one-shot event by 4 time base periods (5 time base periods total)
	011 = Extends one-shot event by 3 time base periods (4 time base periods total)
	$010=$ Extends one-shot event by 2 time base periods (3 time base periods total)
	$001=$ Extends one-shot event by 1 time base period (2 time base periods total)
	000 = Does not extend one-shot Trigger event
bit 11	Unimplemented: Read as ' 0 '
bit 10-8	OUTM<2:0>: PWMx Output Mode Control bits ${ }^{(1)}$
	111 = Reserved
	110 = Output Scan mode
	101 = Brush DC Output mode, forward
	100 = Brush DC Output mode, reverse
	011 = Reserved
	$010=$ Half-Bridge Output mode
	001 = Push-Pull Output mode
	000 = Steerable Single Output mode
bit 7-6	Unimplemented: Read as ' 0 '
bit 5	POLACE: CCPx Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit
	1 = Output pin polarity is active-low
	$0=$ Output pin polarity is active-high
bit 4	POLBDF: CCPx Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit ${ }^{(1)}$
	$1=$ Output pin polarity is active-low   $0=$ Output pin polarity is active-high
bit 3-2	PSSACE<1:0>: PWMx Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits
	$11=$ Pins are driven active when a shutdown event occurs
	$10=$ Pins are driven inactive when a shutdown event occurs
	$0 \mathrm{x}=$ Pins are tri-stated when a shutdown event occurs
bit 1-0	PSSBDF<1:0>: PWMx Output Pins, OCMxB, OCMxD, and OCMxF, Shutdown State Control bits ${ }^{(1)}$
	11 = Pins are driven active when a shutdown event occurs
	$10=$ Pins are driven inactive when a shutdown event occurs
	$0 \mathrm{x}=$ Pins are in a high-impedance state when a shutdown event occurs

Note 1: These bits are implemented in MCCPx modules only.

## REGISTER 16-7: CCPxSTATL: CCPx STATUS REGISTER LOW

| U-0 | U-0 | U-0 | U-0 | U-0 | W-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | ICGARM | - | - |
| bit 15 |  |  |  |  |  |  |  |


R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7				bit 0			


Legend:	$C=$ Clearable bit	$W=$ Writable bit
$R=$ Readable bit	$W 1=$ Write ' 1 ' Only bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared $\quad x=$ Bit is unknown


bit 15-11	Unimplemented: Read as '0'
bit 10	ICGARM: Input Capture Gate Arm bit
	A write of ' 1 ' to this location will arm the Input Capture $x$ module for a one-shot gating event when ICGSM<1:0> = 01 or 10 ; read as ' 0 '.
bit 9-8	Unimplemented: Read as ' 0 '
bit 7	CCPTRIG: CCPx Trigger Status bit
	1 = Timer has been triggered and is running
	$0=$ Timer has not been triggered and is held in Reset
bit 6	TRSET: CCPx Trigger Set Request bit
	Write ' 1 ' to this location to trigger the timer when TRIGEN = 1 (location always reads as ' 0 ').
bit 5	TRCLR: CCPx Trigger Clear Request bit
	Write ' 1 ' to this location to cancel the timer Trigger when TRIGEN = 1 (location always reads as ' 0 ').
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit
	$1=\mathrm{A}$ shutdown event is in progress; CCPx outputs are in the shutdown state   $0=$ CCPx outputs operate normally
bit 3	SCEVT: Single Edge Compare Event Status bit
	1 = A single edge compare event has occurred
	$0=$ A single edge compare event has not occurred
bit 2	ICDIS: Input Capture $x$ Disable bit
	1 = Event on Input Capture x pin (ICMx) does not generate a capture event
bit 1	ICOV: Input Capture x Buffer Overflow Status bit
	1 = The Input Capture $\times$ FIFO buffer has overflowed
	$0=$ The Input Capture $\times$ FIFO buffer has not overflowed
bit 0	ICBNE: Input Capture $\times$ Buffer Status bit
	1 = Input Capture $x$ buffer has data available
	$0=$ Input Capture x buffer is empty

REGISTER 16-8: CCPxSTATH: CCPx STATUS REGISTER HIGH

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | R-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | PRLWIP | TMRHWIP | TMRLWIP | RBWIP | RAWIP |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' = Bit is cleared

bit 15-5 Unimplemented: Read as '0'
bit 4 PRLWIP: CCPxPRL Write in Progress Status bit
$1=$ An update to the CCPxPRL register with the buffered contents is in progress
$0=$ An update to the CCPxPRL register is not in progress
bit 3 TMRHWIP: CCPxTMRH Write in Progress Status Bit
1 = An update to the CCPxTMRH register with the buffered contents is in progress
$0=$ An update to the CCPxTMRH register is not in progress.
bit 2 TMRLWIP: CCPxTMRL Write in Progress Status bit
1 = An update to the CCPxTMRL register with the buffered contents is in progress
$0=$ An update to the CCPxTMRL register is not in progress
bit 1 RBWIP: CCPxRB Write in Progress Status bit
1 = An update to the CCPxRB register with the buffered contents is in progress
$0=$ An update to the CCPxRB register is not in progress
bit 0
RAWIP: CCPxRA Write in Progress Status bit
1 = An update to the CCPxRA register with the buffered contents is in progress
$0=$ An update to the CCPxRA register is not in progress

## NOTES:

### 17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ1024GA610/GB610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI)" (DS70005185), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola ${ }^{\circledR}$ SPI and SIOP interfaces. All devices in the PIC24FJ1024GA610/ GB610 family include three SPI modules.
The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.
Variable length data can be transmitted and received from 2 to 32 bits.

Note:	Do not perform Read-Modify-Write opera-   tions (such as bit-oriented instructions) on   the SPIxBUF register in either Standard or            Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.
The module also supports Audio modes. Four different Audio modes are available.

- $I^{2} S$ mode
- Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.
If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- $\overline{\text { SSx: }}$ Active-Low Slave Select or Frame Synchronization I/O Pulse
The SPI module can be configured to operate using 2 , 3 or 4 pins. In the 3-pin mode, $\overline{S S x}$ is not used. In the 2-pin mode, both SDOx and $\overline{S S x}$ are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:

- RX watermark interrupt
- SPIROV = 1
- SPIRBF = 1
- SPIRBE = 1
provided the respective mask bits are enabled in SPIxIMSKL/H.

2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:

- TX watermark interrupt
- SPITUR = 1
- SPITBF = 1
- SPITBE = 1
provided the respective mask bits are enabled in SPIxIMSKL/H.

3. General interrupts are signalled by SPIxIF. This event occurs when

- FRMERR = 1
- SPIBUSY = 1
- SRMT = 1
provided the respective mask bits are enabled in SPIxIMSKL/H.
A block diagram of the module in Enhanced Buffer mode is shown in Figure 17-1.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

### 17.1 Master Mode Operation

Perform the following steps to set up the SPIx module for Master mode operation:

1. Disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPIx module by clearing the SPIEN bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON1L<0>) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
5. If SPlx interrupts are not going to be used, skip this step. Otherwise, the following additional steps are performed:
a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.
6. Write the Baud Rate register, SPIxBRGL.
7. Clear the SPIROV bit (SPIxSTATL<6>).
8. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L<5>) $=1$.
9. Enable SPI operation by setting the SPIEN bit (SPIxCON1L<15>).
10. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL/H registers.

### 17.2 Slave Mode Operation

The following steps are used to set up the SPIx module for the Slave mode of operation:

1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
2. Stop and reset the SPIx module by clearing the SPIEN bit.
3. Clear the receive buffer.
4. Clear the ENHBUF bit (SPIxCON1L<0>) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
5. If using interrupts, the following additional steps are performed:
a) Clear the SPIx interrupt flags/events in the respective IFSx register.
b) Write the SPIx interrupt priority and subpriority bits in the respective IPCx register.
c) Set the SPIx interrupt enable bits in the respective IECx register.
6. Clear the SPIROV bit (SPIxSTATL<6>).
7. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L<5>) $=0$.
8. Enable SPI operation by setting the SPIEN bit (SPIxCON1L<15>).
9. Transmission (and reception) will start as soon as the master provides the serial clock.
The following additional features are provided in Slave mode:

- Slave Select Synchronization: The $\overline{S S x}$ pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON1L<7>) is set, transmission and reception are enabled in Slave mode only if the $\overline{S S x}$ pin is driven to a low state. The port output or other peripheral outputs must not be driven in order to allow the $\overline{\mathrm{SSx}}$ pin to function as an input. If the SSEN bit is set and the $\overline{\mathrm{SSx}}$ pin is driven high, the SDOx pin is no longer driven and will tri-state, even if the module is in the middle of a transmission. An aborted transmission will be tried again the next time the $\overline{\mathrm{SSx}} \mathrm{pin}$ is driven low using the data held in the SPIxTXB register. If the SSEN bit is not set, the $\overline{S S x}$ pin does not affect the module operation in Slave mode.
- SPITBE Status Flag Operation: The SPITBE bit (SPIxSTATL<3>) has a different function in the Slave mode of operation. The following describes the function of SPITBE for various settings of the Slave mode of operation:
- If SSEN (SPIxCON1L<7>) is cleared, the SPITBE bit is cleared when SPIxBUF is loaded by the user code. It is set when the module transfers SPIxTXB to SPIxTXSR. This is similar to the SPITBE bit function in Master mode.
- If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. However, it is set only when the SPIx module completes data transmission. A transmission will be aborted when the $\overline{\mathrm{SSx}}$ pin goes high and may be retried at a later time. So, each data word is held in SPIxTXB until all bits are transmitted to the receiver.

FIGURE 17-1: SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)


### 17.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H<15>). In Master+Audio mode:

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit $($ SPIxCON1L<15>) $=1$.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within 1 SCKx period, and the serial data shifts in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

- This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1 .
- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).
- Once the module receives the leading edge of LRC, it starts receiving data if DISSDI (SPIxCON1L<4>) = 0 and the serial data shifts out continuously, even when the TX FIFO is empty.


### 17.4 SPI Control Registers

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	-	SPISIDL	DISSDO	MODE32 ${ }^{(1,4)}$	MODE16 ${ }^{(1,4)}$	SMP	CKE ${ }^{(1)}$
bit $15 \times$ bit 8							


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSEN $^{(2)}$ | CKP | MSTEN | DISSDI | DISSCK | MCLKEN $^{(3)}$ | SPIFE | ENHBUF |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15 SPIEN: SPIx On bit
1 = Enables module
0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications
bit 14 Unimplemented: Read as ' 0 '
bit 13 SPISIDL: SPIx Stop in Idle Mode bit
1 = Halts in CPU Idle mode
0 = Continues to operate in CPU Idle mode
bit 12 DISSDO: Disable SDOx Output Port bit
1 = SDOx pin is not used by the module; pin is controlled by the port function
$0=$ SDOx pin is controlled by the module
bit 11-10 MODE<32,16>: Serial Word Length bits ${ }^{(1,4)}$

- $A$ UDEN $=0$ :

MODE32	MODE16	COMMUNICATION
1	$x$	$32-$-Bit
0	1	$16-$ Bit
0	0	$8-\mathrm{Bit}$

AUDEN = 1:
MODE32 MODE16 COMMUNICATION

1	1	24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0	16-Bit Data, 16-Bit FIFO, 16-Bit Channel/32-Bit Frame

bit 9 SMP: SPIx Data Input Sample Phase bit
Master Mode:
1 = Input data is sampled at the end of data output time
$0=$ Input data is sampled at the middle of data output time
Slave Mode:
Input data is always sampled at the middle of data output time, regardless of the SMP setting.
Note 1: When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
2: When FRMEN = 1, SSEN is not used.
3: MCLKEN can only be written when the SPIEN bit $=0$.
4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

## REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit $8 \quad$ CKE: SPIx Clock Edge Select bit ${ }^{(1)}$
1 = Transmit happens on transition from active clock state to Idle clock state
0 = Transmit happens on transition from Idle clock state to active clock state
bit $7 \quad$ SSEN: Slave Select Enable bit (Slave mode) ${ }^{(2)}$
$1=\overline{\mathrm{SSx}}$ pin is used by the macro in Slave mode; $\overline{\mathrm{SSx}}$ pin is used as the slave select input $0=\overline{S S x}$ pin is not used by the macro ( $\overline{\mathrm{SSx}}$ pin will be controlled by the port I/O)
bit 6 CKP: SPIx Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
$0=$ Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
bit 4 DISSDI: Disable SDIx Input Port bit
1 = SDIx pin is not used by the module; pin is controlled by the port function
$0=$ SDIx pin is controlled by the module
bit 3 DISSCK: Disable SCKx Output Port bit
1 = SCKx pin is not used by the module; pin is controlled by the port function
$0=$ SCKx pin is controlled by the module
bit 2 MCLKEN: Master Clock Enable bit ${ }^{(3)}$
$1=$ MCLK is used by the BRG
$0=$ PBCLK is used by the BRG
bit 1 SPIFE: Frame Sync Pulse Edge Select bit
1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
$0=$ Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit $0 \quad$ ENHBUF: Enhanced Buffer Mode Enable bit
1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled
Note 1: When AUDEN = 1, this module functions as if CKE $=0$, regardless of its actual value.
2: When FRMEN $=1$, SSEN is not used.
3: MCLKEN can only be written when the SPIEN bit $=0$.
4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

## REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AUDEN ${ }^{(1)}$ | SPISGNEXT | IGNROV | IGNTUR | AUDMONO ${ }^{(2)}$ | URDTEN ${ }^{(3)}$ | AUDMOD1 ${ }^{(4)}$ | AUDMOD0 ${ }^{(4)}$ |
| bit 15 bit 8 |  |  |  |  |  |  |  |


| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRMEN | FRMSYNC | FRMPOL | MSSEN | FRMSYPW | FRMCNT2 | FRMCNT1 | FRMCNT0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15 AUDEN: Audio Codec Support Enable bit ${ }^{(1)}$
1 = Audio protocol is enabled; MSTEN controls the direction of both the SCKx and Frame (a.k.a. LRC), and this module functions as if FRMEN $=1$, FRMSYNC $=$ MSTEN, FRMCNT<2:0> $=001$ and SMP $=0$, regardless of their actual values
0 = Audio protocol is disabled
bit 14 SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit
1 = Data from RX FIFO is sign-extended
0 = Data from RX FIFO is not sign-extended
bit 13
IGNROV: Ignore Receive Overflow bit
1 = A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO is not overwritten by the receive data
$0=\mathrm{A}$ ROV is a critical error that stops SPI operation
bit 12
IGNTUR: Ignore Transmit Underrun bit
1 = A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN is transmitted until the SPIxTXB is not empty
$0=$ A TUR is a critical error that stops SPI operation
bit 11 AUDMONO: Audio Data Format Transmit bit ${ }^{(2)}$
1 = Audio data is mono (i.e., each data word is transmitted on both left and right channels)
0 = Audio data is stereo
bit 10 URDTEN: Transmit Underrun Data Enable bit ${ }^{(3)}$
1 = Transmits data out of SPIxURDTL/H register during Transmit Underrun conditions
$0=$ Transmits the last received data during Transmit Underrun conditions
bit 9-8 AUDMOD<1:0>: Audio Protocol Mode Selection bits ${ }^{(4)}$
11 = PCM/DSP mode
$10=$ Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01 = Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
$00=I^{2}$ S mode: This module functions as if SPIFE $=0$, regardless of its actual value
bit $7 \quad$ FRMEN: Framed SPIx Support bit
1 = Framed SPIx support is enabled ( $\overline{\mathrm{SSx}}$ pin is used as the FSYNC input/output)
$0=$ Framed SPIx support is disabled
Note 1: AUDEN can only be written when the SPIEN bit $=0$.
2: AUDMONO can only be written when the SPIEN bit $=0$ and is only valid for AUDEN $=1$.
3: URDTEN is only valid when IGNTUR $=1$.
4: AUDMOD<1:0> bits can only be written when the SPIEN bit $=0$ and are only valid when AUDEN $=1$. When NOT in PCM/DSP mode, this module functions as if FRMSYPW $=1$, regardless of its actual value.

## REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit $6 \quad$ FRMSYNC: Frame Sync Pulse Direction Control bit
1 = Frame Sync pulse input (slave)
0 = Frame Sync pulse output (master)
bit $5 \quad$ FRMPOL: Frame Sync/Slave Select Polarity bit
1 = Frame Sync pulse/slave select is active-high
0 = Frame Sync pulse/slave select is active-low
bit 4 MSSEN: Master Mode Slave Select Enable bit
1 = SPIx slave select support is enabled with polarity determined by FRMPOL ( $\overline{\mathrm{SSx}}$ pin is automatically driven during transmission in Master mode)
$0=$ SPIx slave select support is disabled ( $\overline{\mathrm{SSx}}$ pin will be controlled by port IO)
bit 3 FRMSYPW: Frame Sync Pulse-Width bit
1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>)
$0=$ Frame Sync pulse is one clock (SCK) wide
bit 2-0 FRMCNT<2:0>: Frame Sync Pulse Counter bits
Controls the number of serial words transmitted per Sync pulse.
111 = Reserved
$110=$ Reserved
101 = Generates a Frame Sync pulse on every 32 serial words
$100=$ Generates a Frame Sync pulse on every 16 serial words
011 = Generates a Frame Sync pulse on every 8 serial words
$010=$ Generates a Frame Sync pulse on every 4 serial words
001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
000 = Generates a Frame Sync pulse on each serial word
Note 1: AUDEN can only be written when the SPIEN bit $=0$.
2: AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN $=1$.
3: URDTEN is only valid when IGNTUR $=1$.
4: AUDMOD<1:0> bits can only be written when the SPIEN bit $=0$ and are only valid when AUDEN $=1$. When NOT in PCM/DSP mode, this module functions as if FRMSYPW $=1$, regardless of its actual value.

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-O	U-0	U-0	U-0	U-0	U-0	U-0
-	-	-	-	-	-	-	-
bit 15							


U-0							
U-0							
-	-	-	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7		WLENGTH<4:0>(1,2)					

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-5 Unimplemented: Read as ' 0 '
bit 4-0 WLENGTH<4:0>: Variable Word Length bits ${ }^{(1,2)}$
$11111=32$-bit data
$11110=31$-bit data
$11101=30$-bit data
$11100=29$-bit data
$11011=28$-bit data
$11010=27$-bit data
$11001=26$-bit data
$11000=25$-bit data
$10111=24$-bit data
$10110=23$-bit data
$10101=22$-bit data
$10100=21$-bit data
$10011=20$-bit data
$10010=19$-bit data
$10001=18$-bit data
$10000=17$-bit data
01111 = 16-bit data
$01110=15$-bit data
$01101=14-$ bit data
$01100=13$-bit data
$01011=12$-bit data
$01010=11$-bit data
$01001=10$-bit data
$01000=9$-bit data
00111 = 8-bit data
$00110=7$-bit data
$00101=6$-bit data
$00100=5$-bit data
00011 = 4-bit data
00010 = 3-bit data
$00001=2$-bit data
$00000=$ See MODE<32,16> bits in SPIxCON1L<11:10>
Note 1: These bits are effective when AUDEN $=0$ only.
2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

## REGISTER 17-4: SPIxSTATL: SPIx STATUS REGISTER LOW

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC
-	-	-	FRMERR	SPIBUSY	-	-	SPITUR ${ }^{(1)}$
bit 15							


R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC
SRMT	SPIROV	SPIRBE	-	SPITBE	-	SPITBF	SPIRBF
bit 7		bit 0					


Legend:	C = Clearable bit	HS = Hardware Settable bit	$x=$ Bit is unknown
$R=$ Readable bit	W = Writable bit	$' 0$ ' = Bit is cleared	HSC = Hardware Settable/Clearable bit
$-n=$ Value at POR	$' 1 '=$ Bit is set	$U=$ Unimplemented bit, read as ' 0 '	

bit 15-13 Unimplemented: Read as ' 0 '
bit 12 FRMERR: SPIx Frame Error Status bit
1 = Frame error is detected
$0=$ No frame error is detected
bit 11 SPIBUSY: SPIx Activity Status bit
$1=$ Module is currently busy with some transactions
$0=$ No ongoing transactions (at time of read)
bit 10-9 Unimplemented: Read as ' 0 '
bit 8 SPITUR: SPIx Transmit Underrun Status bit ${ }^{(1)}$
1 = Transmit buffer has encountered a Transmit Underrun condition
$0=$ Transmit buffer does not have a Transmit Underrun condition
bit $7 \quad$ SRMT: Shift Register Empty Status bit
$1=$ No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)
0 = Current or pending transactions
bit 6 SPIROV: SPIx Receive Overflow Status bit
1 = A new byte/half-word/word has been completely received when the SPIxRXB is full
0 = No overflow
bit 5 SPIRBE: SPIx RX Buffer Empty Status bit
$1=R X$ buffer is empty
$0=R X$ buffer is not empty

## Standard Buffer Mode:

Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
Enhanced Buffer Mode:
Indicates RXELM<5:0> $=6^{\prime}$ b0000000.
bit 4 Unimplemented: Read as ' 0 '
bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit
1 = SPIxTXB is empty
$0=$ SPIxTXB is not empty
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB.
Enhanced Buffer Mode:
Indicates TXELM<5:0> $=6{ }^{\prime}$ b0000000.
Note 1: SPITUR is cleared when SPIEN $=0$. When IGNTUR $=1$, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

## REGISTER 17-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

bit 2 Unimplemented: Read as ' 0 '
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
1 = SPIxTXB is full
$0=$ SPIxTXB not full
Standard Buffer Mode:
Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.
Enhanced Buffer Mode:
Indicates TXELM<5:0> = 6' b111111.
bit $0 \quad$ SPIRBF: SPIx Receive Buffer Full Status bit
$1=$ SPIxRXB is full
$0=$ SPIxRXB is not full
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
Enhanced Buffer Mode:
Indicates RXELM<5:0> $=6$ ' b111111.
Note 1: SPITUR is cleared when SPIEN $=0$. When IGNTUR $=1$, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

## REGISTER 17-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

U-0	U-0	R-0, HSC					
-	-	RXELM5 $^{(3)}$	RXELM4 $^{(2)}$	RXELM3 $^{(1)}$	RXELM2	RXELM1	RXELM0
bit 15							


U-0	U-0	R-0, HSC					
-	-	TXELM5 $^{(3)}$	TXELM4 ${ }^{(2)}$	TXELM3 ${ }^{(1)}$	TXELM2	TXELM1	TXELM0
bit 7				bit 0			


Legend:	HSC = Hardware Settable/Clearable bit		
$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	s '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-8 RXELM<5:0>: Receive Buffer Element Count bits (valid in Enhanced Buffer mode) ${ }^{(1,2,3)}$
bit 7-6 Unimplemented: Read as '0'
bit 5-0 TXELM<5:0>: Transmit Buffer Element Count bits (valid in Enhanced Buffer mode) ${ }^{(1,2,3)}$
Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH $=8$ or higher.
2: RXELM4 and TXELM4 bits are only present when FIFODEPTH $=16$ or higher.
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH $=32$.

REGISTER 17-6: SPIxBUFL: SPIx BUFFER REGISTER LOW

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R/W-0 |  |  | DATA<15:8> |  |  |
| :--- | :--- | :--- | :--- | :--- |
| bit 15 |  |  |  |  |


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | DATA $<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  |  |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-0 DATA<15:0>: SPIx FIFO Data bits
When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses DATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2 -bit data, the SPIx only uses DATA<7:0>.

## REGISTER 17-7: SPIxBUFH: SPIx BUFFER REGISTER HIGH

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | DATA<31:24> |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | DATA<23:16> |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |


Legend:				
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '		
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared	$\quad x=$ Bit is unknown	
:---				

bit 15-0 DATA<31:16>: SPIx FIFO Data bits
When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25 -bit data, the SPIx uses DATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses DATA<23:16>.

REGISTER 17-8: SPIxBRGL: SPIx BAUD RATE GENERATOR REGISTER LOW

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	BRG<12:8> ${ }^{(1)}$				
bit 15							bit 8
R/W-0							
BRG<7:0> ${ }^{(1)}$							
bit 7							bit 0

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

```
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-0 BRG<12:0>: SPIx Baud Rate Generator Divisor bits \({ }^{(1)}\)
```

Note 1: Changing the BRG value when SPIEN = 1 causes undefined behavior.

## REGISTER 17-9: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
-	-	-	FRMERREN	BUSYEN	-	-	SPITUREN
bit 15		bit 8					


R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
SRMTEN	SPIROVEN	SPIRBEN	-	SPITBEN	-	SPITBFEN	SPIRBFEN
bit 7				bit 0			


Legend:			
$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	as '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$ Bit is unknown


bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERREN: Enable Interrupt Events via FRMERR bit
	1 = Frame error generates an interrupt event   0 = Frame error does not generate an interrupt event
bit 11	BUSYEN: Enable Interrupt Events via SPIBUSY bit
	1 = SPIBUSY generates an interrupt event
	0 = SPIBUSY does not generate an interrupt event
bit 10-9	Unimplemented: Read as ' 0 '
bit 8	SPITUREN: Enable Interrupt Events via SPITUR bit
	1 = Transmit Underrun (TUR) generates an interrupt event 0 = Transmit Underrun does not generate an interrupt event
bit 7	SRMTEN: Enable Interrupt Events via SRMT bit
	1 = Shift Register Empty (SRMT) generates interrupt events   0 = Shift Register Empty does not generate interrupt events
bit 6	SPIROVEN: Enable Interrupt Events via SPIROV bit
	1 = SPIx Receive Overflow generates an interrupt event
	0 = SPIx Receive Overflow does not generate an interrupt event
bit 5	SPIRBEN: Enable Interrupt Events via SPIRBE bit
	1 = SPIx RX Buffer Empty generates an interrupt event $0=$ SPIx RX Buffer Empty does not generate an interrupt event
bit 4	Unimplemented: Read as '0'
bit 3	SPITBEN: Enable Interrupt Events via SPITBE bit
	1 = SPIx Transmit Buffer Empty generates an interrupt event 0 = SPIx Transmit Buffer Empty does not generate an interrupt event
bit 2	Unimplemented: Read as '0'
bit 1	SPITBFEN: Enable Interrupt Events via SPITBF bit
	1 = SPIx Transmit Buffer Full generates an interrupt event   0 = SPIx Transmit Buffer Full does not generate an interrupt event
bit 0	SPIRBFEN: Enable Interrupt Events via SPIRBF bit
	1 = SPIx Receive Buffer Full generates an interrupt event   0 = SPIx Receive Buffer Full does not generate an interrupt event

REGISTER 17-10: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	-	RXMSK5 $^{(\mathbf{1})}$	RXMSK4 ${ }^{(1,4)}$	RXMSK3 $3^{(1,3)}$	RXMSK2 $^{(1,2)}$	RXMSK1 $1^{(1)}$	RXMSK0 $0^{(1)}$
bit 15							


R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	-	TXMSK5 ${ }^{(1)}$	TXMSK4 ${ }^{(1,4)}$	TXMSK3 ${ }^{(1,3)}$	TXMSK2 ${ }^{(1,2)}$	TXMSK1 ${ }^{(1)}$	TXMSK0 ${ }^{(1)}$
bit $7 \times$ bit 0							

## Legend:

$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15 RXWIEN: Receive Watermark Interrupt Enable bit
1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> $\leq$ RXELM<5:0>
0 = Disables receive buffer element watermark interrupt
bit 14 Unimplemented: Read as ' 0 '
bit 13-8 RXMSK<5:0>: RX Buffer Mask bits ${ }^{(1,2,3,4)}$
RX mask bits; used in conjunction with the RXWIEN bit.
bit 7 TXWIEN: Transmit Watermark Interrupt Enable bit
1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0>
0 = Disables transmit buffer element watermark interrupt
bit $6 \quad$ Unimplemented: Read as ' 0 '
bit 5-0 TXMSK<5:0>: TX Buffer Mask bits ${ }^{(1,2,3,4)}$
TX mask bits; used in conjunction with the TXWIEN bit.
Note 1: Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in this case.
2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH $=32$.

REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| URDATA<15:8> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-0 |
| URDATA<7:0> |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  | bit 0 |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-0
URDATA<15:0>: SPIx Underrun Data bits
These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.
When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9 -bit data, the SPlx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2 -bit data, the SPIx only uses URDATA<7:0>.

## REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| URDATA<31:24> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-0 |
| URDATA<23:16> |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  | bit 0 |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-0 URDATA<31:16>: SPIx Underrun Data bits
These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.
When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25 -bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<7:0>.

FIGURE 17-2: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)


Note 1: Using the $\overline{S S x}$ pin in Slave mode of operation is optional.
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.

FIGURE 17-3: SPIx MASTERISLAVE CONNECTION (ENHANCED BUFFER MODES)


Note 1: Using the $\overline{\mathrm{SSx}}$ pin in Slave mode of operation is optional.
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.

FIGURE 17-4: SPIx MASTER, FRAME MASTER CONNECTION DIAGRAM


Note 1: In Framed SPI modes, the $\overline{S S x}$ pin is used to transmit/receive the Frame Synchronization pulse.
Framed SPI modes require the use of all four pins (i.e., using the $\overline{\mathrm{SSx}}$ pin is not optional).
3: The SPIxTXB and SPIxRXB registers are memory-mapped to the SPIxBUF register.

FIGURE 17-5: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM


FIGURE 17-6: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM


FIGURE 17-7:
SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM


EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIx CLOCK SPEED

$$
\text { Baud Rate }=\frac{\text { FPB }}{(2 *(\text { SPIxBRG }+1))}
$$

Where:
FPB is the Peripheral Bus Clock Frequency.

### 18.0 INTER-INTEGRATED CIRCUIT ( $I^{2} C$ )

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit ${ }^{\text {™ }}$ ( $\left.I^{2} C^{\text {TM }}\right)$ " (DS70000195), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated Circuit $\left(I^{2} \mathrm{C}\right)$ module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.
The $\mathrm{I}^{2} \mathrm{C}$ module supports these features:

- Independent Master and Slave Logic
- 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the $I^{2} \mathrm{C}$ Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Master modes to Prevent Loss of Messages in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, Regardless of the Address
- Automatic SCL

A block diagram of the module is shown in Figure 18-1.

### 18.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

1. Assert a Start condition on SDAx and SCLx.
2. Send the $I^{2} \mathrm{C}$ device address byte to the slave with a write indication.
3. Wait for and verify an Acknowledge from the slave.
4. Send the first data byte (sometimes known as the command) to the slave.
5. Wait for and verify an Acknowledge from the slave.
6. Send the serial memory address low byte to the slave.
7. Repeat Steps 4 and 5 until all data bytes are sent.
8. Assert a Repeated Start condition on SDAx and SCLx.
9. Send the device address byte to the slave with a read indication.
10. Wait for and verify an Acknowledge from the slave.
11. Enable master reception to receive serial memory data.
12. Generate an ACK or NACK condition at the end of a received byte of data.
13. Generate a Stop condition on SDAx and SCLx.

FIGURE 18-1: I2Cx BLOCK DIAGRAM


### 18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

## EQUATION 18-1: COMPUTING BAUD RATE

 RELOAD VALUE ${ }^{(1,2,3)}$

### 18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (=1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a ' 0 ' or a ' 1 '. For example, when I2CxMSK is set to ' 0010000000 ', the slave module will detect both addresses, ‘ 0000000000 ' and ' 0010000000 '.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the $\mathrm{I}^{2} \mathrm{C}$ protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

## TABLE 18-1: I2Cx CLOCK RATES ${ }^{(1,2)}$

Required System FscL	Fcy	I2CxBRG Value		Actual FscL
		(Decimal)	(Hexadecimal)	
100 kHz	16 MHz	78	4 E	100 kHz
100 kHz	8 MHz	38	26	100 kHz
100 kHz	4 MHz	18	12	100 kHz
400 kHz	16 MHz	18	12	400 kHz
400 kHz	8 MHz	8	8	400 kHz
400 kHz	4 MHz	3	3	400 kHz
1 MHz	16 MHz	6	6	1.000 MHz
1 MHz	8 MHz	2	2	1.000 MHz

Note 1: Based on FcY = Fosc/2; Doze mode and PLL are disabled.
2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 18-2: I2Cx RESERVED ADDRESSES ${ }^{(1)}$

Slave Address	R/ $\overline{\mathbf{W}}$ Bit	
0000000	0	General Call Address ${ }^{(2)}$
0000000	1	Start Byte
0000001	x	CBus Address
000001 x	x	Reserved
$00001 \times x$	x	HS Mode Master Code
$11110 x \mathrm{x}$	x	10-Bit Slave Upper Byte ${ }^{(3)}$
1111 1xx	x	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.
2: This address will be Acknowledged only if GCEN $=1$.
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

## REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	-	I2CSIDL	SCLREL $^{(1)}$	STRICT	A10M	DISSLW	SMEN
bit 15				bit 8			


R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7			bit 0				


Legend:	HC = Hardware Clearable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' = Bit is set	0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15 I2CEN: I2Cx Enable bit (writable from software only)
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
$0=$ Disables the I2Cx module; all ${ }^{2} \mathrm{C}$ pins are controlled by port functions
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 I2CSIDL: I2Cx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12
SCLREL: SCLx Release Control bit ( ${ }^{2} \mathrm{C}$ Slave mode only) ${ }^{(1)}$
Module resets and (I2CEN = 0) sets SCLREL = 1 .
If STREN = 0:(2)
1 = Releases clock
0 = Forces clock low (clock stretch)
If STREN = 1:
1 = Releases clock
0 = Holds clock low (clock stretch); user may program this bit to ' 0 ', clock stretch at next SCLx low
bit 11
STRICT: I2Cx Strict Reserved Address Rule Enable bit
1 = Strict reserved addressing is enforced; for reserved addresses, refer to Table 18-2.
In Slave Mode: The device doesn't respond to reserved address space and addresses falling in that category are NACKed.
In Master Mode: The device is allowed to generate addresses with reserved address space.
$0=$ Reserved addressing would be Acknowledged.
In Slave Mode: The device will respond to an address falling in the reserved address space. When
there is a match with any of the reserved addresses, the device will generate an ACK.
In Master Mode: Reserved.
bit 10 A10M: 10-Bit Slave Address Flag bit
$1=I 2 C x A D D$ is a 10 -bit slave address
$0=12 C x A D D$ is a 7-bit slave address
bit $9 \quad$ DISSLW: Slew Rate Control Disable bit
1 = Slew rate control is disabled for Standard Speed mode ( 100 kHz , also disabled for 1 MHz mode)
$0=$ Slew rate control is enabled for High-Speed mode ( 400 kHz )
bit 8 SMEN: SMBus Input Levels Enable bit
1 = Enables input logic so thresholds are compliant with the SMBus specification
0 = Disables SMBus-specific inputs
Note 1: Automatically cleared to ' 0 ' at the beginning of slave transmission; automatically cleared to ' 0 ' at the end of slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum set up time for slave transmissions, as specified in Section 33.0 "Electrical Characteristics".
2: Automatically cleared to ' 0 ' at the beginning of slave transmission.

## REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit $7 \quad$ GCEN: General Call Enable bit ( $I^{2} \mathrm{C}$ Slave mode only)
1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception
$0=$ General call address is disabled.
bit 6 STREN: SCLx Clock Stretch Enable bit
In $I^{2} C$ Slave mode only; used in conjunction with the SCLREL bit.
1 = Enables clock stretching
0 = Disables clock stretching
bit 5 ACKDT: Acknowledge Data bit
In $I^{2} C$ Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
In $I^{2} \mathrm{C}$ Slave mode when AHEN $=1$ or DHEN $=1$. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.
1 = NACK is sent
$0=A C K$ is sent
bit 4 ACKEN: Acknowledge Sequence Enable bit
In $I^{2} \mathrm{C}$ Master mode only; applicable during Master Receive mode.
1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit
$0=$ Acknowledge sequence is Idle
bit $3 \quad$ RCEN: Receive Enable bit ( $I^{2} \mathrm{C}$ Master mode only)
1 = Enables Receive mode for $I^{2} \mathrm{C}$; automatically cleared by hardware at end of 8 -bit receive data byte
$0=$ Receive sequence is not in progress
bit 2 PEN: Stop Condition Enable bit ( $1^{2} \mathrm{C}$ Master mode only)
1 = Initiates Stop condition on SDAx and SCLx pins
0 = Stop condition is Idle
bit 1 RSEN: Restart Condition Enable bit ( ${ }^{2} \mathrm{C}$ Master mode only)
1 = Initiates Restart condition on SDAx and SCLx pins
$0=$ Restart condition is Idle
bit $0 \quad$ SEN: Start Condition Enable bit ( ${ }^{2}$ C Master mode only)
1 = Initiates Start condition on SDAx and SCLx pins
$0=$ Start condition is Idle
Note 1: Automatically cleared to ' 0 ' at the beginning of slave transmission; automatically cleared to ' 0 ' at the end of slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum set up time for slave transmissions, as specified in Section 33.0 "Electrical Characteristics".
2: Automatically cleared to ' 0 ' at the beginning of slave transmission.

## REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15			bit 8				


U-0	R/W-0							
-	PCIE	SCIE	BOEN	SDAHT				
								SBCDE
bit 7	AHEN	DHEN						
bit 0								

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-7 Unimplemented: Read as ' 0 '
bit $6 \quad$ PCIE: Stop Condition Interrupt Enable bit ( $I^{2} \mathrm{C}$ Slave mode only)
1 = Enables interrupt on detection of Stop condition
$0=$ Stop detection interrupts are disabled
bit $5 \quad$ SCIE: Start Condition Interrupt Enable bit ( ${ }^{2}$ C Slave mode only)
1 = Enables interrupt on detection of Start or Restart conditions
0 = Start detection interrupts are disabled
bit 4 BOEN: Buffer Overwrite Enable bit ( ${ }^{2}$ C Slave mode only)
$1=12 C x R C V$ is updated and an ACK is generated for a received address/data byte, ignoring the state of the I2COV bit only if RBF bit $=0$
$0=12 C x R C V$ is only updated when I2COV is clear
bit 3 SDAHT: SDAx Hold Time Selection bit ${ }^{(1)}$
1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx
$0=$ Minimum of 100 ns hold time on SDAx after the falling edge of SCLx
bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit ( $I^{2}$ C Slave mode only)
If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.
1 = Enables slave bus collision interrupts
0 = Slave bus collision interrupts are disabled
bit 1 AHEN: Address Hold Enable bit ( ${ }^{2}$ C Slave mode only)
1 = Following the 8 th falling edge of SCLx for a matching received address byte; SCLREL bit (I2CxCONL<12>) will be cleared and SCLx will be held low
$0=$ Address holding is disabled
bit $0 \quad$ DHEN: Data Hold Enable bit ( $I^{2} \mathrm{C}$ Slave mode only)
1 = Following the 8th falling edge of SCLx for a received data byte; slave hardware clears the SCLREL bit (I2CxCONL<12>) and SCLx is held low
$0=$ Data holding is disabled
Note 1: This bit must be set to ' 0 ' for 1 MHz operation.

## REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	ACKTIM	-	-	BCL	GCSTAT	ADD10
bit 15							


R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	$I 2 C O V ~$	D/A	$P$	$S$	$R / \bar{W}$	RBF	TBF
bit 7				bit 0			


Legend:	$C=$ Clearable bit	$H S=$ Hardware Settable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown
HSC = Hardware Settable/Clearable bit		

bit 15 ACKSTAT: Acknowledge Status bit (updated in all Master and Slave modes)
1 = Acknowledge was not received from slave
0 = Acknowledge was received from slave
bit 14 TRSTAT: Transmit Status bit (when operating as $I^{2} \mathrm{C}$ master; applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
$0=$ Master transmit is not in progress
bit 13 ACKTIM: Acknowledge Time Status bit (valid in $I^{2} \mathrm{C}$ Slave mode only)
$1=$ Indicates $I^{2} \mathrm{C}$ bus is in an Acknowledge sequence, set on 8 th falling edge of SCLx clock
$0=$ Not an Acknowledge sequence, cleared on 9th rising edge of SCLx clock
bit 12-11 Unimplemented: Read as ' 0 '
bit 10 BCL: Bus Collision Detect bit (Master/Slave mode; cleared when $\mathrm{I}^{2} \mathrm{C}$ module is disabled, $\mathrm{I} 2 \mathrm{CEN}=0$ )
1 = A bus collision has been detected during a master or slave transmit operation
$0=$ No bus collision has been detected
bit 9 GCSTAT: General Call Status bit (cleared after Stop detection)
1 = General call address was received
$0=$ General call address was not received
bit 8 ADD10: 10-Bit Address Status bit (cleared after Stop detection)
1 = 10-bit address was matched
$0=10$-bit address was not matched
bit $7 \quad$ IWCOL: I2Cx Write Collision Detect bit
$1=$ An attempt to write to the I2CxTRN register failed because the $\mathrm{I}^{2} \mathrm{C}$ module is busy; must be cleared in software
$0=$ No collision
bit $6 \quad$ I2COV: I2Cx Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte; I 2 COV is a "don't care" in Transmit mode, must be cleared in software
$0=$ No overflow
bit 5 DIAA: Data/ $\overline{\text { Address }}$ bit (when operating as $I^{2} \mathrm{C}$ slave)
1 = Indicates that the last byte received was data
$0=$ Indicates that the last byte received or transmitted was an address
bit $4 \quad$ P: I2Cx Stop bit
Updated when Start, Reset or Stop is detected; cleared when the $\mathrm{I}^{2} \mathrm{C}$ module is disabled, I2CEN $=0$.
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last

## REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit $3 \quad$ S: I2Cx Start bit
Updated when Start, Reset or Stop is detected; cleared when the $I^{2} \mathrm{C}$ module is disabled, I2CEN $=0$.
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start (or Repeated Start) bit was not detected last
bit $2 \quad \mathrm{R} / \overline{\mathbf{W}}:$ Read $/ \overline{\mathrm{Write}}$ Information bit (when operating as $\mathrm{I}^{2} \mathrm{C}$ slave)
1 = Read: Indicates the data transfer is output from the slave
$0=$ Write: Indicates the data transfer is input to the slave
bit 1
RBF: Receive Buffer Full Status bit
1 = Receive is complete, $I 2 \mathrm{CxRCV}$ is full
$0=$ Receive is not complete, I2CxRCV is empty
bit $0 \quad$ TBF: Transmit Buffer Full Status bit
1 = Transmit is in progress, I2CxTRN is full (8-bits of data)
$0=$ Transmit is complete, I2CxTRN is empty

REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
-	-	-	-	-	-	MSK<9:8>	
bit 15							


| $R / W-0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $M S K<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-10 Unimplemented: Read as ' 0 '
bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits
1 = Enables masking for bit $x$ of the incoming message address; bit match is not required in this position
$0=$ Disables masking for bit x ; bit match is required in this position

### 19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "UART" (DS39708), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the $\overline{U x C T S}$ and UxRTS pins. The UART module includes an $\operatorname{IrDA}{ }^{\circledR}$ encoder/decoder unit.
The PIC24FJ1024GA610/GB610 family devices are equipped with six UART modules, referred to as UART1, UART2, UART3, UART4, UART5 and UART6.
The primary features of the UARTx modules are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from up to 1 Mbps and Down to 15 Hz at 16 MIPS in $16 x$ mode
- Baud Rates Range from up to 4 Mbps and Down to 61 Hz at 16 MIPS in $4 x$ mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect ( $9^{\text {th }}$ bit $=1$ )
- Separate Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Polarity Control for Transmit and Receive Lines
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- $\operatorname{IrDA}{ }^{\circledR}$ Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 19-1. The UARTx module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

Note: Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of ' $x$ ' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1, UART2, UART3, UART4, UART5 or UART6.

FIGURE 19-1: UARTx SIMPLIFIED BLOCK DIAGRAM


Note 1: The UART1, UART2, UART3 and UART4 inputs and outputs must all be assigned to available RPn/RPIn pins before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

### 19.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate when $\mathrm{BRGH}=0$.

EQUATION 19-1: UARTx BAUD RATE WITH BRGH $=0^{(1,2)}$

Baud Rate $=\frac{\text { FCY }}{16 \cdot(\mathrm{UxBRG}+1)}$
UxBRG $=\frac{\text { Fcy }}{16 \cdot \text { Baud Rate }}-1$
Note 1: Fcy denotes the instruction cycle clock frequency (Fosc/2).
2: Based on $\mathrm{Fcy}=\mathrm{Fosc} / 2$; Doze mode and PLL are disabled.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- $\mathrm{FCY}=4 \mathrm{MHz}$
- Desired Baud Rate $=9600$

The maximum baud rate $(B R G H=0)$ possible is $\mathrm{FcY} / 16$ (for UxBRG $=0$ ) and the minimum baud rate possible is $\mathrm{FcY} /(16$ * 65536).

Equation 19-2 shows the formula for computation of the baud rate when $\mathrm{BRGH}=1$.

EQUATION 19-2: UARTx BAUD RATE WITH

$$
\text { BRGH }=1^{(1,2)}
$$

$$
\begin{gathered}
\text { Baud Rate }=\frac{\text { FCY }}{4 \cdot(\mathrm{UxBRG}+1)} \\
\text { UxBRG }=\frac{\text { FCY }}{4 \cdot \text { Baud Rate }}-1
\end{gathered}
$$

Note 1: FCY denotes the instruction cycle clock frequency.
2: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

The maximum baud rate ( $\mathrm{BRGH}=1$ ) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is $\mathrm{FCY} /\left(4^{*} 65536\right)$.
Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH =0) ${ }^{(1)}$
Desired Baud Rate $=\mathrm{FCy} /(16(\mathrm{UxBRG}+1))$
Solving for UxBRG Value:

UxBRG	$=(($ FCy/Desired Baud Rate $) / 16)-1$
UxBRG	$=((4000000 / 9600) / 16)-1$
UxBRG	$=25$
ted Baud Rate	$=4000000 /(16(25+1))$
	$=9615$
	$=($ Calculated Baud Rate - Desired Baud Rate $)$
	$\quad$ Desired Baud Rate
	$=(9615-9600) / 9600$
	$=0.16 \%$

Note 1: Based on FCY = Fosc/2; Doze mode and PLL are disabled.

### 19.2 Transmitting in 8-Bit Data Mode

1. Set up the UARTx:
a) Write appropriate values for data, parity and Stop bits.
b) Write appropriate baud rate value to the UxBRG register.
c) Set up transmit and receive interrupt enable and priority bits.
2. Enable the UARTx.
3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
5. Alternatively, the data byte may be transferred while UTXEN $=0$ and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

### 19.3 Transmitting in 9-Bit Data Mode

1. Set up the UARTx (as described in Section $\mathbf{1 9 . 2}$ "Transmitting in 8-Bit Data Mode").
2. Enable the UARTx.
3. Set the UTXEN bit (causes a transmit interrupt).
4. Write UXTXREG as a 16-bit value only.
5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

### 19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

1. Configure the UARTx for the desired mode.
2. Set UTXEN and UTXBRK to set up the Break character.
3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
4. Write ' 55 h ' to UxTXREG; this loads the Sync character into the transmit FIFO.
5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

### 19.5 Receiving in 8-Bit or 9-Bit Data Mode

1. Set up the UARTx (as described in Section $\mathbf{1 9 . 2}$ "Transmitting in 8-Bit Data Mode").
2. Enable the UARTx by setting the URXEN bit (UxSTA<12>).
3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

### 19.6 Operation of $\overline{U x C T S}$ and $\overline{\text { UxRTS }}$ Control Pins

UARTx Clear-to-Send ( $\overline{\text { UxCTS }}$ ) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

### 19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a $16 x$ baud clock, they will only work when the BRGH bit (UxMODE<3>) is ' 0 '.

### 19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the $16 x$ baud clock. When UEN<1:0> = 11, the BCLKx pin will output the $16 x$ baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

### 19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin ( $U x R X$ ) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

## REGISTER 19-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN $^{(1)}$	-	USIDL	IREN $^{(2)}$	RTSMD	-	UEN1	UEN0
bit 15				bit 8			


R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7				bit 0			


Legend:	HC = Hardware Clearable bit	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15 UARTEN: UARTx Enable bit ${ }^{(1)}$
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
$0=$ UARTx is disabled; all UARTx pins are controlled by port latches, UARTx power consumption is minimal
bit $14 \quad$ Unimplemented: Read as ' 0 ’
bit 13 USIDL: UARTx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12 IREN: IrDA ${ }^{\circledR}$ Encoder and Decoder Enable bit ${ }^{(2)}$
1 = IrDA encoder and decoder are enabled
$0=$ IrDA encoder and decoder are disabled
bit 11 RTSMD: Mode Selection for $\overline{U x R T S}$ Pin bit
$1=\overline{\text { UxRTS }}$ pin is in Simplex mode
$0=\overline{\text { UxRTS }}$ pin is in Flow Control mode
bit $10 \quad$ Unimplemented: Read as ' 0 '
bit 9-8 UEN<1:0>: UARTx Enable bits
$11=U x T X, U x R X$ and BCLKx pins are enabled and used; $\overline{U x C T S}$ pin is controlled by port latches
$10=$ UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
$01=U x T X, U x R X$ and $\overline{U x R T S}$ pins are enabled and used; UxCTS pin is controlled by port latches
$00=$ UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by port latches
bit $7 \quad$ WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit
$1=$ UARTx continues to sample the UxRX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge
$0=$ No wake-up is enabled
bit 6 LPBACK: UARTx Loopback Mode Select bit
1 = Enables Loopback mode
0 = Loopback mode is disabled
bit 5 ABAUD: Auto-Baud Enable bit
1 = Enables baud rate measurement on the next character - requires reception of a Sync field (55h); cleared in hardware upon completion
$0=$ Baud rate measurement is disabled or completed
bit 4 URXINV: UARTx Receive Polarity Inversion bit
1 = UxRX Idle state is ' 0 '
$0=U x R X$ Idle state is ' 1 '
Note 1: If UARTEN $=1$, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
2: This feature is only available for the $16 x$ BRG mode ( $B R G H=0$ ).

REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)
bit 3 BRGH: High Baud Rate Enable bit 1 = High-Speed mode (4 BRG clock cycles per bit) 0 = Standard Speed mode (16 BRG clock cycles per bit)
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
$10=8$-bit data, odd parity
$01=8$-bit data, even parity
00 = 8-bit data, no parity
bit 0 STSEL: Stop Bit Selection bit
1 = Two Stop bits
0 = One Stop bit
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
2: This feature is only available for the $16 x$ BRG mode ( $B R G H=0$ ).

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0, HC | R/W-0 | R-0, HSC | R-1, HSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UTXISEL1 | UTXINV $^{(1)}$ | UTXISEL0 | URXEN | UTXBRK | UTXEN $^{(2)}$ | UTXBF | TRMT |
| bit 15 |  |  | bit 8 |  |  |  |  |


| R/W-0 | R/W-0 | R/W-0 | R-1, HSC | R-0, HSC | R-0, HSC | R/C-0, HS | R-0, HSC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| URXISEL1 | URXISEL0 | ADDEN | RIDLE | PERR | FERR | OERR | URXDA |
| bit 7 |  |  |  | bit 0 |  |  |  |


Legend:	$\mathrm{C}=$ Clearable bit	HSC = Hardware Settable/Clearable bit
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown
HS = Hardware Settable bit	$\mathrm{HC}=$ Hardware Clearable bit	

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
$10=$ Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
$00=$ Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
bit 14 UTXINV: UARTx IrDA ${ }^{\circledR}$ Encoder Transmit Polarity Inversion bit ${ }^{(1)}$
IREN = 0:
1 = UxTX Idle state is ' 0 '
$0=U \times T X$ Idle state is ' 1 '
IREN = 1:
1 = UxTX Idle state is ' 1 '
$0=$ UxTX Idle state is ' 0 '
bit 12 URXEN: UARTx Receive Enable bit
1 = Receive is enabled, $U x R X$ pin is controlled by UARTx
$0=$ Receive is disabled, $U x R X$ pin is controlled by the port
bit 11 UTXBRK: UARTx Transmit Break bit
1 = Sends Sync Break on next transmission - Start bit, followed by twelve '0’ bits, followed by Stop bit; cleared by hardware upon completion
$0=$ Sync Break transmission is disabled or completed
bit 10
UTXEN: UARTx Transmit Enable bit ${ }^{(2)}$
1 = Transmit is enabled, UxTX pin is controlled by UARTx
$0=$ Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port
bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
$0=$ Transmit buffer is not full, at least one more character can be written
bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
$0=$ Transmit Shift Register is not empty, a transmission is in progress or queued
Note 1: The value of this bit only affects the transmit properties of the module when the IrDA ${ }^{\circledR}$ encoder is enabled (IREN = 1).
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

## REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)   $10=$ Interrupt is set on an RSR transfer, making the receive buffer $3 / 4$ full (i.e., has 3 data characters)   $0 x=$ Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data $=1$ )
	1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) $0=$ Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle   $0=$ Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (the character at the top of the receive FIFO)   0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	$1=$ Framing error has been detected for the current character (the character at the top of the receive FIFO) $0=$ Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	$0=$ Receive buffer has not overflowed (clearing a previously set OERR bit, $1 \rightarrow 0$ transition); will reset the receive buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	1 = Receive buffer has data, at least one more character can be read $0=$ Receive buffer is empty

Note 1: The value of this bit only affects the transmit properties of the module when the $\operatorname{lrDA}{ }^{\circledR}$ encoder is enabled (IREN = 1).
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

## REGISTER 19-3: UxRXREG: UARTx RECEIVE REGISTER (NORMALLY READ-ONLY)

U-0	R-0						
-	-	-	-	-	-	-	UxRXREG8
bit 15							


| R-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ R-0 |  |  | UxRXREG<7:0> |  |
| :--- | :--- | :--- | :--- |
| bit 7 |  |  |  |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 15-9 Unimplemented: Read as ' 0 '
bit 8-0

REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

U-0	W-x						
-	-	-	-	-	-	-	UxTXREG8
bit 15							


	$W-x$	$W-x$	$W-x$	$W-x$	$W-x$	$W-x$
		UxTXREG<7:0>		$W-x$	$W-x$	
bit 7						

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-9 Unimplemented: Read as ' 0 '
bit 8-0 UxTXREG<8:0>: Data of the Transmitted Character bits

REGISTER 19-5: UxBRG: UARTx BAUD RATE GENERATOR REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BRG<15:8> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-0 |
| BRG<7:0> |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  | bit 0 |

## Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-0 BRG<15:0>: Baud Rate Divisor bits

REGISTER 19-6: UxADMD: UARTx ADDRESS DETECT AND MATCH REGISTER

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADMMASK7 | ADMMASK6 | ADMMASK5 | ADMMASK4 | ADMMASK3 | ADMMASK2 | ADMMASK1 | ADMMASK0 |
| bit 15 |  |  |  |  | bit 8 |  |  |


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADMADDR7 | ADMADDR6 | ADMADDR5 | ADMADDR4 | ADMADDR3 | ADMADDR2 | ADMADDR1 | ADMADDR0 |
| bit 7 |  |  |  |  | bit 0 |  |  |


Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-8 ADMMASK<7:0>: ADMADDR<7:0> (UxADMD<7:0>) Masking bits
For ADMMASKx:
1 = ADMADDRx is used to detect the address match
$0=$ ADMADDRx is not used to detect the address match
bit 7-0 ADMADDR<7:0>: Address Detect Task Off-Load bits
Used with the ADMMASK<7:0> bits (UxADMD<15:8> to off-load the task of detecting the address character from the processor during Address Detect mode.

### 20.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "USB On-The-Go (OTG)" (DS39721), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ1024GB610 family devices contain a fullspeed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act as either a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).
For more details on OTG operation, refer to the "On-The-Go Supplement" to the "USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.
The USB OTG module offers these features:

- USB Functionality in Device and Host modes, and OTG Capabilities for Application-Controlled mode Switching
- Software-Selectable module Speeds of Full Speed (12 Mbps) or Low Speed (1.5 Mbps available in Host mode only)
- Support for All Four USB Transfer Types: Control, Interrupt, Bulk and Isochronous
- 16 Bidirectional Endpoints for a Total of 32 Unique Endpoints
- DMA Interface for Data RAM Access
- Queues up to 16 Unique Endpoint Transfers without Servicing
- Integrated, On-Chip USB Transceiver with Support for Off-Chip Transceivers via a Digital Interface
- Integrated Vbus Generation with On-Chip Comparators and Boost Generation, and Support of External Vbus Comparators and Regulators through a Digital Interface
- Configurations for On-Chip Bus Pull-up and Pull-Down Resistors

A simplified block diagram of the USB OTG module is shown in Figure 20-1.
The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.
In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 20-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.

TABLE 20-1: CONTROLLER-CENTRIC DATA DIRECTION FOR USB HOST OR TARGET

USB Mode	Direction	
	RX	TX
Device	OUT or SETUP	IN
Host	IN	OUT or SETUP

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.
Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com/usb for the latest firmware and driver support.

FIGURE 20-1: USB OTG MODULE BLOCK DIAGRAM


Note 1: Pins are multiplexed with digital I/O and other device features.
2: Connecting VBUS3V3 to VDD is highly recommended, as floating this input can cause increased IPD currents. The pin should be tied to VDD when the USB functions are not used.

### 20.1 Hardware Configuration

### 20.1.1 DEVICE MODE

### 20.1.1.1 D+ Pull-up Resistor

PIC24FJ1024GB610 family devices have a built-in $1.5 \mathrm{k} \Omega$ resistor on the $\mathrm{D}+$ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit ( $\mathrm{U} 1 \mathrm{CON}<0>$ ) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON<2>) is set, then the $D+$ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

### 20.1.1.2 The Vbus Pin

In order to meet the "USB 2.0 Specification" requirement, relating to the back drive voltage on the $\mathrm{D}+/ \mathrm{D}$ pins, the USB module incorporates VBUS-level sensing comparators. When the comparators detect the Vbus level below the VA_SESS_VLD level, the hardware will automatically disable the $\mathrm{D}+$ pull-up resistor described in Section 20.1.1.1 "D+ Pull-up Resistor". This allows the device to automatically meet the back drive requirement for $D+$ and $D$-, even if the application firmware does not explicitly monitor the Vbus level. Therefore, the VBUS microcontroller pin should not be left floating in USB Device mode application designs, and should normally be connected to the VBuS pin on the USB connector/cable (either directly or through a small resistance $\leq 100$ ohms).

### 20.1.1.3 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- Bus Power Only mode
- Self-Power Only mode
- Dual Power with Self-Power Dominance

Bus Power Only mode (Figure 20-2) is effectively the simplest method. All power for the application is drawn from the USB.
To meet the inrush current requirements of the "USB 2.0 Specification", the total effective capacitance, appearing across VBUS and ground, must be no more than $10 \mu \mathrm{~F}$.
In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5 V VBus line of the USB cable. During the USB Suspend mode, the D+ or D-pull-up resistor must remain active, which will consume some of the allowed suspend current.
In Self-Power Only mode (Figure 20-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering Vbus.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBus high. One of the 5.5 V tolerant I/O pins may be used for this purpose.
The application should never source any current onto the 5 V VBUS pin of the USB cable when the USB module is operated in USB Device mode.
The Dual Power mode with Self-Power Dominance (Figure 20-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBus is driven high.

FIGURE 20-2: BUS-POWERED INTERFACE EXAMPLE


FIGURE 20-3: SELF-POWER ONLY


FIGURE 20-4: DUAL POWER EXAMPLE


### 20.1.2 HOST AND OTG MODES

### 20.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ1024GB610 family devices have a built-in $15 \mathrm{k} \Omega$ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

### 20.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on Vbus. Since the microcontroller is running below Vbus, and is not able to source sufficient current, a separate power supply must be provided.
When the application is always operating in Host mode, a simple circuit can be used to supply Vbus and regulate current on the bus (Figure 20-5). For OTG operation, it is necessary to be able to turn VBus on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 20-6.

FIGURE 20-5: HOST INTERFACE EXAMPLE


FIGURE 20-6: OTG INTERFACE EXAMPLE


### 20.1.3 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VusB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output
states. The total transceiver current consumption will be application-specific. Equation 20-1 can help estimate how much current actually may be required in full-speed applications.
Refer to the "dsPIC33/PIC24 Family Reference Manual", "USB On-The-Go (OTG)" (DS39721) for a complete discussion on transceiver power consumption.

## EQUATION 20-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

$$
\mathrm{IXCVR}=\frac{40 \mathrm{~mA} \cdot \mathrm{VUSB} \cdot \mathrm{PZERO} \cdot \mathrm{PIN} \cdot \mathrm{LCABLE}}{3.3 \mathrm{~V} \cdot 5 \mathrm{~m}}+\mathrm{IPULLUP}
$$

Legend: VUSB - Voltage applied to the VUSB3V3 pin in volts (3.0V to 3.6 V ).
Pzero - Percentage (in decimal) of the IN traffic bits sent by the PIC ${ }^{\circledR}$ microcontroller that are a value of ' 0 '.
PIN - Percentage (in decimal) of total bus bandwidth that is used for IN traffic.
LCABLE - Length (in meters) of the USB cable. The "USB 2.0 Specification" requires that full-speed applications use cables no longer than 5 m .
Ipullup - Current which the nominal, $1.5 \mathrm{k} \Omega$ pull-up resistor (when enabled) must supply to the USB cable.

### 20.2 USB Buffer Descriptors and the BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.
The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.
The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where $n$ represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.
Note: $\quad$ Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.

Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the "USB 2.0 Specification" mandates that every device must have Endpoint 0 with both input and output for initial setup.
Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15 )
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 20-7 illustrates how these variables are used to map endpoints in the BDT.
In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT $<3: 0>$ in the USB Status register (U1STAT $<7: 4>$ ). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

FIGURE 20-7: BDT MAPPING FOR ENDPOINT BUFFERING MODES


Note: Memory area is not shown to scale.

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 20-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating $B D$ addresses is implemented.

### 20.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.
When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its
corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The Buffer Descriptors have a different meaning based on the source of the register update. Register 20-1 and Register 20-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

### 20.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space, properly mapped for the access by the module.

TABLE 20-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT BUFFERING MODES

Endpoint	BDs Assigned to Endpoint							
	Mode 0 (No Ping-Pong)		Mode 1   (Ping-Pong on EPO RX)		Mode 2(Ping-Pong on All EPs)		Mode 3   (Ping-Pong on All Other EPs, Except EPO)	
	RX	TX	RX	TX	RX	TX	RX	TX
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)

Legend: $\quad(E)=$ Even transaction buffer, $(O)=$ Odd transaction buffer

## REGISTER 20-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BDOSTAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x, HSC					
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							


N-x, HSC	-x	R/W-x, HSC	R/W-x, HSC	R/W-x, HSC	- H	R/W-x, HSC	R/W-x, HSC
BC7	BC6	BC5	BC4	BC3	BC2	BC 1	BC0
bit $7 \times 1$ bit 0							


Legend:	HSC = Hardware Settable/Clearable bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15 UOWN: USB Own bit
1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
bit 14 DTS: Data Toggle Packet bit
1 = Data 1 packet
0 = Data 0 packet
bit 13-10
PID<3:0>: Packet Identifier bits (written by the USB module)
In Device mode:
Represents the PID of the received token during the last transfer.
In Host mode:
Represents the last returned PID or the transfer status indicator.
bit 9-0 BC<9:0>: Byte Count bits
This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

## REGISTER 20-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BDOSTAT THROUGH BD63STAT)

| R/W-x | R/W-x | r-0 | r-0 | R/W-x | R/W-x | R/W-x, HSC | R/W-x, HSC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UOWN | DTS $^{(1)}$ | - | - | DTSEN | BSTALL | BC9 | BC8 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-x, HSC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 |  |  |  |  |  |  |  |


Legend:	$\mathrm{r}=$ Reserved bit	HSC = Hardware Settable/Clearable bit
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	'1' = Bit is set	' r ' = Reserved bit

bit 15 UOWN: USB Own bit
$0=$ The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14 DTS: Data Toggle Packet bit ${ }^{(1)}$
1 = Data 1 packet
$0=$ Data 0 packet
bit 13-12
Reserved: Maintain as ' 0 '
bit 11 DTSEN: Data Toggle Synchronization Enable bit
1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored
$0=$ No data toggle synchronization is performed
BSTALL: Buffer STALL Enable bit
1 = Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake
$0=$ Buffer STALL is disabled
bit 9-0
BC<9:0>: Byte Count bits
This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

Note 1: This bit is ignored unless DTSEN = 1 .

### 20.3 USB Interrupts

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.
Figure 20-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers.

An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level. Unlike the device-level interrupt flags in the IFSx registers, USB interrupt flags in the U1IR registers can only be cleared by writing a ' 1 ' to the bit position.
Interrupts may be used to trap routine events in a USB transaction. Figure 20-9 provides some common events within a USB frame and their corresponding interrupts.

FIGURE 20-8: USB OTG INTERRUPT FUNNEL


### 20.3.1 CLEARING USB OTG INTERRUPTS

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a ' 1 ' to their locations (i.e., performing a MOV type instruction). Writing a ' 0 ' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a ' 1 ' to its location is referred to as "Write ' 1 ' to Clear". In register descriptions; this function is indicated by the descriptor, "K".

FIGURE 20-9: EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS


Note 1: The control transfer shown here is only an example showing events that can occur for every transaction. Typical control transfers will spread across multiple frames.

### 20.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

### 20.4.1 ENABLING DEVICE MODE

1. Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
2. Disable all interrupts (U1IE and U1EIE $=00 h$ ).
3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
4. Verify that VBus is present (non-OTG devices only).
5. Enable the USB module by setting the USBEN bit ( $\mathrm{U} 1 \mathrm{CON}<0>$ ).
6. Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
7. Enable the Endpoint 0 buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
9. Enable the $\mathrm{D}+$ pull-up resistor to signal an attach by setting the DPPULUP bit (U1OTGCON<7>).

### 20.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
2. Create a data buffer and populate it with the data to send to the host.
3. In the appropriate (even or odd) TX BD for the desired endpoint:
a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
b) Set up the address register (BDnADR) with the starting address of the data buffer.
c) Set the UOWN bit of the status register to ' 1 '.
4. When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

### 20.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
2. Create a data buffer with the amount of data you are expecting from the host.
3. In the appropriate (even or odd) TX BD for the desired endpoint:
a) Set up the status register (BDnSTAT) with the correct data toggle (DATAO/1) value and the byte count of the data buffer.
b) Set up the address register (BDnADR) with the starting address of the data buffer.
c) Set the UOWN bit of the status register to ' 1 '.
4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

### 20.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

### 20.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

1. Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
2. Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>). Disable the D+ and D-pull-up resistors by clearing the DPPULUP and DMPULUP bits (U1OTGCON<7:6>).
3. At this point, SOF generation begins with the SOF counter loaded with 12,000 . Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame (SOF) packet generation.
4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
5. Wait for the device attached interrupt ( $\mathrm{U} 1 \mathrm{IR}<6>=1$ ). This is signaled by the USB device changing the state of $D+$ or $D$ - from ' 0 ' to ' 1 ' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
6. Check the state of the JSTATE and SEO bits in U1CON. If the JSTATE bit ( $\mathrm{U} 1 \mathrm{CON}<7>$ ) is ' 0 ', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation.
7. Reset the USB device by setting the USBRST bit ( $\mathrm{U} 1 \mathrm{CON}<4>$ ) for at least 50 ms , sending Reset signaling on the bus. After 50 ms , terminate the Reset by clearing USBRST.
8. In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
9. Wait 10 ms for the device to recover from Reset.
10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

### 20.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

1. Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
2. Set up the Endpoint Control register for bidirectional control transfers by writing ODh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the "USB 2.0 Specification" for information on the device framework command set.
4. Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EPO to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
a) Set the BD Data Buffer Address (BDOADR) to the starting address of the 8-byte memory buffer containing the command.
b) Write 8008h to BDOSTAT (this sets the UOWN bit and sets a byte count of 8).
5. Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
6. Write DOh to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BDOSTAT after the packets are complete. When the USB module updates BDOSTAT, a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.
8. Initialize the current (even or odd) $R X$ or $T X(R X$ for IN, TX for OUT) EPO BD to transfer the data.
a) Write C040h to BDOSTAT. This sets the UOWN, configures the Data Toggle bit (DTS) to DATA1 and sets the byte count to the length of the data buffer ( 64 or 40 h in this case).
b) Set BDOADR to the starting address of the data buffer.
9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BDOSTAT is written and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data needs to be transferred, return to Step 8.
10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
11. Initialize the current (even or odd) TX EPO BD to transfer the status data:
a) Set the BDT buffer address field to the start address of the data buffer.
b) Write 8000 h to BDOSTAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0 ).
12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction, as described in Chapter 9 of the "USB 2.0 Specification".
[^7]
### 20.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

1. Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" and Section 20.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
2. To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
6. Wait for the Token Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (OFh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than $2.5 \mu \mathrm{~s}$ ), then the target has detached ( $\mathrm{U} 1 \mathrm{IR}<0>$ is set).
7. Once the Token Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
Note: USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

### 20.6 OTG Operation

### 20.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the Vbus supply when it is not using the USB link through the Session Request Protocol (SRP). SRP can only be initiated at full speed. Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the VBuS supply. When the Vbus supply is powered down, the A-device is said to have ended a USB session.
An OTG A-device or embedded host may repower the Vbus supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the session valid voltage.
2. Both $D+$ and $D$ - have been low for at least 2 ms .

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the      VBus supply, the B-device must discon-   nect its pull-up resistor from power. If the   device is self-powered, it can do this by      clearing DPPULUP (U1OTGCON $<7>$ ) and         DMPULUP (U1OTGCON<6>).

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).
After these initial conditions are met, the B-device may begin requesting the new session. The $B$-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U1OTGCON<7>). The data line should be held high for 5 to 10 ms .
The B-device then proceeds by pulsing the Vbus supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the Vbus supply by properly configuring the general purpose I/O port pin controlling the external power source.
The B-device should not monitor the state of the Vbus supply while performing VBUS supply pulsing. When the B-device does detect that the VBus supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).
The A-device must complete the SRP by driving USB Reset signaling.

### 20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).
HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.
After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in the suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.
If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF, U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.
When the B-device has finished in its role as host, it stops all bus activity and turns on its $D+$ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms ), the A-device turns off its $\mathrm{D}+$ pull-up. The A-device may also power down the Vbus supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

### 20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB Vbus Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in Section 20.2 "USB Buffer Descriptors and the BDT".
All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.
The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1, U1BDTP2 and U1BDTP3: Specifies the 256-word page in data RAM used for the BDT; 8 -bit value with bit 0 fixed as ' 0 ' for boundary alignment.
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame.


### 20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15		bit 8					


R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	-	LSTATE	-	SESVD	SESEND	-	VBUSVD
bit 7			bit 0				


Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{HSC}=$ Hardware Settable/Clearable bit
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown


bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	$1=$ No plug is attached or a Type B cable has been plugged into the USB receptacle   $0=$ A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	1 = The USB line state (as defined by SEO and JSTATE) has been stable for the previous 1 ms $0=$ The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The Vbus voltage is above VA_SESS_VLD (as defined in the "USB 2.0 Specification") on the A or B-device   0 = The VBus voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	1 = The Vbus voltage is below VB_SESS_END (as defined in the "USB 2.0 Specification") on the B-device   $0=$ The Vbus voltage is above VB_SESS_END on the B-device

bit 1
Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVD: A Vbus Valid Indicator bit
1 = The Vbus voltage is above VA_Vbus_VLd (as defined in the "USB 2.0 Specification") on the A-device
$0=$ The VBus voltage is below VA_VBUS_VLD on the A-device

REGISTER 20-4: U1OTGCON: USB ON-THE-GO CONTROL REGISTER

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  | bit 8 |  |  |  |


R/W-0	R/W-0	R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0
DPPULUP	DMPULUP 2	DPPULDWN $^{(1)}$	DMPULDWN $^{(1)}$	-	OTGEN $^{(1)}$	-	VBUSDIS $^{(1)}$
bit 7				bit 0			


Legend:	$\mathrm{r}=$ Reserved bit	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-8 Unimplemented: Read as '0'
bit 7 DPPULUP: D+ Pull-up Enable bit
$1=\mathrm{D}+$ data line pull-up resistor is enabled
$0=\mathrm{D}+$ data line pull-up resistor is disabled
bit 6 DMPULUP: D- Pull-up Enable bit
1 = D- data line pull-up resistor is enabled
0 = D- data line pull-up resistor is disabled
bit 5 DPPULDWN: D+ Pull-Down Enable bit ${ }^{(1)}$
$1=\mathrm{D}+$ data line pull-down resistor is enabled
$0=\mathrm{D}+$ data line pull-down resistor is disabled
bit 4 DMPULDWN: D- Pull-Down Enable bit ${ }^{(1)}$
1 = D - data line pull-down resistor is enabled
$0=\mathrm{D}$ - data line pull-down resistor is disabled
bit 3 Reserved: Maintain as ' 0 '
bit 2 OTGEN: OTG Features Enable bit ${ }^{(1)}$
1 = USB OTG is enabled; all D+/D- pull-up and pull-down bits are enabled
$0=$ USB OTG is disabled; D+/D- pull-up and pull-down bits are controlled in hardware by the settings of the HOSTEN and USBEN (U1CON<3,0>) bits
bit $1 \quad$ Reserved: Maintain as ' 0 '
bit $0 \quad$ VBUSDIS: VBUS Discharge Enable bit ${ }^{(1)}$
$1=$ VBUS line is discharged through a resistor
$0=$ VBUS line is not discharged
Note 1: These bits are only used in Host mode; do not use in Device mode.

## REGISTER 20-5: U1PWRC: USB POWER CONTROL REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15		bit 8					


| R-x, HSC | U-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0, HC | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UACTPND | - | - | USLPGRD | - | - | USUSPND | USBPWR |
| bit 7 |  |  |  |  |  |  |  |


Legend:	HC = Hardware Clearable bit	HSC = Hardware Settable/Clearable bit
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown


bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set)   $0=$ Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: USB Sleep/Suspend Guard bit
	1 = Indicates to the USB module that it is about to be suspended or powered down $0=$ No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	```\(1=\) USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in low-power state 0 = Normal USB OTG operation```
bit 0	USBPWR: USB Operation Enable bit
	1 = USB OTG module is enabled $0=$ USB OTG module is disabled ${ }^{(1)}$

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.

REGISTER 20-6: U1STAT: USB STATUS REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15		bit 8					

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI $^{(1)}$	-	-
bit 7			bit 0				

Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{HSC}=$ Hardware Settable/Clearable bit	
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$ Bit is unknown

bit 15-8	Unimplemented: Read as ' 0 '
bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.)
	1111 = Endpoint 15
	1110 = Endpoint 14
	-
	-
	-
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX)
	$0=$ The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ${ }^{(1)}$
	1 = The last transaction was to the odd BD bank
	$0=$ The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as ' 0 '

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
-	SE0	PKTDIS	-	HOSTEN	RESUME	PPBRST	USBEN
bit 7				bit 0			

Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '	
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{HSC}=$ Hardware Settable/Clearable bit
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	SEO: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus $0=$ No single-ended zero is detected
bit 5	PKTDIS: Packet Transfer Disable bit
	1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received $0=$ SIE token and packet processing are enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit
	1 = USB host capability is enabled; pull-downs on $D+$ and D - are activated in hardware $0=$ USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated
	$0=$ Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	1 = Resets all Ping-Pong Buffer Pointers to the even BD banks
	$0=$ Ping-Pong Buffer Pointers are not reset
bit 0	USBEN: USB Module Enable bit
	$1=$ USB module and supporting circuitry are enabled (device attached); $D+$ pull-up is activated in hardware $0=$ USB module and supporting circuitry are disabled (device detached)

REGISTER 20-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15			bit 8				

R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7				bit 0			

Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{HSC}=$ Hardware Settable/Clearable bit	
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=$ Bit is unknown

bit 15-8 Unimplemented: Read as ' 0 '
bit 7 JSTATE: Live Differential Receiver J-State Flag bit
1 = J-state (differential ' 0 ' in low speed, differential ' 1 ' in full speed) is detected on the USB
$0=$ No J-state is detected
bit 6 SE0: Live Single-Ended Zero Flag bit
1 = Single-ended zero is active on the USB bus
$0=$ No single-ended zero is detected
bit 5 TOKBUSY: Token Busy Status bit
1 = Token is being executed by the USB module in On-The-Go state
$0=$ No token is being executed
bit 4 USBRST: USB Module Reset bit
1 = USB Reset has been generated for a software Reset; application must set this bit for 50 ms , then clear it
$0=$ USB Reset is terminated
bit 3 HOSTEN: Host Mode Enable bit
1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware
$0=$ USB host capability is disabled
bit 2 RESUME: Resume Signaling Enable bit
1 = Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake-up
$0=$ Resume signaling is disabled
bit 1 PPBRST: Ping-Pong Buffers Reset bit
1 = Resets all Ping-Pong Buffer Pointers to the even BD banks
$0=$ Ping-Pong Buffer Pointers are not reset
bit 0 SOFEN: Start-of-Frame Enable bit
1 = Start-of-Frame token is sent every one 1 ms
0 = Start-of-Frame token is disabled

REGISTER 20-9: U1ADDR: USB ADDRESS REGISTER

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | | | | |

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LSPDEN ${ }^{(1)}$ | DEVADDR6 | DEVADDR5 | DEVADDR4 | DEVADDR3 | DEVADDR2 | DEVADDR1 | DEVADDR0 |
| bit 7 | | | | | bit 0 | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 15-8	Unimplemented: Read as ' 0 '
bit 7	LSPDEN: Low-Speed Enable Indicator bit ${ }^{(1)}$
	$1=$ USB module operates at low speed bit 6-0
	DEVAD module operates at full speed

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as ' 0 '.

REGISTER 20-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
bit 15									
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PID3 PID2 PID1 PID0 EP3 EP2 EP1 EP0 bit 7								$.$	bit 0
:---									

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-8	Unimplemented: Read as ' 0 '
bit 7-4	PID<3:0>: Token Type Identifier bits
	$1101=$ SETUP $\left(\right.$ TX) token type transaction ${ }^{(1)}$
	$1001=\operatorname{IN}(R X)$ token type transaction ${ }^{(1)}$
	$0001=$ OUT $\left(\right.$ TX) token type transaction ${ }^{(1)}$
bit 3-0	EP<3:0>: Token Command Endpoint Address bits
	This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

REGISTER 20-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | $C N T<7: 0>$ | | | | | |
| bit 7 | | | | | bit 0 | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-8	Unimplemented: Read as ' 0 '
bit 7-0	CNT<7:0>: Start-of-Frame Size bits
	Value represents $10+$ (packet size of n bytes). For example:
	$0100 \quad 1010=64$-byte packet
	$0010 \quad 1010=32$-byte packet
	$00010010=8$-byte packet

REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
UTEYE	UOEMON $^{(\mathbf{1}}$	-	USBSIDL	-	-	PPB1	PPB0
bit 7				bit 0			

Legend:

$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplement	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UTEYE: USB Eye Pattern Test Enable bit 1 = Eye pattern test is enabled $0=$ Eye pattern test is disabled
bit 6	UOEMON: USB $\overline{\mathrm{OE}}$ Monitor Enable bit ${ }^{(1)}$ $1=\overline{\mathrm{OE}}$ signal is active; it indicates intervals during which the $\mathrm{D}+/ \mathrm{D}$ - lines are driving $0=\overline{\mathrm{OE}}$ signal is inactive
bit 5	Unimplemented: Read as '0'
bit 4	USBSIDL: USB OTG Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode $0=$ Continues module operation in Idle mode
bit 3-2	Unimplemented: Read as ' 0 '
bit 1-0	PPB<1:0> : Ping-Pong Buffers Configuration bits
	11 = Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15 10 = Even/Odd Ping-Pong Buffers are enabled for all endpoints 01 = Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0 $00=$ Even/Odd Ping-Pong Buffers are disabled

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

REGISTER 20-13: U1CNFG2: USB CONFIGURATION REGISTER 2

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | | | | |

| U-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | PUVBUS | EXTI2CEN | - | - | - |
| bit 7 | | | | bit 0 | | | |

Legend:				
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared	$\quad \mathrm{x}=$ Bit is unknown	
:---				

bit 15-5	Unimplemented: Read as ‘0'
bit 4	PUVBUS: VBUS Pull-Up Enable bit
	$1=$ Pull-up on VBUS pin is enabled
	$0=$ Pull-up on VBus pin is disabled

bit 3 EXTI2CEN: $\left.\right|^{2} \mathrm{C}$ Interface for External Module Control Enable bit

$$
1=\text { External module(s) is controlled via the } \mathrm{I}^{2} \mathrm{C} \text { interface }
$$

$0=$ External module(s) is controlled via the dedicated pins
bit 2-0 Unimplemented: Read as ' 0 '

20.7.2 USB INTERRUPT REGISTERS

REGISTER 20-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | bit 8 | | | |

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	-	VBUSVDIF
bit 7				bit 0			

Legend:	HS = Hardware Settable bit	
$R=$ Readable bit	$K=$ Write ' 1 ' to Clear bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ IDIF: ID State Change Indicator bit
$1=$ Change in ID state is detected
$0=$ No ID state change is detected
bit 6 T1MSECIF: 1 Millisecond Timer bit
$1=$ The 1 millisecond timer has expired
$0=$ The 1 millisecond timer has not expired
bit 5 LSTATEIF: Line State Stable Indicator bit
1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms , but different from the last time
$0=$ USB line state has not been stable for 1 ms
bit 4 ACTVIF: Bus Activity Indicator bit
1 = Activity on the $D+/ D$ - lines or VBus is detected
$0=$ No activity on the D+/D- lines or VBus is detected
bit 3 SESVDIF: Session Valid Change Indicator bit
1 = VBUS has crossed VA_SESS_END (as defined in the "USB 2.0 Specification")(${ }^{(1)}$
$0=$ Vbus has not crossed VA_SESS_END
bit 2 SESENDIF: B-Device VBus Change Indicator bit
1 = Vbus change on B-device is detected; Vbus has crossed VB_SESS_END (as defined in the "USB 2.0 Specification") ${ }^{(1)}$
0 = VBus has not crossed VB_SESS_END
bit $1 \quad$ Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVDIF: A-Device Vbus Change Indicator bit
1 = Vbus change on A-device is detected; VBus has crossed VA_Vbus_VLD (as defined in the "USB 2.0 Specification") ${ }^{(1)}$
$0=$ No Vbus change on A-device is detected
Note 1: VBUS threshold crossings may either be rising or falling.

Note: Individual bits can only be cleared by writing a ' 1 ' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDIE | T1MSECIE | LSTATEIE | ACTVIE | SESVDIE | SESENDIE | - | VBUSVDIE |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ IDIE: ID Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $6 \quad$ T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 5 LSTATEIE: Line State Stable Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 4 ACTVIE: Bus Activity Interrupt Enable bit
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled
bit 3 SESVDIE: Session Valid Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $1 \quad$ Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVDIE: A-Device Vbus Valid Interrupt Enable bit
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled

REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

R/K-0, HS	U-0	R/K-0, HS					
STALLIF	-	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7			bit 0				

Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '		
$\mathrm{R}=$ Readable bit	$\mathrm{K}=$ Write ' 1 ' to Clear bit	$\mathrm{HS}=$ Hardware Settable bit	
$-\mathrm{n}=$ Value at POR	'1' = Bit is set	' 0 ' = Bit is cleared \quad	$x=$ Bit is unknown

bit 15-8 Unimplemented: Read as ' 0 '
bit 7 STALLIF: STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode
$0=$ A STALL handshake has not been sent
bit $6 \quad$ Unimplemented: Read as ' 0 '
bit 5 RESUMEIF: Resume Interrupt bit
1 = A K-state is observed on the $\mathrm{D}+$ or D - pin for $2.5 \mu \mathrm{~s}$ (differential ' 1 ' for low speed, differential ' 0 ' for full speed)
$0=$ No K-state is observed
bit 4 IDLEIF: Idle Detect Interrupt bit
$1=$ Idle condition is detected (constant Idle state of 3 ms or more)
$0=$ No Idle condition is detected
bit 3 TRNIF: Token Processing Complete Interrupt bit
1 = Processing of the current token is complete; read the U1STAT register for endpoint information
$0=$ Processing of the current token is not complete; clear the U1STAT register or load the next token from STAT (clearing this bit causes the STAT FIFO to advance)
bit 2 SOFIF: Start-of-Frame Token Interrupt bit
1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
$0=$ No Start-of-Frame token is received or threshold reached
bit 1 UERRIF: USB Error Condition Interrupt bit
$1=$ An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
$0=$ No unmasked error condition has occurred
bit $0 \quad$ URSTIF: USB Reset Interrupt bit
1 = Valid USB Reset has occurred for at least $2.5 \mu \mathrm{~s}$; Reset state must be cleared before this bit can be reasserted
$0=$ No USB Reset has occurred; individual bits can only be cleared by writing a ' 1 ' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	
bit 15									
R/K-0, HS STALLIF ATTACHIF RESUMEIF IDLEIF TRNIF SOFIF UERRIF DETACHIF bit 7								$.$	bit 0
:---	:---								

Legend:	$U=$ Unimplemented bit, read as ' 0 '		
$R=$ Readable bit	$K=$ Write ' 1 ' to Clear bit	$H S=$ Hardware Settable bit	
$-n=$ Value at POR	$' 1$ ' = Bit is set	0 ' \quad Bit is cleared $\quad x=$ Bit is unknown	

bit 15-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ STALLIF: STALL Handshake Interrupt bit
$1=A$ STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode
$0=$ A STALL handshake has not been sent
bit 6 ATTACHIF: Peripheral Attach Interrupt bit
1 = A peripheral attachment has been detected by the module; it is set if the bus state is not SEO and there has been no bus activity for $2.5 \mu \mathrm{~s}$
$0=$ No peripheral attachment has been detected
bit 5 RESUMEIF: Resume Interrupt bit
1 = A K-state is observed on the D+ or D- pin for $2.5 \mu \mathrm{~s}$ (differential ' 1 ' for low speed, differential ' 0 ' for full speed)
$0=$ No K-state is observed
bit 4 IDLEIF: Idle Detect Interrupt bit
1 = Idle condition is detected (constant Idle state of 3 ms or more)
$0=$ No Idle condition is detected
bit 3 TRNIF: Token Processing Complete Interrupt bit
1 = Processing of the current token is complete; read the U1STAT register for endpoint information
$0=$ Processing of the current token is not complete; clear the U1STAT register or load the next token from U1STAT
bit 2 SOFIF: Start-of-Frame Token Interrupt bit
1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
$0=$ No Start-of-Frame token is received or threshold reached
bit 1 UERRIF: USB Error Condition Interrupt bit
1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
$0=$ No unmasked error condition has occurred
bit $0 \quad$ DETACHIF: Detach Interrupt bit
1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be re-asserted
$0=$ No peripheral detachment is detected. Individual bits can only be cleared by writing a ' 1 ' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

Note: Individual bits can only be cleared by writing a ' 1 ' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15							

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| STALLIE | ATTACHIE $^{(\mathbf{1})}$ | RESUMEIE | IDLEIE | TRNIE | SOFIE | UERRIE | URSTIE |
| | | | | | | | DETACHIE |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

$\begin{array}{ll}\text { bit 15-8 } & \text { Unimplemented: Read as ' } 0 \text { ' } \\ \text { bit } 7 & \text { STALLIE: STALL Handshake Interrupt Enable bit }\end{array}$
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled
bit $6 \quad$ ATTACHIE: Peripheral Attach Interrupt bit (Host mode only) ${ }^{(\mathbf{1})}$
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 5 RESUMEIE: Resume Interrupt bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 4 IDLEIE: Idle Detect Interrupt bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $3 \quad$ TRNIE: Token Processing Complete Interrupt bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 2 SOFIE: Start-of-Frame Token Interrupt bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 1 UERRIE: USB Error Condition Interrupt bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $0 \quad$ URSTIE or DETACHIE: USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode) Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
Note 1: This bit is unimplemented in Device mode, read as ' 0 '.

REGISTER 20-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | | | | |

R/K-0, HS	U-0	R/K-0, HS					
BTSEF	-	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
						EOFEF	
bit 7							

Legend:	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '	
$\mathrm{R}=$ Readable bit	$\mathrm{K}=$ Write ' 1 ' to Clear bit	$\mathrm{HS}=$ Hardware Settable bit
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$\prime 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15-8	Unimplemented: Read as ' 0 '
bit 7	BTSEF: Bit Stuff Error Flag bit 1
	$0=$ Bit stuff error has been detected
bit 6	Unimplemented: Read as ' 0 '
bit 5	DMAEF: DMA Error Flag bit 1
	$=$ A USB DMA error condition is detected; the data size indicated by the BD byte count field is less
	than the number of received bytes, the received data is truncated

bit 4 BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred
$0=$ No bus turnaround time-out has occurred
bit 3 DFN8EF: Data Field Size Error Flag bit
1 = Data field was not an integral number of bytes
$0=$ Data field was an integral number of bytes
bit 2 CRC16EF: CRC16 Failure Flag bit
1 = CRC16 failed
$0=$ CRC16 passed
bit $1 \quad$ For Device mode:
CRC5EF: CRC5 Host Error Flag bit
1 = Token packet is rejected due to CRC5 error
$0=$ Token packet is accepted (no CRC5 error)
For Host mode:
EOFEF: End-of-Frame (EOF) Error Flag bit
1 = End-of-Frame error has occurred
$0=$ End-of-Frame interrupt is disabled
bit $0 \quad$ PIDEF: PID Check Failure Flag bit
1 = PID check failed
$0=$ PID check passed

Note: Individual bits can only be cleared by writing a ' 1 ' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

| U-0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
bit 15		bit 8					

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BTSEE	-	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE
						EOFEE	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 15-8 Unimplemented: Read as ' 0 '
bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit $6 \quad$ Unimplemented: Read as ' 0 '
bit 5 DMAEE: DMA Error Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled
bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $1 \quad$ For Device mode:
CRC5EE: CRC5 Host Error Interrupt Enable bit
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled
For Host mode:
EOFEE: End-of-Frame (EOF) Error interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit $0 \quad$ PIDEE: PID Check Failure Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled

20.7.3 USB ENDPOINT MANAGEMENT REGISTERS

REGISTER 20-21: U1EPn: USB ENDPOINT n CONTROL REGISTERS ($\mathrm{n}=0$ TO 15)

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | bit 8 | | | |

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPD $^{(\mathbf{1})}$	RETRYDIS						

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 15-8 Unimplemented: Read as ' 0 '
bit 7 LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only) ${ }^{(\mathbf{1})}$
1 = Direct connection to a low-speed device is enabled
$0=$ Direct connection to a low-speed device is disabled
bit 6 RETRYDIS: Retry Disable bit (U1EP0 only) ${ }^{\mathbf{(1)}}$
1 = Retry NAK transactions are disabled
$0=$ Retry NAK transactions are enabled; retry is done in hardware
bit $5 \quad$ Unimplemented: Read as ' 0 '
bit 4 EPCONDIS: Bidirectional Endpoint Control bit
If EPTXEN and EPRXEN = 1 :
1 = Disables Endpoint n from control transfers; only TX and RX transfers are allowed
$0=$ Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed
For All Other Combinations of EPTXEN and EPRXEN:
This bit is ignored.
bit 3 EPRXEN: Endpoint Receive Enable bit
$1=$ Endpoint n receive is enabled
$0=$ Endpoint n receive is disabled
bit 2 EPTXEN: Endpoint Transmit Enable bit
$1=$ Endpoint n transmit is enabled
$0=$ Endpoint n transmit is disabled
bit 1 EPSTALL: Endpoint STALL Status bit
1 = Endpoint n was stalled
$0=$ Endpoint n was not stalled
bit 0 EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint handshake is enabled
$0=$ Endpoint handshake is disabled (typically used for isochronous endpoints)
Note 1: These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as ' 0 '.

NOTES:

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.
For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select, and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP.
Key features of the EPMP module are:

- Extended Data Space (EDS) Interface Allows

Direct Access from the CPU

- Up to 23 Programmable Address Lines
- Up to 2 Chip Select lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit, 8-Bit or 16-Bit Wide Data Bus
- Programmable Strobe Options (per Chip Select):
- Individual read and write strobes or;
- Read/Write strobe with enable strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
- Address support
- 4-byte deep auto-incrementing buffer

21.1 Specific Package Variations

While all PIC24FJ1024GA610/GB610 family devices implement the EPMP, I/O pin constraints place some limits on 16-Bit Master mode operations in some package types. This is reflected in the number of dedicated Chip Select pins implemented and the number of dedicated address lines that are available. The differences are summarized in Table 21-1. All available EPMP pin functions are summarized in Table 21-2.
For 64-pin devices, the dedicated Chip Select pins (PMCS1 and PMCS2) are not implemented. In addition, only 16 address lines ($\mathrm{PMA}<15: 0>$) are available. If required, PMA14 and PMA15 can be remapped to function as PMCS1 and PMCS2, respectively.
The memory space addressable by the device depends on the number of address lines available, as well as the number of Chip Select signals required for the application. Devices with lower pin counts are more affected by Chip Select requirements, as these take away address lines. Table 21-1 shows the maximum addressable range for each pin count.

21.2 PMDOUT1 and PMDOUT2 Registers

The EPMP Data Output 1 and Data Output 2 registers are used only in Slave mode for buffered output data. These registers act as a buffer for outgoing data.

21.3 PMDIN1 and PMDIN2 Registers

The EPMP Data Input 1 and Data Input 2 registers are used in Slave modes to buffer incoming data. These registers hold data that is asynchronously clocked in.
In Master mode, PMDIN1 is the holding register for incoming data.

TABLE 21-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

Device	Dedicated Chip Select		Address Lines	Data Lines	Address Range (bytes)		
	CS1	CS2			No CS	$1 \mathrm{CS}^{(1)}$	$2 \mathrm{CS}^{(1)}$
PIC24FJXXXGX606 (64-Pin)	-	-	16	8	64K	32K	16K
PIC24FJXXXGX610 (100-Pin/121-Pin)	X	X	23	16	16M		

Note 1: PMA14 and PMA15 can be remapped to be dedicated Chip Selects.

TABLE 21-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS

Pin Name (Alternate Function)	Type	Description
PMA<22:16>	0	Address Bus bits<22:16>
PMA15	0	Address Bus bit 15
	I/O	Data Bus bit 15 (16-bit port with Multiplexed Addressing)
(PMCS2)	0	Chip Select 2 (alternate location)
PMA14	O	Address Bus bit 14
	I/O	Data Bus bit 14 (16-bit port with Multiplexed Addressing)
(PMCS1)	O	Chip Select 1 (alternate location)
PMA<13:8>	0	Address Bus bits<13:8>
	I/O	Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)
PMA<7:3>	0	Address Bus bits<7:3>
PMA2 (PMALU)	0	Address Bus bit 2
	0	Address Latch Upper Strobe for Multiplexed Address
PMA1 (PMALH)	I/O	Address Bus bit 1
	0	Address Latch High Strobe for Multiplexed Address
PMAO (PMALL)	I/O	Address Bus bit 0
	0	Address Latch Low Strobe for Multiplexed Address
PMD<15:8>	I/O	Data Bus bits<15:8> (Demultiplexed Addressing)
PMD<7:4>	I/O	Data Bus bits<7:4>
	O	Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing)
PMD<3:0>	I/O	Data Bus bits<3:0>
PMCS1 ${ }^{(1)}$	O	Chip Select 1
PMCS2 ${ }^{(1)}$	0	Chip Select 2
PMWR	I/O	Write Strobe ${ }^{(2)}$
(PMENB)	I/O	Enable Signal ${ }^{(2)}$
PMRD	I/O	Read Strobe ${ }^{(2)}$
(PMRD/产MWR)	I/O	Read//Write Signal ${ }^{(2)}$
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1	1	Acknowledgment Signal 1
PMACK2	1	Acknowledgment Signal 2

Note 1: These pins are implemented in 100-pin and 121-pin devices only.
2: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

| R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMPEN | - | PSIDL | ADRMUX1 | ADRMUX0 | - | MODE1 | MODE0 |
| bit 15 | | | | | | | |

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	ALMODE	-	BUSKEEP	IRQM1	IRQM0
bit $7 \times$ bit 0							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15 PMPEN: Parallel Master Port Enable bit

1 = EPMP is enabled
$0=$ EPMP is disabled
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 PSIDL: Parallel Master Port Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12-11
bit 10
bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
11 = Master mode
10 = Enhanced PSP; pins used are PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>
01 = Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0>
00 = Legacy Parallel Slave Port; pins used are PMRD, PMWR, PMCS and PMD<7:0>
bit 7-6 CSF<1:0>: Chip Select Function bits
11 = Reserved
$10=$ PMA15 is used for Chip Select 2, PMA14 is used for Chip Select 1
$01=$ PMA15 is used for Chip Select 2, PMCS1 is used for Chip Select 1
$00=$ PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1
bit 5
ALP: Address Latch Polarity bit
1 = Active-high (PMALL, PMALH and PMALU)
$0=$ Active-low (PMALL, $\overline{\text { PMALH }}$ and $\overline{\text { PMALU }})$
bit 4 ALMODE: Address Latch Strobe Mode bit
1 = Enables "smart" address strobes (each address phase is only present if the current access would cause a different address in the latch than the previous address)
0 = Disables "smart" address strobes
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2 BUSKEEP: Bus Keeper bit
1 = Data bus keeps its last value when not actively being driven
$0=$ Data bus is in a high-impedance state when not actively being driven
bit 1-0 IRQM<1:0>: Interrupt Request Mode bits
11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode), or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)
10 = Reserved
01 = Interrupt is generated at the end of a read/write cycle
$00=$ No interrupt is generated

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0
BUSY	-	ERROR	TIMEOUT	-	-	-	-
bit 15							bit 8
R/W-0							
RADDR23 ${ }^{(1)}$	RADDR22 ${ }^{(1)}$	RADDR21 ${ }^{(1)}$	RADDR20 ${ }^{(1)}$	RADDR19 ${ }^{(1)}$	RADDR18 ${ }^{(1)}$	RADDR17 ${ }^{(1)}$	RADDR16 ${ }^{(1)}$
bit 7							bit 0

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown
$C=$ Clearable bit	$H S=$ Hardware Settable bit	$H S C=$ Hardware Settable/Clearable bit

bit 15	BUSY: Busy bit (Master mode only)
	1 = Port is busy
	$0=$ Port is not busy
bit 14	Unimplemented: Read as '0'
bit 13	ERROR: Error bit
	1 = Transaction error (illegal transaction was requested) $0=$ Transaction completed successfully
bit 12	TIMEOUT: Time-out bit
	1 = Transaction timed out
	$0=$ Transaction completed successfully
bit 11-8	Unimplemented: Read as '0'
bit 7-0	RADDR<23:16>: Parallel Master Port Reserved Address Space bits ${ }^{(1)}$

Note 1: If RADDR<23:16> $=00000000$, then the last EDS address for Chip Select 2 will be FFFFFFh.

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	-	AWAITM1	AWAITM0	AWAITE
bit 15				bit 8			

U-0									U-0	U-0	U-0	U-0	U-0	U-0
-	-	-	-	-	-	-	-							
bit 7														

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15 PTWREN: Write/Enable Strobe Port Enable bit
1 = PMWR/PMENB port is enabled
$0=$ PMWR/PMENB port is disabled
bit 14 PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port is enabled
$0=$ PMRD/PMWR port is disabled
bit 13 PTBE1EN: High Nibble/Byte Enable Port Enable bit
1 = PMBE1 port is enabled
$0=$ PMBE1 port is disabled
bit 12 PTBEOEN: Low Nibble/Byte Enable Port Enable bit
$1=$ PMBEO port is enabled
$0=$ PMBEO port is disabled
bit 11 Unimplemented: Read as ' 0 '
bit 10-9 AWAITM<1:0>: Address Latch Strobe Wait States bits
$11=$ Wait of $31 / 2$ TCY
$10=$ Wait of $21 / 2$ TCY
$01=$ Wait of $11 / 2$ TCY
$00=$ Wait of $1 / 2$ TcY
bit bit 8 AWAITE: Address Hold After Address Latch Strobe Wait States bits
$1=$ Wait of $11 / 4 \mathrm{TCY}$
$0=$ Wait of $1 / 4 \mathrm{TCY}$
bit 7-0 Unimplemented: Read as ' 0 '

REGISTER 21-4: PMCON4: EPMP CONTROL REGISTER 4

bit 15 PTEN15: PMA15 Port Enable bit
$1=$ PMA15 functions as either Address Line 15 or Chip Select 2
0 = PMA15 functions as port I/O
bit 14 PTEN14: PMA14 Port Enable bit
$1=$ PMA14 functions as either Address Line 14 or Chip Select 1
0 = PMA14 functions as port I/O
bit 13-3 PTEN<13:3>: EPMP Address Port Enable bits
$1=P M A<13: 3>$ function as EPMP address lines
$0=$ PMA<13:3> function as port I/Os
bit 2-0 PTEN<2:0>: PMALU/PMALH/PMALL Strobe Enable bits
$1=P M A<2: 0>$ function as either address lines or address latch strobes
$0=P M A<2: 0>$ function as port I/Os

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSDIS | CSP | CSPTEN | BEP | - | WRSP | RDSP | SM |
| bit 15 | | | | | | | |

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	-	-	-	-	-
bit 7							
bit 0							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15 CSDIS: Chip Select x Disable bit
1 = Disables the Chip Select x functionality
$0=$ Enables the Chip Select x functionality
bit 14 CSP: Chip Select x Polarity bit
1 = Active-high (PMCSx)
0 = Active-low (PMCSx)
bit 13 CSPTEN: PMCSx Port Enable bit
1 = PMCSx port is enabled
$0=$ PMCSx port is disabled
bit $9 \quad$ RDSP: Chip Select x Read Strobe Polarity bit
bit 7 ACKP: Chip Select x Acknowledge Polarity bit
bit 6-5 PTSZ<1:0>: Chip Select x Port Size bits
bit 12
bit 11
bit 10
bit 8
bit 4-0

BEP: Chip Select x Nibble/Byte Enable Polarity bit
1 = Nibble/byte enable is active-high (PMBE0, PMBE1)
$0=$ Nibble/byte enable is active-low ($\overline{\text { PMBE0 }}, \overline{\text { PMBE1 }})$
Unimplemented: Read as ' 0 '
WRSP: Chip Select x Write Strobe Polarity bit
For Slave modes and Master mode when SM $=0$:
1 = Write strobe is active-high (PMWR)
$0=$ Write strobe is active-low (PMWR)
For Master mode when SM = 1:
1 = Enable strobe is active-high (PMENB)
$0=$ Enable strobe is active-low (PMENB)

For Slave modes and Master mode when SM $=0$:
1 = Read strobe is active-high (PMRD)
$0=$ Read strobe is active-low (PMRD)
For Master mode when SM = 1:
1 = Read/write strobe is active-high (PMRD/PMWR)
$0=$ Read/Write strobe is active-low (PMRD/PMWR)
SM: Chip Select x Strobe Mode bit
$1=$ Reads/writes and enables strobes (PMRD/PMWR and PMENB)
$0=$ Reads and writes strobes (PMRD and PMWR)
$1=$ ACK is active-high (PMACK1)
$0=$ ACK is active-low (PMACK1)

11 = Reserved
$10=16$-bit port size (PMD<15:0>)
$01=4$-bit port size ($\mathrm{PMD}<3: 0>$)
$00=8$-bit port size (PMD<7:0>)
Unimplemented: Read as ' 0 ’

REGISTER 21-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER ${ }^{(2)}$

$\mathrm{R} / \mathrm{W}^{(1)}$	R/W ${ }^{(1)}$	R/W ${ }^{(1)}$	R/W ${ }^{(1)}$	$\mathrm{R} / \mathrm{W}^{(1)}$	R/W ${ }^{(1)}$	R/W $\mathrm{W}^{(1)}$	$\mathrm{R} / \mathrm{W}^{(1)}$
BASE<23:16>							
bit 15							bit 8

R/W ${ }^{(\mathbf{1})}$	U-0	U-0	U-0	(1)	U-0	U-0	U-0
BASE15	-	-	-	BASE11	-	-	-
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' \quad Bit is cleared

bit 15-7 BASE<23:15>: Chip Select x Base Address bits ${ }^{(1)}$
bit 6-4 Unimplemented: Read as '0'
bit $3 \quad$ BASE11: Chip Select x Base Address bit ${ }^{(1)}$
bit 2-0 Unimplemented: Read as '0'
Note 1: The value at POR is 0080 h for PMCS 1 BS and 8080 h for PMCS2BS.
2: If the whole PMCS2BS register is written together as 0×0000, then the last EDS address for the Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

REGISTER 21-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	-	-	-
bit 15			bit 8				

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DWAITB1 | DWAITB0 | DWAITM3 | DWAITM2 | DWAITM1 | DWAITM0 | DWAITE1 | DWAITE0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-14 ACKM<1:0>: Chip Select x Acknowledge Mode bits
11 = Reserved
$10=$ PMACKx is used to determine when a read/write operation is complete
$01=$ PMACKx is used to determine when a read/write operation is complete with time-out (If DWAITM<3:0> = 0000, the maximum time-out is 255 TcY or else it is DWAITM<3:0> cycles.) $00=$ PMACKx is not used
bit 13-11 AMWAIT<2:0>: Chip Select x Alternate Master Wait States bits
111 = Wait of 10 alternate master cycles
...
$001=$ Wait of 4 alternate master cycles
$000=$ Wait of 3 alternate master cycles
bit 10-8 Unimplemented: Read as ' 0 '
bit 7-6 DWAITB<1:0>: Chip Select x Data Setup Before Read/Write Strobe Wait States bits
$11=$ Wait of $31 / 4$ TcY
$10=$ Wait of $21 / 4 \mathrm{TCY}$
$01=$ Wait of $11 / 4$ TCY
00 = Wait of $1 / 4$ TCY
bit 5-2 DWAITM<3:0>: Chip Select x Data Read/Write Strobe Wait States bits
For Write Operations:
1111 = Wait of $151 / 2$ TcY
$0001=$ Wait of $11 / 2$ TCY
$0000=$ Wait of $1 / 2$ TcY
For Read Operations:
1111 = Wait of $153 / 4$ TcY
0001 = Wait of $13 / 4$ TCY
$0000=$ Wait of $3 / 4$ TCY
bit 1-0 DWAITE<1:0>: Chip Select x Data Hold After Read/Write Strobe Wait States bits
For Write Operations:
$11=$ Wait of $31 / 4 \mathrm{TcY}$
$10=$ Wait of $21 / 4 \mathrm{TCY}$
01 = Wait of $11 / 4$ TCY
00 = Wait of $1 / 4$ TCY
For Read Operations:
11 = Wait of 3 TcY
$10=$ Wait of 2 TcY
01 = Wait of 1 TCY
$00=$ Wait of 0 TcY

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

| R-0, HSC | R/W-0, HS | U-0 | U-0 | R-0, HSC | R-0, HSC | R-0, HSC | R-0, HSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBF | IBOV | - | - | IB3F $^{(1)}$ | IB2F $^{(1)}$ | IB1F $^{(\mathbf{1})}$ | IBOF $^{(\mathbf{1})}$ |
| bit 15 | | | | bit 8 | | | |

R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	-	-	OB3E	OB2E	OB1E	OB0E
bit 7				bit 0			

Legend:	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit
$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 15	IBF: Input Buffer Full Status bit
	1 = All writable Input Buffer registers are full
	0 = Some or all of the writable Input Buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit
	1 = A write attempt to a full Input register occurred (must be cleared in software) $0=$ No overflow occurred
bit 13-12	Unimplemented: Read as '0,
bit 11-8	IB3F:IB0F: Input Buffer \times Status Full bits ${ }^{(1)}$
	1 = Input buffer contains unread data (reading the buffer will clear this bit) 0 = Input buffer does not contain unread data
bit 7	OBE: Output Buffer Empty Status bit
	1 = All readable Output Buffer registers are empty
	$0=$ Some or all of the readable Output Buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	$1=$ A read occurred from an empty Output Buffer register (must be cleared in software) $0=$ No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bit
	1 = Output Buffer x is empty (writing data to the buffer will clear this bit) $0=$ Output Buffer x contains untransmitted data

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

REGISTER 21-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

R/W-0	U-0						
IOCON	-	-	-	-	-	-	-
bit 15							

$\mathrm{U}-0$								$\mathrm{U}-0$

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15	IOCON: Used for Non-PMP functionality
bit 14-1	Unimplemented: Read as ' 0 '
bit 0	PMPTTL: EPMP Module TTL Input Buffer Select bit
	$1=$ EPMP module inputs (PMDx, PMCS1) use TTL input buffers

NOTES:

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.
Key features of the RTCC module are:

- Selectable Clock Source
- Provides Hours, Minutes and Seconds Using 24-Hour Format
- Visibility of One Half Second Period
- Provides Calendar - Weekday, Date, Month and Year
- Alarm-Configurable for Half a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month or 1 Year
- Alarm Repeat with Decrementing Counter
- Alarm with Indefinite Repeat Chime
- Year 2000 to 2099 Leap Year Correction
- BCD Format for Smaller Software Overhead
- Optimized for Long-Term Battery Operation
- User Calibration of the 32.768 kHz Clock Crystal/ 32K INTRC Frequency with Periodic Auto-Adjust
- Fractional Second Synchronization
- Calibration to within ± 2.64 Seconds Error per Month
- Calibrates up to 260 ppm of Crystal Error
- Ability to Periodically Wake-up External Devices without CPU Intervention (external power control)
- Power Control Output for External Circuit Control
- Calibration takes Effect Every 15 Seconds
- Timestamp Capture Register for Time and Date
- Programmable Prescaler and Clock Divider Circuit Allows Operation with Any Clock Source up to 32 MHz , Including 32.768 kHz Crystal, 50/60 Hz Powerline Clock, External Real-Time Clock (RTC) or 31.25 kHz LPRC Clock

22.1 RTCC Source Clock

The RTCC clock divider block converts the incoming oscillator source into accurate $1 / 2$ and 1 second clocks for the RTCC. The clock divider is optimized to work with three different oscillator sources:

- 32.768 kHz Crystal Oscillator
- 31 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz Powerline Frequency

An asynchronous prescaler, PS<1:0> (RTCCON2L<5:4>), is provided that allows the RTCC to work with higher speed clock sources, such as the system clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources up to 32 MHz to clock the RTCC.

22.1.1 COARSE FREQUENCY DIVISION

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV<15:0> register bits (RTCCON2H<15:0>). The DIV<15:0> bits should be programmed with a value to produce a nominal $1 / 2$ second clock divider count period.

22.1.2 FINE FREQUENCY DIVISION

The fine frequency division is set using the FDIV<4:0> (RTCCON2L<15:11>) bits. Increasing the FDIVx value will lengthen the overall clock divider period.
If FDIV $<4: 0>=00000$, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every $1 / 2$ second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.
The value for DIV<15:0> is calculated as shown in Equation 22-1. The fractional remainder of the DIV<15:0> calculation result can be used to calculate the value for FDIV<4:0>.

EQUATION 22-1: RTCC CLOCK DIVIDER

 OUTPUT FREQUENCY

The DIV < $15: 0>$ value is the integer part of this calculation:

$$
D I V<15: 0>=\frac{\text { FIN }}{2 \cdot(P S<1: 0>\text { Prescaler })}-1
$$

The FDIV<4:0> value is the fractional part of the DIV<15:0> calculation multiplied by 32 .

FIGURE 22-1: RTCC BLOCK DIAGRAM

22.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- Timestamp Registers

22.2.1 REGISTER MAPPING

Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

22.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the WRLOCK bit (RTCCON1L<11>) must be set (see Example 22-1).

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit ($\mathrm{RTCCON} 1 \mathrm{~L}<11>$) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 22-1.

22.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to ' 00 ', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are ' 01 ', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

EXAMPLE 22-1: SETTING THE WRLOCK

 BIT```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov #0xAA, w8");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RTC`CON1L, #11");
//set the WRLOCK bit
asm volatile("pop w8");
asm volatile("pop w7");
```


### 22.3 Registers

### 22.3.1 RTCC CONTROL REGISTERS

REGISTER 22-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

| R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |
|---|---|---|---|---|---|---|---|---|---|
| RTCEN | - | - | - | WRLOCK | PWCEN | PWCPOL | PWCPOE |
| bit 15 |  |  |  |  |  |  |  |
| R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 <br> RTCOE OUTSEL2 OUTSEL1 OUTSEL0 - - - <br> Rit 7       |  |  |  |  |  |  |  |$.$| TSA-0 |
| :--- |

## Legend:

| $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |  |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=B$ |

bit 15 RTCEN: RTCC Enable bit
$1=$ RTCC is enabled and counts from selected clock source $0=$ RTCC is not enabled
bit 14-12 Unimplemented: Read as ' 0 '
bit 11 WRLOCK: RTCC Register Write Lock
1 = RTCC registers are locked
$0=$ RTCC registers may be written to by user
bit 10
bit $9 \quad$ PWCPOL: Power Control Polarity bit
$1=$ Power control output is active-high
0 = Power control output is active-low
bit $8 \quad$ PWCPOE: Power Control Output Enable bit
1 = Power control output pin is enabled
0 = Power control output pin is disabled
bit $7 \quad$ RTCOE: RTCC Output Enable bit
1 = RTCC output is enabled
$0=$ RTCC output is disabled
bit 6-4 OUTSEL<2:0>: RTCC Output Signal Selection bits
111 = Unused
$110=$ Unused
101 = Unused
100 = Timestamp A event
011 = Power control
$010=$ RTCC input clock
001 = Second clock
000 = Alarm event
bit 3-1 Unimplemented: Read as ' 0 '
bit 0
TSAEN: Timestamp A Enable bit
1 = Timestamp event will occur when a low pulse is detected on the TMPR pin
$0=$ Timestamp is disabled

## REGISTER 22-2: RTCCON1H: RTCC CONTROL REGISTER 1 (HIGH)

| R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALRMEN | CHIME | - | - | AMASK3 | AMASK2 | AMASK1 | AMASK0 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALMRPT7 | ALMRPT6 | ALMRPT5 | ALMRPT4 | ALMRPT3 | ALMRPT2 | ALMRPT1 | ALMRPT0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |


| bit 15 | ALRMEN: Alarm Enable bit |
| :--- | :--- |
| $1=$ Alarm is enabled (cleared automatically after an alarm event whenever ALMRPT $<7: 0>=00 \mathrm{~h}$ and |  |
|  | CHIME $=0$ ) |

bit 13-12 Unimplemented: Read as ' 0 '
bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits
0000 = Every half second
0000 = Every second
0010 = Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
0110 = Once a day
0111 = Once a week
1000 = Once a month
1001 = Once a year (except when configured for February 29th, once every 4 years)
101x = Reserved - do not use
11xx = Reserved - do not use
bit 7-0 ALMRPT<7:0>: Alarm Repeat Counter Value bits
11111111 = Alarm will repeat 255 more times
-
-
-
00000000 = Alarm will repeat 0 more times
The counter decrements on any alarm event. The counter is prevented from rolling over from ' 00 ' to ' FF ' unless CHIME $=1$.

REGISTER 22-3: RTCCON2L: RTCC CONTROL REGISTER 2 (LOW)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| FDIV4 | FDIV3 | FDIV2 | FDIV1 | FDIV0 | - | - | - |
| bit 15 |  | bit 8 |  |  |  |  |  |


| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PWCPS1 | PWCPS0 | PS1 | PS0 | - | - | CLKSEL1 | CLKSEL0 |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-11 FDIV<4:0>: Fractional Clock Divide bits
00000 = No fractional clock division.
00001 = Increase period by 1 RTCC input clock cycle every 16 seconds
$00010=$ Increase period by 2 RTCC input clock cycles every 16 seconds
-
-
11101 = Increase period by 30 RTCC input clock cycles every 16 seconds 11111 = Increase period by 31 RTCC input clock cycles every 16 seconds
bit 10-8 Unimplemented: Read as ' 0 '
bit 7-6 PWCPS<1:0>: Power Control Prescale Select bits
$00=1: 1$
$01=1: 16$
$10=1: 64$
$11=1: 256$
bit 5-4 PS<1:0>: Prescale Select bits
$00=1: 1$
$01=1: 16$
$10=1: 64$
$11=1: 256$
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 CLKSEL<1:0>: Clock Select bits
00 = SOSC
01 = LPRC
$10=$ PWRLCLK pin
11 = System clock

## PIC24FJ1024GA610/GB610 FAMILY

### 22.3.2 RTCVAL REGISTER MAPPINGS

## REGISTER 22-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH) ${ }^{(\mathbf{1 )}}$

| $R / W-0$ | $R / W-0$ | $R / W-1$ | | | | | |
|---|---|---|---|---|---|---|---|
|  |  | DIV<15:8> |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


| R/W-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |
| bit 7 | DIV $<7: 0>$ |  |  |  |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-0 DIV<15:0>: Clock Divide bits
Sets the period of the clock divider counter; value should cause a nominal $1 / 2$ second underflow.
Note 1: A write to this register is only allowed when WRLOCK = 1 .

REGISTER 22-5: RTCCON3L: RTCC CONTROL REGISTER 3 (LOW)

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 15 |  |  |  |  | bit 8 |  |  |


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 7 |  |  |  |  | bit 0 |  |  |

Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' = Bit is cleared |$\quad x=$ Bit is unknown $\quad$.

bit 15-8 PWCSAMP<7:0>: Power Control Sample Window Timer bits
11111111 = Sample window is always enabled, even when PWCEN $=0$
$11111110=$ Sample window is 254 TPWCCLK clock periods
-
-
-
00000001 = Sample window is 1 TPWCCLK clock period 00000000 = No sample window
bit 7-0 PWCSTAB<7:0>: Power Control Stability Window Timer bits ${ }^{(1)}$
11111111 = Stability window is 255 TPWCCLK clock periods
11111110 = Stability window is 254 TPWCCLK clock periods
-
-
-
00000001 = Stability window is 1 TPWCCLK clock period
$00000000=$ No stability window; sample window starts when the alarm event triggers
Note 1: The sample window always starts when the stability window timer expires, except when its initial value is 00 h .

## REGISTER 22-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | R/C-0 | U-0 | R/C-0 | R-0 | R-0 | R-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | ALMEVT | - | TSAEVT ${ }^{(1)}$ | SYNC | ALMSYNC | HALFSEC ${ }^{(2)}$ |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |


| Legend: | $\mathrm{C}=$ Clearable bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |


| bit 15-6 | Unimplemented: Read as '0' |
| :---: | :---: |
| bit 5 | ALMEVT: Alarm Event bit |
|  | 1 = An alarm event has occurred |
|  | $0=$ An alarm event has not occurred |
| bit 4 | Unimplemented: Read as ' 0 ' |
| bit 3 | TSAEVT: Timestamp A Event bit ${ }^{(1)}$ |
|  | 1 = A timestamp event has occurred |
|  | 0 = A timestamp event has not occurred |
| bit 2 | SYNC: Synchronization Status bit |
|  | 1 = Time registers may change during software read |
|  | $0=$ Time registers may be read safely |
| bit 1 | ALMSYNC: Alarm Synchronization Status bit |
|  | $\begin{aligned} 1= & \text { Alarm registers (ALMTIME and ALMDATE) and Alarm Mask bits (AMASK<3:0>) should not be } \\ & \text { modified, and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read } \\ 0= & \text { Alarm registers and Alarm Control bits may be written } / \text { modified safely } \end{aligned}$ |
| bit 0 | HALFSEC: Half Second Status bit ${ }^{(2)}$ |
|  | 1 = Second half period of a second <br> $0=$ First half period of a second |

Note 1: User software may write a ' 1 ' to this location to initiate a Timestamp A event; timestamp capture is not valid until TSAEVT reads as ' 1 '.
2: This bit is read-only; it is cleared to ' 0 ' on a write to the SECONE<3:0> bits.

### 22.3.3 RTCC VALUE REGISTERS

REGISTER 22-7: TIMEL: RTCC TIME REGISTER (LOW)

| U-0 | R/W-x | | | | | | |
|---|---|---|---|---|---|---|---|
| - | SECTEN2 | SECTEN1 | SECTEN0 | SECONE3 | SECONE2 | SECONE1 | SECONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown $\quad$.


| bit 15 | Unimplemented: Read as ' 0 ' |
| :--- | :--- |
| bit 14-12 | SECTEN<2:0>: Binary Coded Decimal Value of Seconds ' 10 ' Digit bits <br> Contains a value from 0 to 5. |
| bit 11-8 | SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits <br> Contains a value from 0 to 9. |
| bit 7-0 | Unimplemented: Read as ' 0 ' |

REGISTER 22-8: TIMEH: RTCC TIME REGISTER (HIGH)

| U-0 | U-0 | R/W-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | HRTEN1 | HRTEN0 | HRONE3 | HRONE2 | HRONE1 | HRONE0 |
| bit 15 |  |  |  |  | bit 8 |  |  |


| U-0 | R/W-0 | R/W-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | MINTEN2 | MINTEN1 | MINTEN0 | MINONE3 | MINONE2 | MINONE1 | MINONE0 |
| bit 7 |  |  |  |  |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplement | as ' 0 ' |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |

bit 15-14 Unimplemented: Read as ' 0 ’
bit 13-12 HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2 .
bit 11-8 HRONE<3:0>: Binary Coded Decimal Value of Hours ' 1 ' Digit bits Contains a value from 0 to 9 .
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10’ Digit bits Contains a value from 0 to 5 .
bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes ' 1 ' Digit bits
Contains a value from 0 to 9 .

## REGISTER 22-9: DATEL: RTCC DATE REGISTER (LOW)

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | DAYTEN1 | DAYTEN0 | DAYONE3 | DAYONE2 | DAYONE1 | DAYONE0 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| U-0 | U-0 | U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | WDAY2 | WDAY1 | WDAY0 |
| bit 7 |  |  |  |  | bit 0 |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |

bit 15-14 Unimplemented: Read as '0'
bit 13-12 DAYTEN<1:0>: Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3 .
bit 11-8 DAYONE<3:0>: Binary Coded Decimal Value of Days ' 1 ' Digit bits Contains a value from 0 to 9 .
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-0 WDAY<2:0>: Binary Coded Decimal Value of Weekdays ' 1 ' Digit bits Contains a value from 0 to 6 .

## REGISTER 22-10: DATEH: RTCC DATE REGISTER (HIGH)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-x | R/W-x | R/W-x | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |

bit 15-12 YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits
bit 11-8 YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bits
bit 7-5 Unimplemented: Read as ' 0 '
bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9 .

### 22.3.4 ALARM VALUE REGISTERS

REGISTER 22-11: ALMTIMEL: RTCC ALARM TIME REGISTER (LOW)

| U-0 | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
| - | SECTEN2 | SECTEN1 | SECTEN0 | SECONE3 | SECONE2 | SECONE1 | SECONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 7 bit 0 |  |  |  |  |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplement | as '0' |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $x=$ Bit is unknown |


| bit 15 | Unimplemented: Read as ' 0 ' |
| :--- | :--- |
| bit 14-12 | SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits <br> Contains a value from 0 to 5. |
| bit 11-8 | SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits <br> Contains a value from 0 to 9. |
| bit 7-0 | Unimplemented: Read as ' 0 ' |

REGISTER 22-12: ALMTIMEH: RTCC ALARM TIME REGISTER (HIGH)

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | HRTEN1 | HRTEN0 | HRONE3 | HRONE2 | HRONE1 | HRONE0 |
| bit 15 8 |  |  |  |  |  |  |  |


| U-0 | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
| - | MINTEN2 | MINTEN1 | MINTEN0 | MINONE3 | MINONE2 | MINONE1 | MINONE0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' = Bit is cleared |

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-12 HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2 .
bit 11-8 HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9.
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5 .
bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes ' 1 ' Digit bits Contains a value from 0 to 9 .

REGISTER 22-13: ALMDATEL: RTCC ALARM DATE REGISTER (LOW)

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | DAYTEN1 | DAYTEN0 | DAYONE3 | DAYONE2 | DAYONE1 | DAYONE0 |
| bit 15 |  |  |  |  |  |  |  |
| U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 <br> - - - - - WDAY2 WDAY1 W/W-0 |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown |

bit 15-14 Unimplemented: Read as '0'
bit 13-12 DAYTEN<1:0>: Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.
bit 11-8 DAYONE<3:0>: Binary Coded Decimal Value of Days ' 1 ' Digit bits Contains a value from 0 to 9 .
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-0 WDAY<2:0>: Binary Coded Decimal Value of Weekdays ' 1 ' Digit bits
Contains a value from 0 to 6 .

## REGISTER 22-14: ALMDATEH: RTCC ALARM DATE REGISTER (HIGH)

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 |  |  |  |  |  |  |  |  | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |  |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  | bit 0 |  |  |  |  |  |  |  |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |

bit 15-12 YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits
bit 11-8 YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bits
bit 7-5 Unimplemented: Read as ' 0 '
bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9 .

### 22.3.5 TIMESTAMP REGISTERS

REGISTER 22-15: TSATIMEL: RTCC TIMESTAMP A TIME REGISTER (LOW) ${ }^{(\mathbf{1})}$

| U-0 | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
| - | SECTEN2 | SECTEN1 | SECTEN0 | SECONE3 | SECONE2 | SECONE1 | SECONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown $\quad$.

bit $15 \quad$ Unimplemented: Read as ' 0 '
bit 14-12 SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits
Contains a value from 0 to 5 .
bit 11-8 SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits
Contains a value from 0 to 9 .
bit 7-0 Unimplemented: Read as ' 0 '
Note 1: If TSAEN $=0$, bits<15:0> can be used for persistent storage throughout a non-Power-on Reset ( $\overline{\text { MCLR }}$, WDT, etc.).

REGISTER 22-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH) ${ }^{(1)}$

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | HRTEN1 | HRTEN0 | HRONE3 | HRONE2 | HRONE1 | HRONE0 |
| bit 15 bit 8 |  |  |  |  |  |  |  |
| U-0 | R/W-0 |
| - | MINTEN2 | MINTEN1 | MINTEN0 | MINONE3 | MINONE2 | MINONE1 | MINONE0 |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |

Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-12 HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2 .
bit 11-8 HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9 .
bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5 .
bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9 .

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset ( $\overline{M C L R}$, WDT, etc.).

REGISTER 22-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW) ${ }^{(\mathbf{1})}$

| U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | DAYTEN1 | DAYTEN0 | DAYONE3 | DAYONE2 | DAYONE1 | DAYONE0 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | WDAY2 | WDAY1 | WDAY0 |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as '0' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown

bit 15-14 Unimplemented: Read as ' 0 '
bit 13-12 DAYTEN<1:0>: Binary Coded Decimal Value of Days ' 10 ' Digit bits Contains a value from 0 to 3.
bit 11-8 DAYONE<3:0>: Binary Coded Decimal Value of Days ' 1 ' Digit bits
Contains a value from 0 to 9 .
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-0 WDAY<2:0>: Binary Coded Decimal Value of Weekdays ' 1 ' Digit bits
Contains a value from 0 to 6 .
Note 1: If TSAEN $=0$, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset ( $\overline{\mathrm{MCLR}}$, WDT, etc.).

REGISTER 22-18: TSADATEH: RTCC TIMESTAMP A DATE REGISTER (HIGH) ${ }^{\mathbf{( 1 )}}$

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |
| bit 7 |  |  |  |  | bit 0 |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | 0 ' $=$ Bit is cleared |


| bit 15-12 | YRTEN<3:0>: Binary Coded Decimal Value of Years ' 10 ' Digit bits |
| :--- | :--- |
| bit 11-8 | YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bits |
| bit 7-5 | Unimplemented: Read as ' 0 ' |
| bit 4 | MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit |
| Contains a value from 0 to 1. |  |

Note 1: If TSAEN $=0$, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset ( $\overline{\mathrm{MCLR}}$, WDT, etc.).

### 22.4 Calibration

### 22.4.1 CLOCK SOURCE CALIBRATION

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate 1 second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV<15:0> bits. Secondly, a 5 -bit value can be written to the FDIV<4:0> control bits to perform a fine clock division.
The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV $<4: 0>$ value can be increased to make a small decrease in the RTC frequency. The value of DIV<15:0> should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV<4:0> may be decreased for small calibration changes and DIV <15:0> may need to be decreased to make larger calibration changes.
Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value, the initial error of the crystal, drift due to temperature and drift due to crystal aging.

### 22.5 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (RTCCON1H<15>)
- One-time alarm and repeat alarm options are available


### 22.5.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN $=0$.
As shown in Figure 22-2, the interval selection of the alarm is configured through the AMASK $<3: 0>$ bits (RTCCON1H<11:8>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.
The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ALMRPT<7:0> bits ( $\mathrm{RTCCON} 1 \mathrm{H}<7: 0>$ ). When the value of the ALMRPTx bits equals 00h and the CHIME bit ( $\mathrm{RTCCON} 1 \mathrm{H}<14>$ ) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times by loading ALMRPT<7:0> with FFh.
After each alarm is issued, the value of the ALMRPTx bits is decremented by one. Once the value has reached 00 h , the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.
Indefinite repetition of the alarm can occur if the CHIME bit $=1$. Instead of the alarm being disabled when the value of the ALMRPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

### 22.5.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to the other peripherals.

Note: Changing any of the register bits, other than the RTCOE bit (RTCCON1L<7>), the ALMRPT<7:0> bits (RTCCON1H<7:0> and the CHIME bit, while the alarm is enabled (ALRMEN $=1$ ), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0).

FIGURE 22-2: ALARM MASK SETTINGS


Note 1: Annually, except when configured for February 29.

### 22.6 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake-up from the current lower power mode.
To use this feature:

1. Enable the RTCC (RTCEN = 1).
2. Set the PWCEN bit (RTCCON1L<10>).
3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and OUTSEL<2:0> = 011).
The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCCON1L<9>). An activelow or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL<2:0> = 011) and is used to power up or down the device, as described above.

Once the control output is asserted, the stability window begins, in which the external device is given enough time to power up and provide a stable output.
Once the output is stable, the RTCC provides a sample gate during the sample window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.
Finally, both the stability and the sample windows close after the expiration of the sample window and the external device is powered down.

### 22.6.1 POWER CONTROL CLOCK SOURCE

The stability and sample windows are controlled by the PWCSAMPx and PWCSTABx bit fields in the RTCCON3L register (RTCCON3L<15:8> and <7:0>, respectively). As both the stability and sample windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period (TPWCCLK). For example, using a 32.768 kHz SOSC input clock would produce a TPWCCLK of $1 / 32768=30.518 \mu \mathrm{~s}$. The 8 -bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 TPWCCLK. The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS $<1: 0>$ bits (RTCCON2L<7:6>).
In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00 h , the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the stability window remains active continuously, even if power control is disabled.

### 22.7 Event Timestamping

The RTCC includes a set of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC will trigger a timestamp event when a low pulse occurs on the TMPR pin.

### 22.7.1 TIMESTAMP OPERATION

The event input is enabled for timestamping using the TSAEN bit (RTCCON1L<0>). When the timestamp event occurs, the present time and date values will be stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL<3>) will be set and an RTCC interrupt will occur. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

Note 1: The TSATIMEL/H and TSADATEL/H register pairs can be used for data storage when TSAEN = 0. The values of TSATIMEL/H and TSADATEL/H will be maintained throughout all types of non-Power-on Resets (MCLR, WDT, etc).

### 22.7.2 MANUAL TIMESTAMP OPERATION

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a ' 1 ' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN $=1$ ). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.

### 23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

## FIGURE 23-1: CRC BLOCK DIAGRAM



FIGURE 23-2: CRC SHIFT ENGINE DETAIL


Note 1: $\mathrm{n}=\mathrm{PLEN}<4: 0>+1$.

## PIC24FJ1024GA610/GB610 FAMILY

### 23.1 User Interface

### 23.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the $32^{\text {nd }}$ order, using up to 32 bits.
Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).
The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.
For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

EQUATION 23-1: 16-BIT, 32-BIT CRC POLYNOMIALS


To program these polynomials into the CRC generator, set the register bits, as shown in Table 23-1.
Note that the appropriate positions are set to ' 1 ' to indicate that they are used in the equation (for example, X26 and X23). The ' 0 ' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32 , it is assumed that the $32^{\text {nd }}$ bit will be used. Therefore, the $X<31: 1>$ bits do not have the $32^{\text {nd }}$ bit.

### 23.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15 , the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8 , the FIFO is 8 words deep. When the DWIDTHx bits are less than 8 , the FIFO is 16 words deep.
The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5 , then the size of the data is DWIDTH $<4: 0>+1$ or 6 . The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24 , the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.
The CRC engine starts shifting data when the CRCGO bit (CRCCON1<4>) is set and the value of the VWORDx bits is greater than zero.
Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.
When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1<7>) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1<6>) becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to ' 00000 ' whenever CRCEN is ' 0 '.
At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

| CRC Control Bits | Bit Values |  |
| :---: | :---: | :---: |
|  | 16-Bit Polynomial | 32-Bit Polynomial |
| PLEN<4:0> | 01111 | 11111 |
| $X<31: 16>$ | 0000000000000001 | 0000010011000001 |
| $X<15: 1>$ | 000100000010000 | 000111011011011 |

### 23.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

### 23.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.
If CRCISEL is ' 0 ', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of ' 1 ' to ' 0 '. If CRCISEL is ' 1 ', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to ' 0 '. Manually setting CRCGO to ' 0 ' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLENx +1 )/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

### 23.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

1. Set the CRCEN bit to enable the module.
2. Configure the module for desired operation:
a) Program the desired polynomial using the CRCXOR registers and PLEN $<4: 0>$ bits.
b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.
3. Set the CRCGO bit to start the calculations.
4. Set the desired CRC non-direct initial value by writing to the CRCWDAT registers.
5. Load all data into the FIFO by writing to the CRCDAT registers as space becomes available (the CRCFUL bit must be zero before the next data loading).
6. Wait until the data FIFO is empty (CRCMPT bit is set).
7. Read the result:

If the data width (DWIDTH $<4: 0>$ bits) is more than the polynomial length (PLEN<4:0> bits):
a) Wait (DWIDTH $<4: 0>+1$ )/2 instruction cycles to make sure that shifts from the shift buffer are finished.
b) Change the data width to the polynomial length (DWIDTH<4:0> = PLEN<4:0>).
c) Write one dummy data word to the CRCDAT registers.
d) Wait 2 instruction cycles to move the data from the FIFO to the shift buffer and (PLEN<4:0> + 1)/2 instruction cycles to shift out the result.

Or, if the data width (DWIDTH<4:0> bits) is less than the polynomial length (PLEN<4:0> bits):

1. Clear the CRC Interrupt Selection bit (CRCISEL $=0$ ) to get the interrupt when all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT registers and wait until the CRC interrupt flag is set.
2. Read the final CRC result from the CRCWDAT registers.
3. Restore the data width (DWIDTH $<4: 0>$ bits) for further calculations (OPTIONAL). If the data width (DWIDTH $<4: 0>$ bits) is equal to, or less than, the polynomial length (PLEN<4:0> bits):
a) Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done.
b) Suspend the calculation by setting CRCGO $=0$.
c) Clear the CRC interrupt flag.
d) Write the dummy data with the total data length equal to the polynomial length in the CRCDAT registers.
e) Resume the calculation by setting CRCGO = 1 .
f) Wait until the CRC interrupt flag is set.
g) Read the final CRC result from the CRCWDAT registers.
There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 23-1 and Register 23-2) control the operation of the module and configure the various settings.
The CRCXOR registers (Register 23-3 and Register 23-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

## REGISTER 23-1: CRCCON1: CRC CONTROL 1 REGISTER

| R/W-0 | U-0 | R/W-0 | R-0, HSC | | | | |
|---|---|---|---|---|---|---|---|
| CRCEN | - | CSIDL | VWORD4 | VWORD3 | VWORD2 | VWORD1 | VWORD0 |
| bit 15 |  |  | bit 8 |  |  |  |  |


| R-0, HSC | R-1, HSC | R/W-0 | R/W-0, HC | R/W-0 | U-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRCFUL | CRCMPT | CRCISEL | CRCGO | LENDIAN | - | - | - |
| bit 7 |  |  | bit 0 |  |  |  |  |


| Legend: | HC = Hardware Clearable bit | HSC = Hardware Settable/Clearable bit |
| :--- | :--- | :--- |
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 15 CRCEN: CRC Enable bit
1 = Enables module
0 = Disables module; all state machines, pointers and CRCWDAT/CRCDATH registers reset; other SFRs are NOT reset
bit 14 Unimplemented: Read as ' 0 ’
bit 13 CSIDL: CRC Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit 12-8 VWORD<4:0>: CRC Pointer Value bits
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN $<4: 0>\geq 7$ or 16 when PLEN $<4: 0>\leq 7$.
bit $7 \quad$ CRCFUL: CRC FIFO Full bit
1 = FIFO is full
0 = FIFO is not full
bit 6 CRCMPT: CRC FIFO Empty bit
1 = FIFO is empty
$0=$ FIFO is not empty
bit $5 \quad$ CRCISEL: CRC Interrupt Selection bit
1 = Interrupt on FIFO is empty; the final word of data is still shifting through the CRC
0 = Interrupt on shift is complete and results are ready
bit 4 CRCGO: Start CRC bit
1 = Starts CRC serial shifter
$0=$ CRC serial shifter is turned off
bit 3 LENDIAN: Data Shift Direction Select bit
1 = Data word is shifted into the CRC, starting with the LSb (little-endian)
$0=$ Data word is shifted into the CRC, starting with the MSb (big-endian)
bit 2-0 Unimplemented: Read as ' 0 '

REGISTER 23-2: CRCCON2: CRC CONTROL 2 REGISTER

| U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | DWIDTH4 | DWIDTH3 | DWIDTH2 | DWIDTH1 | DWIDTH0 |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | PLEN4 | PLEN3 | PLEN2 | PLEN1 | PLEN0 |
| bit 7 |  |  |  |  |  |  |  |

Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 DWIDTH<4:0>: CRC Data Word Width Configuration bits Configures the width of the data word (Data Word Width - 1).
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 PLEN<4:0>: Polynomial Length Configuration bits
Configures the length of the polynomial (Polynomial Length -1 ).

## PIC24FJ1024GA610/GB610 FAMILY

REGISTER 23-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

| $R / W-0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $X<15: 8>$ |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


| R/W-0 | U-0 | | | | | | |
|---|---|---|---|---|---|---|---|
|  |  | $X<7: 1>$ |  |  |  | - |  |
| bit 7 |  |  |  |  |  |  | bit 0 |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplement | as '0' |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $\mathrm{x}=\mathrm{Bit}$ is unknown |

bit 15-1 $\quad \mathrm{X}<15: 1>$ : XOR of Polynomial Term $x^{n}$ Enable bits
bit $0 \quad$ Unimplemented: Read as ' 0 '

REGISTER 23-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X<31:24> |  |  |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| R/W-0 |
| X<23:16> |  |  |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  | bit 0 |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-0 $\quad X<31: 16>$ : XOR of Polynomial Term $x^{n}$ Enable bits

### 24.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 24-1 shows an overview of the module. Figure 24-3 shows the details of the data source multiplexers and logic input gate connections.

FIGURE 24-1: CLCx MODULE


Note: All register bits shown in this figure can be found in the CLCxCONL register.

FIGURE 24-2: CLCx LOGIC FUNCTION COMBINATORIAL OPTIONS

| AND - OR $M O D E<2: 0>=000$ | OR - XOR $M O D E<2: 0>=001$ |
| :---: | :---: |
| 4-Input AND <br> MODE<2:0> $=010$ | S-R Latch $M O D E<2: 0>=011$ |
| 1-Input D Flip-Flop with $S$ and $R$ <br> Gate 3 $\qquad$ <br> MODE<2:0> $=100$ | 2-Input D Flip-Flop with R $\text { MODE<2:0> = } 101$ |
| J-K Flip-Flop with R $M O D E<2: 0>=110$ | 1-Input Transparent Latch with $S$ and $R$ <br> Gate 3 $\qquad$ $\text { MODE<2:0> = } 111$ |

FIGURE 24-3: CLCx INPUT SOURCE SELECTION DIAGRAM


### 24.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH ) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables.

The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 24-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

| R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCEN | - | - | - | INTP | INTN | - | - |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 | R-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCOE | LCOUT | LCPOL | - | - | MODE2 | MODE1 | MODE0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0 '=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 15 LCEN: CLCx Enable bit
$1=$ CLCx is enabled and mixing input signals
$0=$ CLCx is disabled and has logic zero outputs
bit 14-12 Unimplemented: Read as ' 0 '
bit 11 INTP: CLCx Positive Edge Interrupt Enable bit
1 = Interrupt will be generated when a rising edge occurs on LCOUT
$0=$ Interrupt will not be generated
bit 10 INTN: CLCx Negative Edge Interrupt Enable bit
1 = Interrupt will be generated when a falling edge occurs on LCOUT
$0=$ Interrupt will not be generated
bit 9-8 Unimplemented: Read as '0'
bit $7 \quad$ LCOE: CLCx Port Enable bit
1 = CLCx port pin output is enabled
$0=$ CLCx port pin output is disabled
bit 6 LCOUT: CLCx Data Output Status bit
1 = CLCx output high
$0=$ CLCx output low
bit 5 LCPOL: CLCx Output Polarity Control bit
$1=$ The output of the module is inverted
$0=$ The output of the module is not inverted
bit 4-3 Unimplemented: Read as ' 0 '

## REGISTER 24-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

bit 2-0 MODE<2:0>: CLCx Mode bits
$111=$ Cell is a 1-input transparent latch with $S$ and $R$
$110=$ Cell is a JK flip-flop with R
$101=$ Cell is a 2-input $D$ flip-flop with $R$
$100=$ Cell is a 1 -input $D$ flip-flop with $S$ and $R$
$011=$ Cell is an SR latch
$010=$ Cell is a 4-input AND
001 = Cell is an OR-XOR
$000=$ Cell is a AND-OR

## REGISTER 24-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | G4POL | G3POL | G2POL | G1POL |
| bit 7 |  |  |  | bit 0 |  |  |  |

Legend:

| $R=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplement | s ' 0 ' |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $\mathrm{x}=$ Bit is unknown |

bit 15-4 Unimplemented: Read as ' 0 '
bit $3 \quad$ G4POL: Gate 4 Polarity Control bit
1 = The output of Channel 4 logic is inverted when applied to the logic cell
$0=$ The output of Channel 4 logic is not inverted
bit 2 G3POL: Gate 3 Polarity Control bit
1 = The output of Channel 3 logic is inverted when applied to the logic cell
$0=$ The output of Channel 3 logic is not inverted
bit 1 G2POL: Gate 2 Polarity Control bit
1 = The output of Channel 2 logic is inverted when applied to the logic cell
$0=$ The output of Channel 2 logic is not inverted
bit 0
G1POL: Gate 1 Polarity Control bit
1 = The output of Channel 1 logic is inverted when applied to the logic cell
$0=$ The output of Channel 1 logic is not inverted

## REGISTER 24-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | DS4<2:0> |  | - |  | DS3<2:0 |  |
| bit 15 |  |  |  |  |  |  | bit 8 |
| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| - |  | DS2<2:0> |  | - |  | DS1<2:0 |  |
| bit 7 |  |  |  |  |  |  | bit 0 |
| Legend: |  |  |  |  |  |  |  |
| $\mathrm{R}=$ Readable bit |  | W $=$ Writable bit'1) $=$ Bit is set |  | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |  |  |  |
| -n = Valu |  |  |  | ' 0 ' = Bit is |  | $\mathrm{x}=\mathrm{Bit}$ is u |  |


| bit 15 | Unimplemented: Read as ' 0 ' |
| :---: | :---: |
| bit 14-12 | DS4<2:0>: Data Selection MUX 4 Signal Selection bits |
|  | 111 = MCCP3 Compare Event Interrupt Flag (CCP3IF) |
|  | 110 = MCCP1 Compare Event Interrupt Flag (CCP1IF) |
|  | 101 = Unimplemented |
|  | 100 = CTMU A/D Trigger |
|  | 011 = SPIx Input (SDIx) corresponding to the CLCx module (see Table 24-1) |
|  | 010 = Comparator 3 output |
|  | 001 = Module-specific CLCx output (see Table 24-1) |
|  | 000 = CLCINB I/O pin |
| bit 11 | Unimplemented: Read as ' 0 ' |
| bit 10-8 | DS3<2:0>: Data Selection MUX 3 Signal Selection bits |
|  | 111 = MCCP3 Compare Event Interrupt Flag (CCP3IF) |
|  | 110 = MCCP2 Compare Event Interrupt Flag (CCP2IF) |
|  | 101 = DMA Channel 1 interrupt |
|  | 100 = UARTx RX output corresponding to the CLCx module (see Table 24-1) |
|  | 011 = SPIx Output (SDOx) corresponding to the CLCx module (see Table 24-1) |
|  | 010 = Comparator 2 output |
|  | 001 = CLCx output (see Table 24-1) |
|  | $000=$ CLCINA I/O pin |
| bit 7 | Unimplemented: Read as '0' |
| bit 6-4 | DS2<2:0>: Data Selection MUX 2 Signal Selection bits |
|  | 111 = MCCP2 Compare Event Interrupt Flag (CCP2IF) |
|  | 110 = MCCP1 Compare Event Interrupt Flag (CCP1IF) |
|  | 101 = DMA Channel 0 interrupt |
|  | $100=A / D$ conversion done interrupt |
|  | 011 = UARTx TX input corresponding to the CLCx module (see Table 24-1) |
|  | 010 = Comparator 1 output |
|  | 001 = CLCx output (see Table 24-1) |
|  | 000 = CLCINB I/O pin |
| bit 3 | Unimplemented: Read as ' 0 ' |
| bit 2-0 | DS1<2:0>: Data Selection MUX 1 Signal Selection bits |
|  | 111 = Timer3 match event |
|  | $110=$ Timer2 match event |
|  | 101 = Unimplemented |
|  | 100 = REFO output |
|  | 011 = INTRC/LPRC clock source |
|  | 010 = SOSC clock source |
|  | 001 = System clock (TcY) |
|  | $000=$ CLCINA I/O pin |

TABLE 24-1: MODULE-SPECIFIC INPUT DATA SOURCES

| Bit Field Value | Input Source |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CLC1 | CLC2 | CLC3 | CLC4 |  |
| DS4<2:0> | 011 | SDI1 | SDI2 | SDI3 | Unimplemented |
|  | 001 | CLC2 Output | CLC1 Output | CLC4 Output | CLC3 Output |
| DS3<2:0> | 100 | U1RX | U2RX | U3RX | U4RX |
|  | 011 | SDO1 | SDO2 | SDO3 | Unimplemented |
|  | 001 | CLC1 Output | CLC2 Output | CLC3 Output | CLC4 Output |
| DS2<2:0> | 011 | U1TX | U2TX | U3TX | U4TX |
|  | 001 | CLC2 Output | CLC1 Output | CLC4 Output | CLC3 Output |

REGISTER 24-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G2D4T | G2D4N | G2D3T | G2D3N | G2D2T | G2D2N | G2D1T | G2D1N |
| bit 15 |  |  |  |  |  |  |  |
| R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 <br> G1D4T G1D4N G1D3T G1D3N G1D2T G1D2N G1D1T G1D1N <br> bit 7        |  |  |  |  |  |  |  |$.$| bit 0 |
| :--- |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown $\quad$.

bit 15 G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 signal is enabled for Gate 2
$0=$ The Data Source 4 signal is disabled for Gate 2
bit 14 G2D4N: Gate 2 Data Source 4 Negated Enable bit
1 = The Data Source 4 inverted signal is enabled for Gate 2
0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13 G2D3T: Gate 2 Data Source 3 True Enable bit
1 = The Data Source 3 signal is enabled for Gate 2
$0=$ The Data Source 3 signal is disabled for Gate 2
bit 12 G2D3N: Gate 2 Data Source 3 Negated Enable bit
1 = The Data Source 3 inverted signal is enabled for Gate 2
$0=$ The Data Source 3 inverted signal is disabled for Gate 2
bit 11 G2D2T: Gate 2 Data Source 2 True Enable bit
1 = The Data Source 2 signal is enabled for Gate 2
$0=$ The Data Source 2 signal is disabled for Gate 2
bit 10
G2D2N: Gate 2 Data Source 2 Negated Enable bit
1 = The Data Source 2 inverted signal is enabled for Gate 2
$0=$ The Data Source 2 inverted signal is disabled for Gate 2
bit 9 G2D1T: Gate 2 Data Source 1 True Enable bit
1 = The Data Source 1 signal is enabled for Gate 2
$0=$ The Data Source 1 signal is disabled for Gate 2

## REGISTER 24-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

| bit 8 | G2D1N: Gate 2 Data Source 1 Negated Enable bit |
| :---: | :---: |
|  | 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2 |
| bit 7 | G1D4T: Gate 1 Data Source 4 True Enable bit |
|  | 1 = The Data Source 4 signal is enabled for Gate 1 0 = The Data Source 4 signal is disabled for Gate 1 |
| bit 6 | G1D4N: Gate 1 Data Source 4 Negated Enable bit |
|  | 1 = The Data Source 4 inverted signal is enabled for Gate 1 <br> 0 = The Data Source 4 inverted signal is disabled for Gate 1 |
| bit 5 | G1D3T: Gate 1 Data Source 3 True Enable bit |
|  | 1 = The Data Source 3 signal is enabled for Gate 1 0 = The Data Source 3 signal is disabled for Gate 1 |
| bit 4 | G1D3N: Gate 1 Data Source 3 Negated Enable bit |
|  | 1 = The Data Source 3 inverted signal is enabled for Gate 1 <br> $0=$ The Data Source 3 inverted signal is disabled for Gate 1 |
| bit 3 | G1D2T: Gate 1 Data Source 2 True Enable bit |
|  | 1 = The Data Source 2 signal is enabled for Gate 1 0 = The Data Source 2 signal is disabled for Gate 1 |
| bit 2 | G1D2N: Gate 1 Data Source 2 Negated Enable bit |
|  | 1 = The Data Source 2 inverted signal is enabled for Gate 1 $0=$ The Data Source 2 inverted signal is disabled for Gate 1 |
| bit 1 | G1D1T: Gate 1 Data Source 1 True Enable bit |
|  | 1 = The Data Source 1 signal is enabled for Gate 1 0 = The Data Source 1 signal is disabled for Gate 1 |
| bit 0 | G1D1N: Gate 1 Data Source 1 Negated Enable bit |
|  | 1 = The Data Source 1 inverted signal is enabled for Gate 1 <br> $0=$ The Data Source 1 inverted signal is disabled for Gate 1 |

## REGISTER 24-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G4D4T | G4D4N | G4D3T | G4D3N | G4D2T | G4D2N | G4D1T | G4D1N |
| bit 15 |  |  |  |  |  |  |  |


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G3D4T | G3D4N | G3D3T | G3D3N | G3D2T | G3D2N | G3D1T | G3D1N |
| bit 7 |  |  |  |  |  |  |  |


| Legend: |  |  | | |
|---|---|---|---|---|
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | 0 ' = Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown |  |
| :--- |

bit 15 G4D4T: Gate 4 Data Source 4 True Enable bit
1 = The Data Source 4 signal is enabled for Gate 4
$0=$ The Data Source 4 signal is disabled for Gate 4
bit 14 G4D4N: Gate 4 Data Source 4 Negated Enable bit
1 = The Data Source 4 inverted signal is enabled for Gate 4
$0=$ The Data Source 4 inverted signal is disabled for Gate 4
bit 13 G4D3T: Gate 4 Data Source 3 True Enable bit
1 = The Data Source 3 signal is enabled for Gate 4
$0=$ The Data Source 3 signal is disabled for Gate 4
bit 12 G4D3N: Gate 4 Data Source 3 Negated Enable bit
1 = The Data Source 3 inverted signal is enabled for Gate 4
$0=$ The Data Source 3 inverted signal is disabled for Gate 4
bit 11 G4D2T: Gate 4 Data Source 2 True Enable bit
1 = The Data Source 2 signal is enabled for Gate 4
$0=$ The Data Source 2 signal is disabled for Gate 4
bit 10
G4D2N: Gate 4 Data Source 2 Negated Enable bit
1 = The Data Source 2 inverted signal is enabled for Gate 4
$0=$ The Data Source 2 inverted signal is disabled for Gate 4
bit $9 \quad$ G4D1T: Gate 4 Data Source 1 True Enable bit
1 = The Data Source 1 signal is enabled for Gate 4
$0=$ The Data Source 1 signal is disabled for Gate 4
bit 8 G4D1N: Gate 4 Data Source 1 Negated Enable bit
1 = The Data Source 1 inverted signal is enabled for Gate 4
$0=$ The Data Source 1 inverted signal is disabled for Gate 4
bit 7 G3D4T: Gate 3 Data Source 4 True Enable bit
1 = The Data Source 4 signal is enabled for Gate 3
$0=$ The Data Source 4 signal is disabled for Gate 3
bit $6 \quad$ G3D4N: Gate 3 Data Source 4 Negated Enable bit
1 = The Data Source 4 inverted signal is enabled for Gate 3
$0=$ The Data Source 4 inverted signal is disabled for Gate 3
bit 5 G3D3T: Gate 3 Data Source 3 True Enable bit
1 = The Data Source 3 signal is enabled for Gate 3
$0=$ The Data Source 3 signal is disabled for Gate 3
bit 4 G3D3N: Gate 3 Data Source 3 Negated Enable bit
1 = The Data Source 3 inverted signal is enabled for Gate 3
$0=$ The Data Source 3 inverted signal is disabled for Gate 3

REGISTER 24-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

| bit 3 | G3D2T: Gate 3 Data Source 2 True Enable bit |
| :---: | :---: |
|  | 1 = The Data Source 2 signal is enabled for Gate 3 <br> 0 = The Data Source 2 signal is disabled for Gate 3 |
| bit 2 | G3D2N: Gate 3 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 3 <br> 0 = The Data Source 2 inverted signal is disabled for Gate 3 |
| bit 1 | G3D1T: Gate 3 Data Source 1 True Enable bit <br> 1 = The Data Source 1 signal is enabled for Gate 3 <br> 0 = The Data Source 1 signal is disabled for Gate 3 |
| bit 0 | G3D1N: Gate 3 Data Source 1 Negated Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 3 <br> $0=$ The Data Source 1 inverted signal is disabled for Gate 3 |

### 25.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The A/D Converter has the following key features:

- Successive Approximation Register (SAR) Conversion
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Conversion Speeds of up to 200 ksps (12-bit)
- Up to 24 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H) Amplifier
- Automated Threshold Scan and Compare Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12 -bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 25-1.

### 25.1 Basic Operation

To perform a standard A/D conversion:

1. Configure the module:
a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
d) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
e) Select the appropriate sample/ conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
f) For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
h) Select the interrupt rate (AD1CON2<5:2>).
i) Turn on A/D module (AD1CON1<15>).
2. Configure the $A / D$ interrupt (if required):
a) Clear the AD1IF bit (IFS0<13>).
b) Enable the AD1IE interrupt (IEC0<13>).
c) Select the A/D interrupt priority (IPC3<6:4>).
3. If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

FIGURE 25-1: 12-BIT AID CONVERTER BLOCK DIAGRAM (PIC24FJ1024GA610/GB610 FAMILY)


### 25.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ1024GA610/GB610 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.
The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1<11>); setting this bit enables the functionality. The DMABM bit (AD1CON1<12>) configures how the DMA feature operates.

### 25.2.1 EXTENDED BUFFER MODE

Extended Buffer mode (DMABM = 1) maps the A/D Data Buffer registers and data from all channels above 26 into a user-specified area of data RAM. This allows users to read the conversion results of channels above 26 , which do not have their own memory-mapped A/D buffer locations, from data memory.
To accomplish this, the DMA must be configured in Peripheral Indirect Addressing mode and the DMA destination address must point to the beginning of the buffer. The DMA count must be set to generate an interrupt after the desired number of conversions.
In Extended Buffer mode, the A/D control bits will function similarly to non-DMA modes. The BUFREGEN bit will still select between FIFO mode and Channel-Aligned mode, but the number of words in the destination FIFO will be determined by the SMPI<4:0> bits in DMA mode. In FIFO mode, the BUFM bit will still split the output FIFO into two sets of 13 results (the SMPIx bits should be set accordingly), and the BUFS bit will still indicate which set of results is being written to and which can be read.

### 25.2.2 PIA MODE

When DMABM $=0$, the $A / D$ module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.
In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL<2:0> bits (AD1CON4<2:0>). The size options range from a single word per buffer to 128 words. Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a ' 0 ' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.
The IA is configured to auto-increment which channel is written in each analog input's sub-buffer during write operations by using the SMPIx bits (AD1CON2<6:2>).
As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 25-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.
Figure 25-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100 h ) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at $1008 \mathrm{~h}, 1018 \mathrm{~h}$ and 1040 h . The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

### 25.3 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:

- AD1CON1 through AD1CON5 (Register 25-1 through Register 25-5)
- AD1CHS (Register 25-6)
- AD1CHITH and AD1CHITL (Register 25-8 and Register 25-9)
- AD1CSSH and AD1CSSL (Register 25-10 and Register 25-11)
- AD1CTMENH and AD1CTMENL (Register 25-12 and Register 25-13)
- AD1DMBUF (not shown) - The 16-bit conversion buffer for Extended Buffer mode

TABLE 25-1: INDIRECT ADDRESS GENERATION IN PIA MODE

| DMABL<2:0> | Buffer Size per Channel (words) | Generated Offset Address (lower 11 bits) | Available Input Channels | Allowable DMADSTn Addresses |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 1 | 000 00cc ccco | 32 | xxxx | $x x x x$ | xx00 | 0000 |
| 001 | 2 | 000 0ccc ccn0 | 32 | xxxx | $x x x x$ | x000 | 0000 |
| 010 | 4 | 000 cccc cnn0 | 32 | x $x \times x$ | xxxx | 0000 | 0000 |
| 011 | 8 | 00c cccc nnn0 | 32 | xxxx | xxx0 | 0000 | 0000 |
| 100 | 16 | 0 cc ccen nnn0 | 32 | xxxx | xx00 | 0000 | 0000 |
| 101 | 32 | ccc ccnn nnn0 | 32 | xxxx | x000 | 0000 | 0000 |
| 110 | 64 | ccc cnnn nnn0 | 16 | $x \times x x$ | x000 | 0000 | 0000 |
| 111 | 128 | ccc nnnn nnn0 | 8 | $x \times x \times$ | x000 | 0000 | 0000 |

Legend: $\quad \operatorname{ccc}=$ Channel number (three to five bits), $\mathrm{n}=$ Base buffer address (zero to seven bits),
$x=$ User-definable range of DMADSTn for base address, $0=$ Masked bits of DMADSTn for IA

### 25.4 Achieving Maximum A/D Converter (ADC) Performance

In order to get the shortest overall conversion time (called the "throughput") while maintaining accuracy, several factors must be considered. These are described in detail below.

- Dependence of AVDD - If the AVDD supply is $<2.7 \mathrm{~V}$, the Charge Pump Enable bit (PUMPEN, AD1CON3<13>) should be set to ' 1 '. The input channel multiplexer has a varying resistance with AVDD (the lower AVDD, the higher the internal switch resistance). The charge pump provides a higher internal AVDD to keep the switch resistance as low as possible.
- Dependence on TAD - The ADC timing is driven by TAD, not TCYC. Selecting the TAD time correctly is critical to getting the best ADC throughput. It is important to note that the overall ADC throughput is not simply the 'Conversion Time' of the SAR; it is the combination of the Conversion Time, the Sample Time and additional TAD delays for internal synchronization logic.
- Relationship between TCYC and TAD - There is not a fixed 1:1 timing relationship between Tcyc and TAD. The fastest possible throughput is fundamentally set by TAD (min), not by Tcyc. The TAD time is set as a programmable integer multiple of TCYC by the ADCS $<7: 0>$ bits. Referring to Table 33-26, the TAD ( min ) time is greater than the 4 MHz period of the dedicated ADC RC clock generator. Therefore, TAD must be 2 TCYC in order to use the RC clock for fastest throughput. The TAD (min) is a multiple of 3.597 MHz as opposed to 4 MHz . To run as fast as possible, Tcyc must be a multiple of TAD ( min ) because values of ADCSx are integers. For example, if a standard "color burst" crystal of 14.31818 MHz is used, TCYC is 279.4 ns , which is very close to TAD (min) and the ADC throughput is optimal. Running at 16 MHz will actually reduce the throughput, because TAD will have to be 500 ns as the TCYC of 250 ns violates TAD (min).
- Dependence on driving Source Resistance (Rs) Certain transducers have high output impedance ( $>2.5 \mathrm{k} \Omega$ ). Having a high Rs will require longer sampling time to charge the S/H capacitor through the resistance path (see Figure 25-3). The worst case scenario is a full-range voltage step of AVss to AVDD, with the sampling cap at AVss. The capacitor time constant is (Rs + RIc + Rss) (CHOLD) and the sample time needs to be 6 time constants minimum (8 preferred). Since the ADC logic timing is TAD-based, the sample time (in TAD) must be long enough, over all conditions, to charge/discharge Chold. Do not assume one TAD is sufficient sample time; longer times may be required to achieve the accuracy needed by the application. The value of CHOLD is 40 pF .

A small amount of charge is present at the ADC input pin when the sample switch is closed. If $R s$ is high, this will generate a DC error exceeding 1 LSB. Keeping Rs $<50 \Omega$ is recommenced for best results. The error can also be reduced by increasing sample time (a $2 \mathrm{k} \Omega$ value of Rs requires a $3 \mu \mathrm{~S}$ sample time to eliminate the error).

- Calculating Throughput - The throughput of the ADC is based on TAD. The throughput is given by:

$$
\text { Throughput }=\left(\frac{1}{\text { Sample Time }+ \text { SAR Conversion Time }+ \text { Clock Sync Time }}\right)
$$

where:
Sample Time is the calculated TAD periods for the application.
SAR Conversion Time is 12 TAD for 10 -bit and 14 TAD for 12-bit conversions.
Clock Sync Time is 2.5 TAD (worst case scenario).
For example, using an 8 MHz FRC means the TCYC $=250 \mathrm{~ns}$. This requires: $\mathrm{TAD}^{2}=2$ TCYC $=500 \mathrm{~ns}$. Therefore, the throughput is:

$$
\text { Throughput }=\left(\frac{1}{500 \mathrm{~ns}+14 \cdot 500 \mathrm{~ns}+2.5 \cdot 500 \mathrm{~ns}}\right)=114.28 \mathrm{KS} / \mathrm{sec}
$$

Note that the clock sync delay could be as little as 1.5 TAD, which could produce $121 \mathrm{KS} / \mathrm{sec}$, but that cannot be ensured as the timing relationship is asynchronous and not specified. The worst case timing of 2.5 TAD should be used to calculate throughput.

For example, if a certain transducer has a $20 \mathrm{k} \Omega$ output impedance, the maximum sample time is determined by:

$$
\begin{gathered}
\text { Sample Time }=6 \cdot(\text { Rs }+ \text { RIC }+ \text { Rss }) \cdot \text { CHOLD } \\
=6 \cdot(20 \mathrm{~K}+250+350) \cdot 40 \mathrm{pF} \\
=4.95 \mu \mathrm{~S}
\end{gathered}
$$

If TAD $=500 \mathrm{~ns}$, this requires a Sample Time of $4.95 \mathrm{us} /$ $500 \mathrm{~ns}=10$ TAD (for a full-step voltage on the transducer output).

FIGURE 25-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)


REGISTER 25-1: AD1CON1: AID CONTROL REGISTER 1

| R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADON | - | ADSIDL | DMABM $^{(1)}$ | DMAEN | MODE12 | FORM1 | FORM0 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0, HSC | R/C-0, HSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSRC3 | SSRC2 | SSRC1 | SSRC0 | - | ASAM | SAMP | DONE |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: | $\mathrm{C}=$ Clearable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{HSC}=$ Hardware Settable/Clearable bit |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |

bit 15 ADON: A/D Operating Mode bit
1 = A/D Converter is operating
$0=A / D$ Converter is off
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 ADSIDL: A/D Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12 DMABM: Extended DMA Buffer Mode Select bit ${ }^{(1)}$
1 = Extended Buffer mode: Buffer address is defined by the DMADSTn register
0 = PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4<2:0>
bit 11 DMAEN: Extended DMA/Buffer Enable bit
1 = Extended DMA and buffer features are enabled
$0=$ Extended features are disabled
bit 10 MODE12: A/D 12-Bit Operation Mode bit
$1=12$-bit A/D operation
$0=10$-bit A/D operation
bit 9-8 FORM<1:0>: Data Output Format bits (see formats following)
11 = Fractional result, signed, left justified
$10=$ Absolute fractional result, unsigned, left justified
01 = Decimal result, signed, right justified
$00=$ Absolute decimal result, unsigned, right justified
bit 7-4 SSRC<3:0>: Sample Clock Source Select bits
$0000=$ SAMP is cleared by software
0001 = INTO
0010 = Timer3
0100 = CTMU Trigger
0101 = Timer1 (will not trigger during Sleep mode)
0110 = Timer1 (may trigger during Sleep mode)
0111 = Auto-Convert mode
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2 ASAM: A/D Sample Auto-Start bit
1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
$0=$ Sampling begins when SAMP bit is manually set
Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN =1).

REGISTER 25-1: AD1CON1: AID CONTROL REGISTER 1 (CONTINUED)
bit 1 SAMP: A/D Sample Enable bit
1 = A/D Sample-and-Hold amplifiers are sampling
$0=$ A/D Sample-and-Hold amplifiers are holding
bit 0
DONE: A/D Conversion Status bit
1 = A/D conversion cycle has completed
0 = A/D conversion cycle has not started or is in progress
Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

## REGISTER 25-2: AD1CON2: AID CONTROL REGISTER 2

| R/W-0 | R/W-0 | R/W-0 | r-0 | R/W-0 | R/W-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PVCFG1 | PVCFG0 | NVCFG0 | - | BUFREGEN | CSCNA | - | - |
| bit 15 |  |  |  |  |  |  |  |


| R-0 | R/W-0 | | | | | | |
|---|---|---|---|---|---|---|---|
| BUFS | SMPI4 | SMPI3 | SMPI2 | SMPI1 | SMPI0 | BUFM | ALTS |
| bit 7 |  |  | bit 0 |  |  |  |  |


| Legend: | $\mathrm{r}=$ Reserved bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 15-14 PVCFG<1:0>: A/D Converter Positive Voltage Reference Configuration bits
$1 \mathrm{x}=$ Unimplemented, do not use
$01=$ External VREF +
00 = AVDD
bit 13 NVCFGO: A/D Converter Negative Voltage Reference Configuration bit
1 = External VREF-
0 = AVss
bit 12 Reserved: Maintain as ' 0 '
bit 11 BUFREGEN: A/D Buffer Register Enable bit
1 = Conversion result is loaded into the buffer location determined by the converted channel
$0=$ A/D result buffer is treated as a FIFO
bit 10 CSCNA: Scan Input Selections for $\mathrm{CH} 0+$ During Sample A bit
1 = Scans inputs
0 = Does not scan inputs
bit 9-8 Unimplemented: Read as ' 0 '
bit 7 BUFS: Buffer Fill Status bit
When DMAEN $=1$ and DMABM $=1$ :
$1=A / D$ is currently filling the destination buffer from [buffer start + (buffer size/2)] to
[buffer start + (buffer size - 1)]. User should access data located from [buffer start] to [buffer start + (buffer size/2) - 1].
$0=A / D$ is currently filling the destination buffer from [buffer start] to [buffer start + (buffer size/2) -1 ].
User should access data located from [buffer start + (buffer size/2)] to [buffer start + (buffer size - 1)].
When DMAEN $=0$ :
1 = A/D is currently filling ADC1BUF13-ADC1BUF25, user should access data in ADC1BUF0-ADC1BUF12
$0=A / D$ is currently filling ADC1BUF0-ADC1BUF12, user should access data in ADC1BUF13-ADC1BUF25

## REGISTER 25-2: AD1CON2: AID CONTROL REGISTER 2 (CONTINUED)

```
bit 6-2 SMPI<4:0>: Interrupt Sample/DMA Increment Rate Select bits
 When DMAEN = 1 and DMABM = 0:
 11111 = Increments the DMA address after completion of the 32nd sample/conversion operation
 11110 = Increments the DMA address after completion of the 31st sample/conversion operation
 •
 .
 -
 00001 = Increments the DMA address after completion of the 2nd sample/conversion operation
 0 0 0 0 0 ~ = ~ I n c r e m e n t s ~ t h e ~ D M A ~ a d d r e s s ~ a f t e r ~ c o m p l e t i o n ~ o f ~ e a c h ~ s a m p l e / c o n v e r s i o n ~ o p e r a t i o n
 When DMAEN = 1 and DMABM = 1:
 11111 = Resets the DMA offset after completion of the 32nd sample/conversion operation
 1 1 1 1 0 ~ = ~ R e s e t s ~ t h e ~ D M A ~ o f f s e t ~ a f t e r ~ c o m p l e t i o n ~ o f ~ t h e ~ 3 1 n d ~ s a m p l e / c o n v e r s i o n ~ o p e r a t i o n
 •
 •
 •
 00001 = Resets the DMA offset after completion of the 2nd sample/conversion operation
 00000 = Resets the DMA offset after completion of every sample/conversion operation
 When DMAEN = 0:
 1 1 1 1 1 ~ = ~ I n t e r r u p t s ~ a t ~ t h e ~ c o m p l e t i o n ~ o f ~ t h e ~ c o n v e r s i o n ~ f o r ~ e a c h ~ 3 2 n d ~ s a m p l e
 11110 = Interrupts at the completion of the conversion for each 31st sample
 •
 •
 •
 00001 = Interrupts at the completion of the conversion for every other sample
 00000 = Interrupts at the completion of the conversion for each sample
bit }1\mathrm{ BUFM: Buffer Fill Mode Select bit
 1 = Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF13 on next interrupt
 0 = Always starts filling buffer at ADC1BUF0
bit \(0 \quad\) ALTS: Alternate Input Sample Mode Select bit
 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 0 = Always uses channel input selects for Sample A
```


## REGISTER 25-3: AD1CON3: AID CONTROL REGISTER 3

| R/W-0 | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADRC $^{(1)}$ | EXTSAM | PUMPEN $^{(2)}$ | SAMC4 | SAMC3 | SAMC2 | SAMC1 | SAMC0 |
| bit 15 |  |  |  |  |  |  |  |


| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |

bit 15 ADRC: A/D Conversion Clock Source bit ${ }^{(1)}$
1 = Dedicated ADC RC clock generator (4 MHz nominal)
0 = Clock derived from system clock
bit 14
bit 13
EXTSAM: Extended Sampling Time bit
$1=A / D$ is still sampling after SAMP $=0$
$0=A / D$ is finished sampling
bit 12-8 SAMC<4:0>: Auto-Sample Time Select bits
$11111=31$ TAD
-••
$00001=1$ TAD
$00000=0$ TAD
bit 7-0 ADCS<7:0>: A/D Conversion Clock Select bits
$11111111=256 \cdot$ TCY $=$ TAD
-••
$00000001=2 \cdot$ TCY $=$ TAD
$00000000=$ TCY = TAD
Note 1: Selecting the internal ADC RC clock requires that ADCSx be ' 1 ' or greater. Setting ADCSx $=0$ when ADRC $=1$ will violate the TAD ( min ) specification.
2: Enable the charge pump if $A V D D$ is $<2.7 \mathrm{~V}$. Longer sample times are required due to the increase of the internal resistance of the MUX if the charge pump is disabled.

## REGISTER 25-4: AD1CON4: AID CONTROL REGISTER 4

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - |  | DMABL<2:0>(1) |  |
| bit 7 |  |  |  |  |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

bit 15-3 Unimplemented: Read as ' 0 '
bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits ${ }^{(1)}$
111 = Allocates 128 words of buffer to each analog input
$110=$ Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
$100=$ Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
$010=$ Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input
$000=$ Allocates 1 word of buffer to each analog input
Note 1: The $\operatorname{DMABL}<2: 0>$ bits are only used when $A D 1 C O N 1<11>=1$ and $\operatorname{AD} 1 C O N 1<12>=0$; otherwise, their value is ignored.

## REGISTER 25-5: AD1CON5: AID CONTROL REGISTER 5

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASEN | LPEN | CTMREQ | BGREQ | - | - | ASINT1 | ASINT0 |
| bit 15 bit 8 |  |  |  |  |  |  |  |
| U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| - | - | - | - | WM1 | WM0 | CM1 | CM0 |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |


| bit 15 | ASEN: Auto-Scan Enable bit |
| :---: | :---: |
|  | $1=$ Auto-scan is enabled <br> $0=$ Auto-scan is disabled |
| bit 14 | LPEN: Low-Power Enable bit |
|  | 1 = Low power is enabled after scan <br> $0=$ Full power is enabled after scan |
| bit 13 | CTMREQ: CTMU Request bit |
|  | $1=$ CTMU is enabled when the $A / D$ is enabled and active <br> $0=$ CTMU is not enabled by the A/D |
| bit 12 | BGREQ: Band Gap Request bit |
|  | 1 = Band gap is enabled when the A/D is enabled and active <br> $0=$ Band gap is not enabled by the A/D |
| bit 11-10 | Unimplemented: Read as '0' |
| bit 9-8 | ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode bits |
|  | ```11 = Interrupt after Threshold Detect sequence has completed and valid compare has occurred \(10=\) Interrupt after valid compare has occurred 01 = Interrupt after Threshold Detect sequence has completed \(00=\) No interrupt``` |
| bit 7-4 | Unimplemented: Read as '0' |
| bit 3-2 | WM<1:0>: Write Mode bits |
|  | $11=$ Reserved |
|  | $10=$ Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match occurs, as defined by the CMx and ASINTx bits) <br> $01=$ Convert and save (conversion results are saved to locations as determined by the register bits when a match occurs, as defined by the CMx bits) <br> $00=$ Legacy operation (conversion data is saved to a location determined by the Buffer register bits) |
| bit 1-0 | CM<1:0>: Compare Mode bits |
|  | 11 = Outside Window mode: Valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair |
|  | $10=$ Inside Window mode: Valid match occurs if the conversion result is inside the window defined by the corresponding buffer pair |
|  | $01=$ Greater Than mode: Valid match occurs if the result is greater than the value in the corresponding Buffer register |
|  | $00=$ Less Than mode: Valid match occurs if the result is less than the value in the corresponding Buffer register |

REGISTER 25-6: AD1CHS: AID SAMPLE SELECT REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH0NB2 | CH0NB1 | CH0NB0 | CH0SB4 | CH0SB3 | CH0SB2 | CH0SB1 | CH0SB0 |
| bit 15 |  |  |  |  |  |  |  |


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH0NA2 | CHONA1 | CHONA0 | CH0SA4 | CHOSA3 | CHOSA2 | CHOSA1 | CHOSA0 |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemente | as ' 0 ' |
| :---: | :---: | :---: | :---: |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $\mathrm{x}=$ Bit is unknown |

bit 15-13 CHONB<2:0>: Sample B Channel 0 Negative Input Select bits
1xx = Unimplemented
01x = Unimplemented
001 = Unimplemented
000 = AVss
bit 12-8 CHOSB<4:0>: Sample B Channel 0 Positive Input Select bits
$11110=$ AVDD $^{(1)}$
$11101=$ AVss $^{(1)}$
$11100=$ Band Gap Reference (VBG) ${ }^{(1)}$
11011 = Reserved
$11010=$ Reserved
11001 = No channels connected (used for CTMU)
$11000=$ No channels connected (used for CTMU temperature sensor)
10111 = AN23
10110 = AN22
10101 = AN21
10100 = AN20
10011 = AN19
$10010=$ AN18
10001 = AN17
10000 = AN16
01111 = AN15
01110 = AN14
01101 = AN13
01100 = AN12
01011 = AN11
01010 = AN10
01001 = AN9
01000 = AN8
00111 = AN7
00110 = AN6
$00101=$ AN5
00100 = AN4
00011 = AN3
00010 = AN2
00001 = AN1
$00000=$ ANO
bit 7-5 CHONA<2:0>: Sample A Channel 0 Negative Input Select bits
Same definitions as for $C H O N B<2: 0>$.
bit 4-0 CH0SA<4:0>: Sample A Channel 0 Positive Input Select bits
Same definitions as for $\mathrm{CHOSB}<4: 0>$.
Note 1: These input channels do not have corresponding memory-mapped result buffers.

REGISTER 25-7: ANCFG: AID BAND GAP REFERENCE CONFIGURATION REGISTER

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| $\mathrm{U}-0$ | U-0 | U-0 | U-0 | R/O | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | VBGUSB $^{(\mathbf{1})}$ | VBGADC $^{(\mathbf{1})}$ | VBGCMP $^{(\mathbf{1})}$ | VBGEN $^{(\mathbf{1})}$ |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

bit 15-4 Unimplemented: Read as '0'
bit $3 \quad$ VBGUSB: Band Gap Reference Enable for USB bit ${ }^{(1)}$
1 = Band gap reference is enabled
0 = Band gap reference is disabled
bit 2 VBGADC: Band Gap Reference Enable for A/D bit ${ }^{(1)}$
1 = Band gap reference is enabled
$0=$ Band gap reference is disabled
bit $1 \quad$ VBGCMP: Band Gap Reference Enable for CTMU and Comparator bit ${ }^{(1)}$
1 = Band gap reference is enabled
$0=$ Band gap reference is disabled
bit $0 \quad$ VBGEN: Band Gap Reference Enable for VREG, BOR, HLVD, FRC, DCO, NVM and A/D Boost bit ${ }^{(1)}$
1 = Band gap reference is enabled
$0=$ Band gap reference is disabled
Note 1: When a module requests a band gap reference voltage, that reference will be enabled automatically after a brief start-up time. The user can manually enable the band gap references using the ANCFG register before enabling the module requesting the band gap reference to avoid this startup time ( $\sim 1 \mathrm{~ms}$ ).

## REGISTER 25-8: AD1CHITH: AID SCAN COMPARE HIT REGISTER (HIGH WORD) ${ }^{(1)}$

| U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | CHH<25:24> |  |
| bit 15 bit 8 |  |  |  |  |  |  |  |


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $C H H<23: 16>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

bit 15-10 Unimplemented: Read as ' 0 '
bit 9-0 CHH<25:16>: A/D Compare Hit bits
If $C M<1: 0>=11$ :
$1=A / D$ Result Buffer $n$ has been written with data or a match has occurred
$0=A / D$ Result Buffer $n$ has not been written with data
For All Other Values of CM<1:0>:
1 = A match has occurred on A/D Result Channel n
0 = No match has occurred on A/D Result Channel n
Note 1: AD1CHITH is not available on 64-pin parts.

REGISTER 25-9: AD1CHITL: AID SCAN COMPARE HIT REGISTER (LOW WORD) ${ }^{(1)}$

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $C H H<15: 8>$ |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $C H H<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

bit 15-0 $\quad$ CHH<15:0>: A/D Compare Hit bits
If $C M<1: 0>=11$ :
$1=\mathrm{A} / \mathrm{D}$ Result Buffer $n$ has been written with data or a match has occurred
$0=A / D$ Result Buffer $n$ has not been written with data
For All Other Values of $\mathrm{CM}<1: 0>$ :
1 = A match has occurred on A/D Result Channel n
$0=$ No match has occurred on A/D Result Channel n
Note 1: AD1CHITL is not available on 64-pin parts.

REGISTER 25-10: AD1CSSH: AID INPUT SCAN SELECT REGISTER (HIGH WORD)

| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | CSS<30:28> | - |  | CSS<26:24> |  |  |
| bit 15 |  |  |  |  | bit 8 |  |  |


| $R / W-0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $C S S<23: 16>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown |


| bit 15 | Unimplemented: Read as ' 0 ' |
| :--- | :--- |
| bit 14-12 | CSS<30:28>: A/D Input Scan Selection bits |

1 = Includes corresponding channel for input scan
0 = Skips channel for input scan
bit 11 Unimplemented: Read as ' 0 '
bit 10-0 CSS<26:16>: A/D Input Scan Selection bits
1 = Includes corresponding channel for input scan
0 = Skips channel for input scan

REGISTER 25-11: AD1CSSL: AID INPUT SCAN SELECT REGISTER (LOW WORD)

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | CSS<15:8> |  |  |  |  |  |
| bit 15 |  |  |  |  |  |  |  |


| $R / W-0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $C S S<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-0 $\quad$ CSS<15:0>: A/D Input Scan Selection bits
1 = Includes corresponding channel for input scan
0 = Skips channel for input scan

REGISTER 25-12: AD1CTMENH: AID CTMU ENABLE REGISTER (HIGH WORD)


## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |$\quad x=$ Bit is unknown

bit $15 \quad$ Unimplemented: Read as '0'
bit 14-12 CTMEN<30:28>: CTMU Enabled During Conversion bits
$1=$ CTMU is enabled and connected to the selected channel during conversion
$0=$ CTMU is not connected to this channel
bit 11-10 Unimplemented: Read as ' 0 '
bit 9-0 CTMEN<25:16>: CTMU Enabled During Conversion bits ${ }^{(1)}$
$1=$ CTMU is enabled and connected to the selected channel during conversion
$0=$ CTMU is not connected to this channel
Note 1: CTMEN<23:16> bits are not available on 64 -pin parts.

REGISTER 25-13: AD1CTMENL: AID CTMU ENABLE REGISTER (LOW WORD)

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | CTMEN<15:8> |  |  |  |  |  |
| bit 15 |  |  |  |  |  | bit 8 |  |


| $R / W-0$ | R/W-0 | R/W-0 | R/W-0 | | | | |
|---|---|---|---|---|---|---|---|
|  |  | CTMEN $<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  |  |  |


| Legend: |  |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | 0 ' $\quad$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits
$1=$ CTMU is enabled and connected to the selected channel during conversion
$0=$ CTMU is not connected to this channel

FIGURE 25-3: 12-BIT AID CONVERTER ANALOG INPUT MODEL


$V_{T} \quad=$ Threshold Voltage
ILEAKAGE = Leakage Current at the pin due to
Various Junctions
RIC
= Interconnect Resistance
Rss = Sampling Switch Resistance
CHOLD = Sample/Hold Capacitance


Note: The CPIN value depends on the device package and is not tested. The effect of CPIN is negligible if $\mathrm{Rs} \leq 2.5 \mathrm{k} \Omega$.

EQUATION 25-1: A/D CONVERSION CLOCK PERIOD

$$
\begin{aligned}
& T A D=T C Y(A D C S+1) \\
& A D C S=\frac{T A D}{T C Y}-1
\end{aligned}
$$

Note: Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.

FIGURE 25-4: 12-BIT AID TRANSFER FUNCTION


FIGURE 25-5: 10-BIT AID TRANSFER FUNCTION


## NOTES:

### 26.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and CVref+) and a
voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG and CVREF).
The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals ' 1 ', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 26-1. Diagrams of the possible individual comparator configurations are shown in Figure 26-2 through Figure 26-4.
Each comparator has its own control register, CMxCON (Register 26-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 26-2).

FIGURE 26-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM


Note 1: Refer to the CVRCON register (Register 27-1) for bit details.

FIGURE 26-2: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 0


FIGURE 26-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0


FIGURE 26-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1


## REGISTER 26-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

| R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0, HS |  | R-0, HSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CEN | COE | CPOL | - | - | - | CEVT | COUT |  |
| bit 15 |  |  |  | bit 8 |  |  |  |  |


| R/W-0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EVPOL1 | EVPOL0 | - | CREF | - | - | CCH1 | CCH0 |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: | HS = Hardware Settable bit | HSC = Hardware Settable/Clearable bit |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |


| bit 15 | CEN: Comparator Enable bit |
| :---: | :---: |
|  | 1 = Comparator is enabled |
|  | $0=$ Comparator is disabled |
| bit 14 | COE: Comparator Output Enable bit |
|  | $1=$ Comparator output is present on the CxOUT pin <br> $0=$ Comparator output is internal only |
| bit 13 | CPOL: Comparator Output Polarity Select bit |
|  | 1 = Comparator output is inverted |
|  | $0=$ Comparator output is not inverted |
| bit 12-10 | Unimplemented: Read as ' 0 ' |
| bit 9 | CEVT: Comparator Event bit |
|  | ```\(1=\) Comparator event that is defined by EVPOL<1:0> has occurred; subsequent Triggers and interrupts are disabled until the bit is cleared \(0=\) Comparator event has not occurred``` |
| bit 8 | COUT: Comparator Output bit |
|  | When CPOL $=0$ : |
|  | $1=\mathrm{VIN}+>\mathrm{VIN}-$ |
|  | $0=\mathrm{VIN}+<\mathrm{VIN}-$ |
|  | When CPOL = 1: |
|  | $1=\mathrm{VIN}+<$ VIN - |
|  | $0=$ VIN + > VIN- |

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)
$10=$ Trigger/event/interrupt is generated on transition of the comparator output:
If CPOL $=0$ (non-inverted polarity):
High-to-low transition only.
If $\mathrm{CPOL}=1$ (inverted polarity):
Low-to-high transition only.
01 = Trigger/event/interrupt is generated on transition of comparator output:
If CPOL $=0$ (non-inverted polarity):
Low-to-high transition only.
If CPOL = 1 (inverted polarity):
High-to-low transition only.
$00=$ Trigger/event/interrupt generation is disabled
bit $5 \quad$ Unimplemented: Read as ' 0 '

## REGISTER 26-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

bit 4 CREF: Comparator Reference Select bit (non-inverting input)
$1=$ Non-inverting input connects to the internal CVREF voltage
$0=$ Non-inverting input connects to the CxINA pin
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 $\quad \mathbf{C C H}<1: 0>$ : Comparator Channel Select bits
11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
$10=$ Inverting input of the comparator connects to the CxIND pin
$01=$ Inverting input of the comparator connects to the CxINC pin
$00=$ Inverting input of the comparator connects to the CxINB pin

REGISTER 26-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

| R/W-0 | U-0 | U-0 | U-0 | U-0 | R-0, HSC | R-0, HSC | R-0, HSC |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| CMIDL | - | - | - | - | C3EVT | C2EVT | C1EVT |
| bit 15 |  |  |  | bit 8 |  |  |  |


| U-0 | U-0 | U-0 | U-0 | U-0 | R-0, HSC | R-0, HSC | R-0, HSC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | C3OUT | C2OUT | C1OUT |
| bit 7 |  |  |  |  |  |  |  |


| Legend: | HSC = Hardware Settable/Clearable bit |  |
| :--- | :--- | :--- |
| $R=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 15 CMIDL: Comparator Stop in Idle Mode bit
$1=$ Discontinues operation of all comparators when device enters Idle mode
$0=$ Continues operation of all enabled comparators in Idle mode
bit 14-11 Unimplemented: Read as ' 0 '
bit $10 \quad$ C3EVT: Comparator 3 Event Status bit (read-only) Shows the current event status of Comparator 3 (CM3CON<9>).
bit $9 \quad$ C2EVT: Comparator 2 Event Status bit (read-only)
Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8 C1EVT: Comparator 1 Event Status bit (read-only)
Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3 Unimplemented: Read as ' 0 '
bit 2 C3OUT: Comparator 3 Output Status bit (read-only) Shows the current output of Comparator 3 (CM3CON<8>).
bit 1 C2OUT: Comparator 2 Output Status bit (read-only) Shows the current output of Comparator 2 (CM2CON<8>).
bit $0 \quad$ C1OUT: Comparator 1 Output Status bit (read-only) Shows the current output of Comparator 1 (CM1CON<8>).

NOTES:

### 27.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

### 27.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 27-1). The comparator voltage reference provides two ranges of output voltage, each with 32 distinct levels.

The comparator reference supply voltage can come from either VDD and VSS, or the external Vref+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 27-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM


## REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

| U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | CVREFP | CVREFM1 | CVREFM0 |
| bit 15 |  |  |  |  |  |  |  |


| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CVREN | CVROE | CVRSS | CVR4 | CVR3 | CVR2 | CVR1 | CVR0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

## Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $\prime 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-11 Unimplemented: Read as ' 0 '
bit 10 CVREFP: Comparator Voltage Reference Select bit (valid only when CREF is ' 1 ')
$1=$ CVREF+ is used as a reference voltage to the comparators
$0=$ The CVR<4:0> bits (5-bit DAC) within this module provide the reference voltage to the comparators
bit 9-8 CVREFM<1:0>: Comparator Band Gap Reference Source Select bits (valid only when CCH<1:0> = 11)
00 = Band gap voltage is provided as an input to the comparators
01 = Reserved
10 = Reserved
$11=$ CVREF+ pin is provided as an input to the comparators
bit $7 \quad$ CVREN: Comparator Voltage Reference Enable bit
1 = CVREF circuit is powered on
$0=$ CVREF circuit is powered down
bit 6 CVROE: Comparator VREF Output Enable bit
$1=$ CVREF voltage level is output on the CVREF pin
$0=$ CVREF voltage level is disconnected from the CVREF pin
bit $5 \quad$ CVRSS: Comparator VREF Source Selection bit
1 = Comparator reference source, CVRSRC $=$ CVREF+ - CVREF-
$0=$ Comparator reference source, CVRSRC $=$ AVDD - AVss
bit 4-0 CVR<4:0>: Comparator VREF Value Selection $0 \leq C V R<4: 0>\leq 31$ bits
When CVRSS = 1:
CVREF $=($ CVREF -$)+($ CVR<4:0>/32 $) \bullet($ CVREF +- CVREF- $)$
When CVRSS = 0:
CVREF $=(\mathrm{AVSS})+(\mathrm{CVR}<4: 0>/ 32) \cdot(\mathrm{AVDD}-\mathrm{AVss})$

### 28.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen External Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edge Levels or Edge Transitions
- Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement
Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.
The CTMU is controlled through three registers: CTMUCON1L, CTMUCON1H and CTMUCON2L. CTMUCON1L enables the module, controls the mode of operation of the CTMU, controls edge sequencing, selects the current range of the current source and trims the current. CTMUCON1H controls edge source selection and edge source polarity selection. The CTMUCON2L register selects the current discharge source.


### 28.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 28-1:
$\square$
For capacitance measurements, the A/D Converter samples an external Capacitor (CAPP) on one of its input channels, after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.
Figure 28-1 illustrates the external connections used for capacitance measurements, and how the CTMU and $A / D$ modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

FIGURE 28-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT


### 28.2 Measuring Time/Routing Current Source to A/D Input Pin

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 28-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.
This mode is enabled by clearing the TGEN bit (CTMUCON1L<12>). The current source is tied to the input of the A/D after the sampling switch. Therefore, the A/D bit, SAMP, must be set to ' 1 ' in order for the current to be routed through the channel selection MUX to the desired pin.

### 28.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to the B input of Comparator 2. A Capacitor (Cdelay) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When Cdelay charges above the CVref trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of Cdelay and the CVREF trip point.
Figure 28-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/ PIC24 Family Reference Manual".

FIGURE 28-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT (TGEN = 0)


FIGURE 28-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION (TGEN = 1)


### 28.4 Measuring Die Temperature

The CTMU can be configured to use the $A / D$ to measure the die temperature using dedicated A/D Channel 24. Perform the following steps to measure the diode voltage:

- The internal current source must be set for either $5.5 \mu \mathrm{~A}$ (IRNG<1:0> $=0 \times 2$ ) or $55 \mu \mathrm{~A}$ (IRNG<1:0> = 0x3).
- In order to route the current source to the diode, the EDG1STAT and EDG2STAT bits must be equal (either both ' 0 ' or both ' 1 ').
- The CTMREQ bit (AD1CON5<13>) must be set to ' 1 '.
- The A/D Channel Select bits must be 24 ( $0 \times 18$ ) using a single-ended measurement.

The voltage of the diode will vary over temperature according to the graphs shown below (Figure 28-4). Note that the graphs are different, based on the magnitude of
the current source selected. The slopes are nearly linear over the range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the temperature can be calculated as follows:

## EQUATION 28-2:

For $5.5 \mu \mathrm{~A}$ Current Source:

$$
\text { Tdie }=\frac{710 \mathrm{mV}-\text { Vdiode }}{1.8}
$$

where Vdiode is in $m V$, Tdie is in ${ }^{\circ} \mathrm{C}$

For $55 \mu \mathrm{~A}$ Current Source:

$$
\text { Tdie }=\frac{760 \mathrm{mV}-\text { Vdiode }}{1.55}
$$

where Vdiode is in $m V$, Tdie is in ${ }^{\circ} \mathrm{C}$

FIGURE 28-4: DIODE VOLTAGE (mV) vs. DIE TEMPERATURE (TYPICAL)


REGISTER 28-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW

| R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CTMUEN | - | CTMUSIDL | TGEN | EDGEN | EDGSEQEN | IDISSEN | CTTRIG |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITRIM5 | ITRIM4 | ITRIM3 | ITRIM2 | ITRIM1 | ITRIM0 | IRNG1 | IRNG0 |
| bit 7 |  |  | bit 0 |  |  |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared |$\quad \mathrm{x}=$ Bit is unknown

bit 15 CTMUEN: CTMU Enable bit
1 = Module is enabled
$0=$ Module is disabled
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12
bit 11
bit 10
bit 9 IDISSEN: Analog Current Source Control bit
TGEN: Time Generation Enable bit
1 = Enables edge delay generation and routes the current source to the comparator pin
$0=$ Disables edge delay generation and routes the current source to the selected A/D input pin
EDGEN: Edge Enable bit
1 = Edges are not blocked
0 = Edges are blocked
DGSEQEN: Edge Sequence Enable bit
1 = Edge 1 event must occur before Edge 2 event can occur
$0=$ No edge sequence is needed

1 = Analog current source output is grounded
$0=$ Analog current source output is not grounded
bit 8 CTTRIG: CTMU Trigger Control bit
1 = Trigger output is enabled
$0=$ Trigger output is disabled
bit 7-2 ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current
011110
-
-
-
$000001=$ Minimum positive change from nominal current
$000000=$ Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current
-
-
-
100010
100001 = Maximum negative change from nominal current

REGISTER 28-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW (CONTINUED)
bit 1-0 IRNG<1:0>: Current Source Range Select bits
If IRNGH = 0:
$11=55 \mu \mathrm{~A}$ range
$10=5.5 \mu \mathrm{~A}$ range
$01=550 \mathrm{nA}$ range
$00=550 \mu \mathrm{~A}$ range
If IRNGH = 1:
11 = Reserved
10 = Reserved
$01=2.2 \mathrm{~mA}$ range
$00=550 \mu \mathrm{~A}$ range

## REGISTER 28-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EDG1MOD | EDG1POL | EDG1SEL3 | EDG1SEL2 | EDG1SEL1 | EDG1SEL0 | EDG2STAT | EDG1STAT |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EDG2MOD | EDG2POL | EDG2SEL3 | EDG2SEL2 | EDG2SEL1 | EDG2SEL0 | - | IRNGH |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplement | as ' 0 ' |
| -n = Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared | $\mathrm{x}=$ Bit is unknown |

bit 15 EDG1MOD: Edge 1 Edge-Sensitive Select bit
1 = Input is edge-sensitive
$0=$ Input is level-sensitive
bit 14 EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 is programmed for a positive edge response
$0=$ Edge 1 is programmed for a negative edge response
bit 13-10 EDG1SEL<3:0>: Edge 1 Source Select bits
1111 = CMP C3OUT
$1110=$ CMP C2OUT
1101 = CMP C1OUT
$1100=$ IC3 interrupt
$1011=$ IC2 interrupt
$1010=$ IC1 interrupt
1001 = CTED8 pin
$1000=$ CTED7 $\mathrm{pin}^{(1)}$
0111 = CTED6 pin
$0110=$ CTED5 pin
0101 = CTED4 pin
$0100=$ CTED3 pin $^{(1)}$
0011 = CTED1 pin
0010 = CTED2 pin
0001 = OC1
0000 = Timer1 match
bit 9 EDG2STAT: Edge 2 Status bit
Indicates the status of Edge 2 and can be written to control current source.
1 = Edge 2 has occurred
0 = Edge 2 has not occurred
bit 8 EDG1STAT: Edge 1 Status bit
Indicates the status of Edge 1 and can be written to control current source.
1 = Edge 1 has occurred
0 = Edge 1 has not occurred
bit 7 EDG2MOD: Edge 2 Edge-Sensitive Select bit
1 = Input is edge-sensitive
0 = Input is level-sensitive
bit 6 EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 is programmed for a positive edge response
$0=$ Edge 2 is programmed for a negative edge response
Note 1: CTED3, CTED7, CTED10 and CTED11 are not available on 64-pin packages.

## REGISTER 28-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH (CONTINUED)

bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
1111 = CMP C3OUT
$1110=$ CMP C2OUT
1101 = CMP C1OUT
$1100=$ Peripheral clock
1011 = IC3 interrupt
$1010=$ IC2 interrupt
$1001=$ IC1 interrupt
1000 = CTED13 pin
0111 = CTED12 pin
$0110=$ CTED11 pin $^{(1)}$
$0101=$ CTED10 pin $^{(1)}$
0100 = CTED9 pin
0011 = CTED1 pin
$0010=$ CTED2 pin
$0001=$ OC1
0000 = Timer1 match
bit $1 \quad$ Unimplemented: Read as ' 0 '
bit $0 \quad$ IRNGH: High-Current Range Select bit
1 = Uses the higher current ranges ( $550 \mu \mathrm{~A}-2.2 \mathrm{~mA}$ )
$0=$ Uses the lower current ranges ( $550 \mathrm{nA}-50 \mu \mathrm{~A}$ )
Current output is set by the IRNG<1:0> bits in the CTMUCON1L register.
Note 1: CTED3, CTED7, CTED10 and CTED11 are not available on 64-pin packages.

REGISTER 28-3: CTMUCON2L: CTMU CONTROL REGISTER 2 LOW

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | IRSTEN | - | DSCHS2 | DSCHS1 | DSCHS0 |
| bit 7 |  |  |  |  | bit 0 |  |  |

## Legend:

| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 15-5 Unimplemented: Read as ' 0 '
bit $4 \quad$ IRSTEN: CTMU Current Source Reset Enable bit
$1=$ Signal selected by DSCHS<2:0> bits or IDISSEN control bit will reset CTMU edge detect logic $0=$ CTMU edge detect logic will not occur
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2-0 DSCHS<2:0>: Discharge Source Select bits
111 = CLC2 out
$110=$ CLC1 out
101 = Disabled
100 = A/D end of conversion
011 = MCCP3 auxiliary output
$010=$ MCCP2 auxiliary output
001 = MCCP1 auxiliary output
000 = Disabled

## NOTES:

### 29.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The LVDIF flag may be set during a POR or BOR event. The firmware should clear the flag before the application uses it for the first time, even if the interrupt was disabled.

The HLVD Control register (see Register 29-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device. The HLVDEN bit ( $\mathrm{HLVDCON}<15>$ ) should be cleared when writing data to the HLVDCON register. Once the register is configured, the module is enabled from power-down by setting HLVDEN. The application must wait a minimum of $5 \mu \mathrm{~S}$ before clearing the HLVDIF flag and using the module after HLVDEN has been set.

FIGURE 29-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM


REGISTER 29-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

| R/W-0 | U-0 | R/W-0 | U-0 | R/W-0 | r-1 | r-1 | R-0, HS, HC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HLVDEN | - | LSIDL | - | VDIR | BGVST | IRVST | LVDEVT ${ }^{(2)}$ |
| bit 15 |  |  |  | bit 8 |  |  |  |


| U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | HLVDL3 | HLVDL2 | HLVDL1 | HLVDL0 |
| bit 7 |  |  |  |  |  |  |  |


| Legend: | HS = Hardware Settable bit | HC = Hardware Clearable bit | $\mathrm{r}=$ Reserved bit |
| :--- | :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | ' 0 ' = Bit is cleared | $\mathrm{x}=$ Bit is unknown |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |  |

bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit
$1=$ HLVD is enabled
$0=$ HLVD is disabled
bit $14 \quad$ Unimplemented: Read as ' 0 '
bit 13 LSIDL: HLVD Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
$0=$ Continues module operation in Idle mode
bit $12 \quad$ Unimplemented: Read as '0'
bit 11 VDIR: Voltage Change Direction Select bit
1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)
$0=$ Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)
bit 10 BGVST: Reserved bit (value is always ' 1 ')
bit 9 IRVST: Reserved bit (value is always '1')
bit 8 LVDEVT: Low-Voltage Event Status bit ${ }^{(2)}$
$1=$ LVD event is true during current instruction cycle
$0=$ LVD event is not true during current instruction cycle
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits
1111 = External analog input is used (input comes from the HLVDIN pin)
$1110=$ Trip Point $1^{(1)}$
$1101=$ Trip Point $2^{(1)}$
$1100=$ Trip Point $3^{(1)}$
-
-
-
$0100=$ Trip Point $11^{(1)}$
$00 x x=$ Unused
Note 1: For the actual trip point, see Section 33.0 "Electrical Characteristics".
2: The LVDIF flag cannot be cleared by software unless LVDEVT $=0$. The voltage must be monitored so that the HLVD condition (as set by VDIR and HLVDL<3:0>) is not asserted.

### 30.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

- "Watchdog Timer (WDT)" (DS39697)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)

PIC24FJ1024GA610/GB610 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming ${ }^{\text {TM }}$
- In-Circuit Emulation


### 30.1 Configuration Bits

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.
In Dual Partition modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

### 30.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ1024GA610/ GB610 FAMILY DEVICES

In PIC24FJ1024GA610/GB610 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 30-1. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets. After a Reset, configuration reads are performed in the following order:

- Device Calibration Information
- Partition Mode Configuration (FBOOT)

If Single Partition mode:

- User Configuration Words

If Dual Partition mode:

- Partition 1 Boot Sequence Number
- Partition 2 Boot Sequence Number
- User Configuration Words from the Active Partition
- Code Protection User Configuration Words from the Inactive Partition

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.
The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing ' 0 's to these locations has no effect on device operation.

TABLE 30-1: CONFIGURATION WORD ADDRESSES

| Configuration Registers | Single Partition Mode |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | PIC24FJ1024GX6XX | PIC24FJ512GX6XX | PIC24FJ256GX6XX | PIC24FJ128GX6XX |
| FSEC | 0ABF00h | 055F00h | 02AF00h | 015F00h |
| FBSLIM | 0ABF10h | 055F10h | 02AF10h | 015F10h |
| FSIGN | 0ABF14h | 055F14h | 02AF14h | 015F14h |
| FOSCSEL | 0ABF18h | 055F18h | 02AF18h | 015F18h |
| FOSC | 0ABF1Ch | 055F1Ch | 02AF1Ch | 015F1Ch |
| FWDT | OABF20h | 055F20h | 02AF20h | 015F20h |
| FPOR | 0ABF24h | 055F24h | 02AF24h | 015F24h |
| FICD | 0ABF28h | 055F28h | 02AF28h | 015F28h |
| FDEVOPT1 | 0ABF2Ch | 055F2Ch | 02AF2Ch | 015F2Ch |
| FBOOT | 801800h |  |  |  |
|  | Dual Partition Modes ${ }^{(1)}$ |  |  |  |
| FSEC ${ }^{(2)}$ | 055F00h/455F00h | 02AF00h/42AF00h | 015700h/415700h | 00AF00h/40AF00h |
| FBSLIM ${ }^{(2)}$ | 055F10h/455F10h | 02AF10h/42AF10h | 015710h/415710h | 00AF10h/40AF10h |
| FSIGN ${ }^{(2)}$ | 055F14h/455F14h | 02AF14h/42AF14h | 015714h/ 415714h | 00AF14h/40AF14h |
| FOSCSEL | 055F18h/455F18h | 02AF18h/42AF18h | 015718h/415718h | 00AF18h/40AF18h |
| FOSC | 055F1Ch/455F1Ch | 02AF1Ch/42AF1Ch | 01571Ch/41571Ch | 00AF1Ch/40AF1Ch |
| FWDT | 055F20h/455F20h | 02AF20h/42AF20h | 015720h/415720h | 00AF20h/40AF20h |
| FPOR | 055F24h/ 455F24h | 02AF24h/42AF24h | 015724h/415724h | 00AF24h/40AF24h |
| FICD | 055F28h/455F28h | 02AF28h/42AF28h | 015728h/415728h | 00AF28h/40AF28h |
| FDEVOPT1 | 055F2Ch/455F2Ch | 02AF2Ch/42AF2Ch | 01572Ch/41572Ch | 00AF2Ch/40AF2Ch |
| FBTSEQ ${ }^{(3)}$ | 055FFCh/455FFCh | 02AFFCh/42AFFCh | 0157FCh/4157FCh | 00AFFCh/40AFFCh |
| FBOOT | 801800h |  |  |  |

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.
2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.
3: FBTSEQ is a 24-bit Configuration Word, using all three bytes of the program memory width.

## REGISTER 30-1: FBOOT CONFIGURATION REGISTER

| $U-1$ |  | | | | | | |
|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| $\mathrm{U}-1$ |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | R/PO-1 | R/PO-1 |
| - | - | - | - | - | - | BTMODE<1:0> |  |
| bit 7 |  |  | bit 0 |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 15-2 Unimplemented: Read as ' 1 '
bit 1-0 BTMODE<1:0>: Device Partition Mode Configuration Status bits
11 = Single Partition mode
10 = Dual Partition mode
01 = Protected Dual Partition mode (Partition 1 is write-protected when inactive)
00 = Reserved; do not use

## REGISTER 30-2: FBTSEQ CONFIGURATION REGISTER

| R/PO-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IBSEQ11 | IBSEQ10 | IBSEQ9 | IBSEQ8 | IBSEQ7 | IBSEQ6 | IBSEQ5 | IBSEQ4 |
| bit 23 |  |  | bit 16 |  |  |  |  |


| R/PO-1 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| IBSEQ3 | IBSEQ2 | IBSEQ1 | IBSEQ0 | BSEQ11 | BSEQ10 | BSEQ9 | BSEQ8 |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/PO-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BSEQ7 | BSEQ6 | BSEQ5 | BSEQ4 | BSEQ3 | BSEQ2 | BSEQ1 | BSEQ0 |
| bit 7 |  |  | bit 0 |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-12 IBSEQ<11:0>: Inverse Boot Sequence Number bits (Dual Partition modes only)
The one's complement of BSEQ<11:0>; must be calculated by the user and written into device programming.
bit 11-0 BSEQ<11:0>: Boot Sequence Number bits (Dual Partition modes only)
Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

## REGISTER 30-3: FSEC CONFIGURATION REGISTER

| U-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 23 bit 16 |  |  |  |  |  |  |  |


| R/PO-1 | U-1 | U-1 | U-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIVTDIS | - | - | - | CSS2 | CSS1 | CSS0 | CWRP |
| bit 15 |  |  |  | bit 8 |  |  |  |


| R/PO-1 | R/PO-1 | R/PO-1 | U-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GSS1 | GSS0 | GWRP | - | BSEN | BSS1 | BSS0 | BWRP |
| bit 7 |  |  |  |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared |

bit 23-16 Unimplemented: Read as ' 1 '
bit 15 AIVTDIS: Alternate Interrupt Vector Table Disable bit
1 = Disables AIVT; INTCON2<8> (AIVTEN) bit is not available
0 = Enables AIVT; INTCON2<8> (AIVTEN) bit is available
bit 14-12 Unimplemented: Read as ' 1 '
bit 11-9 CSS<2:0>: Configuration Segment Code Protection Level bits
111 = No protection (other than CWRP)
$110=$ Standard security
10x = Enhanced security
0xx = High security
bit 8 CWRP: Configuration Segment Program Write Protection bit
1 = Configuration Segment is not write-protected
0 = Configuration Segment is write-protected
bit 7-6 GSS<1:0>: General Segment Code Protection Level bits
11 = No protection (other than GWRP)
10 = Standard security
$0 x=$ High security
bit 5 GWRP: General Segment Program Write Protection bit
1 = General Segment is not write-protected
$0=$ General Segment is write-protected
bit $4 \quad$ Unimplemented: Read as ' 1 '
bit 3 BSEN: Boot Segment Control bit
$1=$ No Boot Segment is enabled
$0=$ Boot Segment size is determined by BSLIM<12:0>
bit 2-1 BSS<1:0>: Boot Segment Code Protection Level bits
$11=$ No protection (other than BWRP)
10 = Standard security
$0 x=$ High security
bit $0 \quad$ BWRP: Boot Segment Program Write Protection bit
1 = Boot Segment can be written
$0=$ Boot Segment is write-protected

REGISTER 30-4: FBSLIM CONFIGURATION REGISTER

| $U-1$ |  | | | | | | |
|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - |
| bit 23 |  |  |  |  |  |  |  |


| $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{R} / \mathrm{PO}-1$ | | | | |
|---|---|---|---|---|---|---|---|
| - | - | - |  |  | BSLIM<12:8> |  |  |
| bit 15 |  |  |  |  | bit 8 |  |  |


| R/PO-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | BSLIM $<7: 0>$ |  |  |  |  |  |
| bit 7 |  |  |  |  |  | bit 0 |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-13 Unimplemented: Read as ' 1 '
bit 12-0 BSLIM<12:0>: Active Boot Segment Code Flash Page Address Limit (Inverted) bits
This bit field contains the last active Boot Segment Page +1 (i.e., first page address of GS). The value is stored as an inverted page address, such that programming additional ' 0 's can only increase the size of BS. If BSLIM<12:0> is set to all ' 1 's (unprogrammed default), active Boot Segment size is zero.

REGISTER 30-5: FSIGN CONFIGURATION REGISTER

| $\mathrm{U}-1$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ |
| bit 23 | - | - | - | - | - |  |  |


| $\mathrm{r}-0$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | U |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |  |
| bit 15 |  |  | bit 8 |  |  |  |  |  |


| U-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit | $\mathrm{r}=$ Reserved bit |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-16 Unimplemented: Read as ' 1 '
bit 15 Reserved: Maintain as ' 0 '
bit 14-0 Unimplemented: Read as ' 1 '

## REGISTER 30-6: FOSCSEL CONFIGURATION REGISTER

| U-1 | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | $\mathrm{U}-1$ | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |
| bit 23 |  |  |  |  |  |  |  |
| bit 16 |  |  |  |  |  |  |  |


| U-1 | U-1 | U-1 | U-1 | U-1 | U-1 | r-0 | r-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| R/PO-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IESO | PLLMODE3 | PLLMODE2 | PLLMODE1 | PLLMODE0 | FNOSC2 | FNOSC1 | FNOSC0 |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit | $\mathrm{r}=$ Reserved bit |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-10 Unimplemented: Read as ' 1 '
bit 9-8 Reserved: Maintain as ' 0 '
bit 7 IESO: Two-Speed Oscillator Start-up Enable bit
1 = Starts up the device with FRC, then automatically switches to the user-selected oscillator when ready
$0=$ Starts up the device with the user-selected oscillator source
bit 6-3 PLLMODE<3:0>: Frequency Multiplier Select bits
$1111=$ No PLL is used (PLLEN bit is unavailable)
$1110=8 \times$ PLL is selected
$1101=6 x$ PLL is selected
$1100=4 \times$ PLL is selected
$0111=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=48 \mathrm{MHz}$ )
$0110=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=32 \mathrm{MHz}$ )
$0101=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=24 \mathrm{MHz}$ )
$0100=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=20 \mathrm{MHz}$ )
$0011=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=16 \mathrm{MHz}$ )
$0010=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=12 \mathrm{MHz}$ )
$0001=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=8 \mathrm{MHz}$ )
$0000=96 \mathrm{MHz}$ USB PLL is selected (Input Frequency $=4 \mathrm{MHz}$ )
bit 2-0 FNOSC<2:0>: Oscillator Selection bits
111 = Oscillator with Frequency Divider (OSCFDIV)
110 = Digitally Controlled Oscillator (DCO)
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator with PLL (FRCPLL)
000 = Fast RC Oscillator (FRC)

## REGISTER 30-7: FOSC CONFIGURATION REGISTER

| U-1 | U-1 | U-1 | $U-1$ | $U-1$ | $U-1$ | $U-1$ | $U-1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 23 |  |  |  |  |  |  |  |


| $U-1$ |  | | | | | | |
|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| R/PO-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FCKSM1 | FCKSM0 | IOL1WAY | PLLSS ${ }^{(1)}$ | SOSCSEL | OSCIOFCN | POSCMD1 | POSCMD0 |
| bit 7 |  |  |  | bit 0 |  |  |  |

Legend:
$R=$ Readable bit
$-n=$ Value at POR
$\mathrm{PO}=$ Program Once bit
$\mathrm{W}=$ Writable bit $\quad \mathrm{U}=$ Unimplemented bit, read as '1'
' 1 ' = Bit is set $\quad$ ' 0 ' = Bit is cleared $\quad x=$ Bit is unknown
bit 23-8 Unimplemented: Read as ' 1 '
bit 7-6 FCKSM<1:0>: Clock Switching and Monitor Selection bits
$1 \mathrm{x}=$ Clock switching and the Fail-Safe Clock Monitor are disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
$00=$ Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5 IOL1WAY: Peripheral Pin Select Configuration bit
1 = The IOLOCK bit can be set only once (with unlock sequence).
$0=$ The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit $4 \quad$ PLLSS: PLL Secondary Clock Source Selection Configuration bit ${ }^{(1)}$
This Configuration bit only takes effect when the PLL is NOT being used by the system (i.e., not selected as part of the system clock source). This bit is used to generate an independent clock out of REFO.
$1=$ PLL is fed by the Primary Oscillator (EC, XT or HS mode)
$0=$ PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3 SOSCSEL: SOSC Selection Configuration bit
1 = Crystal (SOSCI/SOSCO) mode
0 = Digital (SOSCI) mode
bit 2
OSCIOFCN: CLKO Enable Configuration bit
$1=$ CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode)
$0=$ CLKO output is disabled
bit 1-0 POSCMD<1:0>: Primary Oscillator Configuration bits
11 = Primary Oscillator mode is disabled
$10=\mathrm{HS}$ Oscillator mode is selected ( $10 \mathrm{MHz}-32 \mathrm{MHz}$ )
$01=$ XT Oscillator mode is selected ( $1.5 \mathrm{MHz}-10 \mathrm{MHz}$ )
00 = External Clock mode is selected
Note 1: When the primary clock source is greater than 8 MHz , this bit must be set to ' 0 ' to prevent overclocking the PLL.

## REGISTER 30-8: FWDT CONFIGURATION REGISTER

| U-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|---|---|---|---|---|---|---|---|---|---|
| bit 23 |  |  |  |  |  |  |  |
| U-1 R/PO-1 R/PO-1 U-1 R/PO-1 U-1 R/PO-1 R/PO-1 <br> - WDTCLK1 WDTCLK0 - WDTCMX - WDTWIN1 WDTWIN0 <br> bit 15        |  |  |  |  |  |  |  |$.$| Wit 8 |
| :--- |


| R/PO-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WINDIS | FWDTEN1 | FWDTEN0 | FWPSA | WDTPS3 | WDTPS2 | WDTPS1 | WDTPS0 |
| bit 7 |  |  |  | bit 0 |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-15 Unimplemented: Read as ' 1 '
bit 14-13 WDTCLK<1:0>: Watchdog Timer Clock Select bits (when WDTCMX = 1)
11 = Always uses LPRC
$10=$ Uses FRC when WINDIS $=0$, system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
01 = Always uses SOSC
$00=$ Uses peripheral clock when system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
bit 12 Unimplemented: Read as ' 1 '
bit 11 WDTCMX: WDT Clock MUX Control bit
1 = Enables WDT clock MUX; WDT clock is selected by WDTCLK<1:0>
$0=$ WDT clock is LPRC
bit $10 \quad$ Unimplemented: Read as ' 1 '
bit 9-8 WDTWIN<1:0>: Watchdog Timer Window Width bits
$11=$ WDT window is $25 \%$ of the WDT period
$10=$ WDT window is $37.5 \%$ of the WDT period
$01=$ WDT window is $50 \%$ of the WDT period
$00=$ WDT window is $75 \%$ of the WDT period
bit $7 \quad$ WINDIS: Windowed Watchdog Timer Disable bit
$1=$ Windowed WDT is disabled
$0=$ Windowed WDT is enabled
bit 6-5 FWDTEN<1:0>: Watchdog Timer Enable bits
$11=$ WDT is enabled
$10=$ WDT is disabled (control is placed on the SWDTEN bit)
01 = WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled
$00=$ WDT and SWDTEN are disabled
bit 4 FWPSA: Watchdog Timer Prescaler bit
1 = WDT prescaler ratio of 1:128
$0=$ WDT prescaler ratio of 1:32

REGISTER 30-8: FWDT CONFIGURATION REGISTER (CONTINUED)
bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits
$1111=1: 32,768$
$1110=1: 16,384$
$1101=1: 8,192$
$1100=1: 4,096$
$1011=1: 2,048$
$1010=1: 1,024$
$1001=1: 512$
$1000=1: 256$
$0111=1: 128$
$0110=1: 64$
$0101=1: 32$
$0100=1: 16$
$0011=1: 8$
$0010=1: 4$
$0001=1: 2$
$0000=1: 1$

## REGISTER 30-9: FPOR CONFIGURATION REGISTER

| U-1 |  | | | | | | | |
|---|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - |  |
| bit 23 bit 16 |  |  |  |  |  |  |  |  |


| $U-1$ |  | | | | | | |
|---|---|---|---|---|---|---|---|
| - | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  |  |


| U -1 |  |  |  |  |  |  |  |  | U-1 | U-1 | U-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | DNVPEN | $\overline{\text { LPCFG }}$ | BOREN1 | BOREN0 |  |  |  |  |  |  |  |  |
| bit 7 |  |  |  | bit 0 |  |  |  |  |  |  |  |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-4 Unimplemented: Read as ' 1 '
bit 3 DNVPEN: Downside Voltage Protection Enable bit
1 = Downside protection is enabled when BOR is inactive; POR can be re-armed as needed (can result in extra POR monitoring current once POR is re-armed)
$0=$ Downside protection is disabled when BOR is inactive
bit 2 LPCFG: Low-Power Regulator Control bit
1 = Retention feature is not available
$0=$ Retention feature is available and controlled by RETEN during Sleep
bit 1-0
BOREN<1:0>: Brown-out Reset Enable bits
11 = Brown-out Reset is enabled in hardware; SBOREN bit is disabled
$10=$ Brown-out Reset is enabled only while device is active and is disabled in Sleep; SBOREN bit is disabled
$01=$ Brown-out Reset is controlled with the SBOREN bit setting
00 = Brown-out Reset is disabled in hardware; SBOREN bit is disabled

REGISTER 30-10: FICD CONFIGURATION REGISTER

| U-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 23 |  |  |  |  |  |  | bit 16 |
| R/PO-1 | U-1 |
| BTSWP | - | - | - | - | - | - | - |
| bit 15 |  |  |  |  |  |  | bit 8 |


| r-1 | U-1 | R/PO-1 | U-1 | U-1 | U-1 | R/PO-1 | R/PO-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | JTAGEN | - | - | - | ICS1 | ICS0 |
| bit 7 |  |  |  |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit | $\mathrm{r}=$ Reserved bit |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-16 Unimplemented: Read as ' 1 '
bit 15 BTSWP: B00TSWP Instruction Enable bit
1 = BOOTSWP instruction is disabled
$0=$ BOOTSWP instruction is enabled
bit 14-8 Unimplemented: Read as ' 1 '
bit $7 \quad$ Reserved: Maintain as ' 1 '
bit $6 \quad$ Unimplemented: Read as ' 1 '
bit 5 JTAGEN: JTAG Port Enable bit
1 = JTAG port is enabled
0 = JTAG port is disabled
bit 4-2 Unimplemented: Read as ' 1 '
bit 1-0 ICS<1:0>: ICD Communication Channel Select bits
11 = Communicates on PGEC1/PGED1
10 = Communicates on PGEC2/PGED2
01 = Communicates on PGEC3/PGED3
00 = Reserved; do not use

REGISTER 30-11: FDEVOPT1 CONFIGURATION REGISTER

| $\mathrm{U}-1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |



| U-1 | U-1 | U-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 | U-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | ALTVREF | SOSCHP ${ }^{(1)}$ | TMPRPIN | ALTCMPI | - |
| bit $7 \times$ bit 0 |  |  |  |  |  |  |  |


| Legend: | $\mathrm{PO}=$ Program Once bit |  |
| :--- | :--- | :--- |
| $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 1 ' |
| $-\mathrm{n}=$ Value at POR | ' 1 ' = Bit is set | ' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

bit 23-5 Unimplemented: Read as ' 1 '
bit 4 ALTVREF: Alternate Voltage Reference Location Enable bit (100-pin and 121-pin devices only)
1 = Vref+ and CVref+ on RA10, Vref- and CVref- on RA9
0 = VREF+ and CVREF+ on RB0, Vref- and CVREF- on RB1
bit $3 \quad$ SOSCHP: SOSC High-Power Enable bit (valid only when SOSCSEL =1) $)^{(\mathbf{1})}$
1 = SOSC High-Power mode is enabled
$0=$ SOSC Low-Power mode is enabled
bit 2 TMPRPIN: Tamper Pin Enable bit
$1=\overline{\text { TMPR }}$ pin function is disabled
$0=\overline{\text { TMPR }}$ pin function is enabled
bit 1 ALTCMPI: Alternate Comparator Input Enable bit
$1=$ C1INC, C2INC and C3INC are on their standard pin locations
$0=$ C1INC, C2INC and C3INC are on RG9
bit $0 \quad$ Unimplemented: Read as ' 1 '
Note 1: High-Power mode is for crystals with 35K ESR (typical). Low-Power mode is for crystals with more than 65K ESR.

TABLE 30-2: DEVICE ID REGISTERS

|  | Name | Bit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| FF0000h | DEVID | FAMID<7:0> |  |  |  |  |  |  |  | DEV<7:0> |  |  |  |  |  |  |  |
| FF0002h | DEVREV | - |  |  |  |  |  |  |  |  |  |  |  | REV<3:0> |  |  |  |

TABLE 30-3: DEVICE ID BIT FIELD DESCRIPTIONS

| Bit Field | Register | Description |
| :--- | :--- | :--- |
| FAMID<7:0> | DEVID | Encodes the family ID of <br> the device. |
| DEV<7:0> | DEVID | Encodes the individual ID <br> of the device. |
| REV<3:0> | DEVREV | Encodes the sequential <br> (numerical) revision <br> identifier of the device. |

## TABLE 30-4: PIC24FJ1024GA610/GB610

 FAMILY DEVICE IDs| Device | DEVID |
| :--- | :--- |
| PIC24FJ128GA606 | 6000 h |
| PIC24FJ256GA606 | 6008 h |
| PIC24FJ512GA606 | 6010 h |
| PIC24FJ1024GA606 | 6018 h |
| PIC24FJ128GA610 | 6001 h |
| PIC24FJ256GA610 | 6009 h |
| PIC24FJ512GA610 | 6011 h |
| PIC24FJ1024GA610 | 6019 h |
| PIC24FJ128GB606 | 6004 h |
| PIC24FJ256GB606 | 600 h |
| PIC24FJ512GB606 | 6014 h |
| PIC24FJ1024GB606 | 601 h |
| PIC24FJ128GB610 | 6005 h |
| PIC24FJ256GB610 | 600 Dh |
| PIC24FJ512GB610 | 6015 h |
| PIC24FJ1024GB610 | 601 h |

### 30.2 Unique Device Identifier (UDID)

All PIC24FJ1024GA610/GB610 family devices are individually encoded during final manufacturing with a Unique Device Identifier, or UDID. The UDID cannot be erased by a bulk erase command or any other useraccessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.
The UDID is stored in five read-only locations, located between 801600h and 801608h in the device configuration space. Table 30-5 lists the addresses of the identifier words.

TABLE 30-5: UDID ADDRESSES

| UDID | Address | Description |
| :---: | :---: | :---: |
| UDID1 | 801600 | UDID Word 1 |
| UDID2 | 801602 | UDID Word 2 |
| UDID3 | 801604 | UDID Word 3 |
| UDID4 | 801606 | UDID Word 4 |
| UDID5 | 801608 | UDID Word 5 |

### 30.3 On-Chip Voltage Regulator

All PIC24FJ1024GA610/GB610 family devices power their core digital logic at a nominal 1.8 V . This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3 V . To simplify system design, all devices in the PIC24FJ1024GA610/ GB610 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.
This regulator is always enabled. It provides a constant voltage ( 1.8 V nominal) to the digital core logic, from a VDD of about 2.1 V , all the way up to the device's VdDmax. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brownout Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV .
A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in Section 33.1 "DC Characteristics".

FIGURE 30-1: CONNECTIONS FOR THE ON-CHIP REGULATOR


Note 1: This is a typical operating voltage. Refer to Section 33.0 "Electrical Characteristics" for the full operating ranges of VDD.

### 30.3.1 ON-CHIP REGULATOR AND POR

The voltage regulator takes approximately $10 \mu \mathrm{~s}$ for it to generate output. During this time, designated as TVREG, code execution is disabled. TVreg is applied every time the device resumes operation after any power-down, including Sleep mode. TVReg is determined by the status of the VREGS bit ( $\mathrm{RCON}<8>$ ) and the WDTWIN<1:0> Configuration bits (FWDT<9:8>). Refer to Section 33.0 "Electrical Characteristics" for more information on TVREG.

## Note: For more information, see Section 33.0 "Electrical Characteristics". The information in this data sheet supersedes the information in the FRM. <br> 30.3.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit ( $\mathrm{RCON}<8>$ ). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

### 30.3.3 LOW-VOLTAGE/RETENTION REGULATOR

When in Sleep mode, PIC24FJ1024GA610/GB610 family devices may use a separate low-power, lowvoltage/retention regulator to power critical circuits. This regulator, which operates at 1.2 V nominal, maintains power to data RAM and the RTCC while all other core digital logic is powered down. The low-voltage/ retention regulator is described in more detail in Section 10.2.4 "Low-Voltage/Retention Regulator".

### 30.4 Watchdog Timer (WDT)

For PIC24FJ1024GA610/GB610 family devices, the WDT is driven by the LPRC Oscillator, the Secondary Oscillator (SOSC) or the system timer. When the device is in Sleep mode, the LPRC Oscillator will be used. When the WDT is enabled, the clock source is also enabled.
The nominal WDT clock source from LPRC is 31 kHz . This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7 -bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5 -bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS $<3: 0>$ Configuration bits (FWDT<3:0>), which allows the selection of a total of 16 settings, from $1: 1$ to $1: 32,768$. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds, can be achieved.
The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE ( $\mathrm{RCON}<3: 2>$ ) bits will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO ( $\mathrm{RCON}<4>$ ), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

### 30.4.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT<7>) to ' 0 '.

### 30.4.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits (FWDT<6:5>). When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.
The WDT can be optionally controlled in software when the Configuration bits, FWDTEN $\langle 1: 0>=10$. When FWDTEN $<1: 0>=00$, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical code segments for maximum power savings.

FIGURE 30-2: WDT BLOCK DIAGRAM


### 30.5 Program Verification and Code Protection

PIC24FJ1024GA610/GB610 family devices offer basic implementation of CodeGuard ${ }^{\text {TM }}$ Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual Intellectual Property.

| Note: | For more information on usage, configura- |
| :--- | :--- |
|  | tion and operation, refer to the "dsPIC33/" |
|  | PC24 Family Reference Manual", |
|  | "CodeGuard"M Intermediate Security" |
|  | (DS70005182). |

### 30.6 JTAG Interface

PIC24FJ1024GA610/GB610 family devices implement a JTAG interface, which supports boundary scan device testing.

### 30.7 In-Circuit Serial Programming

PIC24FJ1024GA610/GB610 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (Vss) and $\overline{M C L R}$. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

### 30.8 Customer OTP Memory

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

OTP memory cannot be written by program execution (i.e., TBLWT instructions); it can only be written during device programming. Data is not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

### 30.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.
To use the in-circuit debugger function of the device, the design must implement ICSP ${ }^{\text {TM }}$ connections to $\overline{M C L R}$, VDD, Vss and the PGECx/PGEDx pin pair, designated by the ICS<1:0> Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

### 31.0 DEVELOPMENT SUPPORT

The $\mathrm{PIC}^{\circledR}$ microcontrollers (MCU) and dsPIC ${ }^{\circledR}$ digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB ${ }^{\circledR}$ XIDE Software
- Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM ${ }^{\text {TM }}$ Assembler
- MPLINK ${ }^{\text {TM }}$ Object Linker/ MPLIB ${ }^{\text {M }}$ Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE ${ }^{\text {TM }}$ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit ${ }^{\text {TM }} 3$
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools


### 31.1 MPLAB X Integrated Development Environment Software

The MPLAB $\times$ IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows ${ }^{\circledR}$, Linux and Mac OS ${ }^{\circledR}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.
Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- Built-in support for Bugzilla issue tracker


### 31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.
For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.
The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.
MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility


### 31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel ${ }^{\circledR}$ standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process


### 31.4 MPLINK Object Linkerl MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


### 31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility


### 31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

### 31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

### 31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 31.9 PICkit 3 In-Circuit DebuggerI Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$ ).

### 31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display ( $128 \times 64$ ) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

### 31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM $^{\text {TM }}$ and dsPICDEM ${ }^{\text {TM }}$ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ ${ }^{\circledR}$ security ICs, CAN, IrDA ${ }^{\circledR}$, PowerSmart battery management, SEEVAL ${ }^{\circledR}$ evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent ${ }^{\circledR}$ and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika ${ }^{\circledR}$


### 32.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous $\mathrm{PIC}^{\circledR}$ MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.
Each single-word instruction is a 24 -bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

Table 32-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 32-2 lists all the instructions, along with the status flags affected by each instruction.
Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, ' $f$ '
- The destination, which could either be the file register, ' $f$ ', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or ' $f$ ')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of ' $k$ ')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or ' $f$ ')
However, literal instructions that involve arithmetic or logical operations use some of the following operands:
- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier
The control instructions may use some of the following operands:
- A program memory address
- The mode of the Table Read and Table Write instructions
All instructions are a single word, except for certain double-word instructions, which were made doubleword instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are ' 0 's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.
Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

TABLE 32-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

| Field | Description |
| :---: | :---: |
| \#text | Means literal defined by "text" |
| (text) | Means "content of text" |
| [text] | Means "the location addressed by text" |
| \{ \} | Optional field or operation |
| <n:m> | Register bit field |
| .b | Byte mode selection |
| .d | Double-Word mode selection |
| . S | Shadow register select |
| . W | Word mode selection (default) |
| bit4 | 4-bit Bit Selection field (used in word addressed instructions) $\in\{0 . . .15\}$ |
| C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero |
| Expr | Absolute address, label or expression (resolved by the linker) |
| f | File register address $\in\{0000 \mathrm{~h} . .1 \mathrm{FFFh}\}$ |
| lit1 | 1-bit unsigned literal $\in\{0,1\}$ |
| lit4 | 4-bit unsigned literal $\in\{0 \ldots 15\}$ |
| lit5 | 5 -bit unsigned literal $\in\{0 \ldots 31\}$ |
| lit8 | 8-bit unsigned literal $\in\{0 . . .255\}$ |
| lit10 | 10-bit unsigned literal $\in\{0 . .255\}$ for Byte mode, $\{0: 1023\}$ for Word mode |
| lit14 | 14-bit unsigned literal $\in\{0 . . .16383\}$ |
| lit16 | 16 -bit unsigned literal $\in\{0 . . .65535\}$ |
| lit23 | 23-bit unsigned literal $\in\{0 . . .8388607\}$; LSB must be '0' |
| None | Field does not require an entry, may be blank |
| PC | Program Counter |
| Slit10 | 10-bit signed literal $\in\{-512 \ldots 511\}$ |
| Slit16 | 16-bit signed literal $\in\{-32768 \ldots 32767\}$ |
| Slit6 | 6 -bit signed literal $\in\{-16 \ldots 16\}$ |
| Wb | Base W register $\in\{\mathrm{W} 0 . . \mathrm{W} 15\}$ |
| Wd | Destination W register $\in\{\mathrm{Wd}$, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] \} |
| Wdo | $\begin{aligned} & \text { Destination W register } \in \\ & \{\text { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] \} } \end{aligned}$ |
| Wm, Wn | Dividend, Divisor Working register pair (direct addressing) |
| Wn | One of 16 Working registers $\in\{W 0 . . W 15\}$ |
| Wnd | One of 16 destination Working registers $\in\{W 0 . . W 15\}$ |
| Wns | One of 16 source Working registers $\in\{W 0 . . W 15\}$ |
| WREG | W0 (Working register used in file register instructions) |
| Ws | Source W register $\in\{\mathrm{Ws},[\mathrm{Ws}],[\mathrm{Ws}++],[\mathrm{Ws}--],[++\mathrm{Ws}],[-\mathrm{Ws}]\}$ |
| Wso | Source W register $\in\{\mathrm{Wns},[\mathrm{Wns}],[\mathrm{Wns++}$ ], [Wns--], [++Wns], [--Wns], [Wns+Wb] \} |

TABLE 32-2: INSTRUCTION SET OVERVIEW

| Assembly Mnemonic |  | Assembly Syntax | Description | \# of Words | \# of Cycles | Status Flags Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADD | ADD | f | $f=\mathrm{f}+$ WREG | 1 | 1 | C, DC, N, OV, Z |
|  | ADD | f, WREG | WREG = $\mathrm{f}+\mathrm{WREG}$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADD | \#lit10,Wn | $\mathrm{Wd}=\mathrm{lit} 10+\mathrm{Wd}$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADD | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADD | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit} 5$ | 1 | 1 | C, DC, N, OV, Z |
| ADDC | ADDC | $f$ | $\mathrm{f}=\mathrm{f}+\mathrm{WREG}+(\mathrm{C})$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADDC | f, WREG | WREG = f + WREG + (C) | 1 | 1 | C, DC, N, OV, Z |
|  | ADDC | \#lit10,Wn | $W d=l i t 10+W d+(C)$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADDC | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}+(\mathrm{C})$ | 1 | 1 | C, DC, N, OV, Z |
|  | ADDC | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}+(\mathrm{C})$ | 1 | 1 | C, DC, N, OV, Z |
| AND | AND | $f$ | $\mathrm{f}=\mathrm{f}$. AND. WREG | 1 | 1 | N, Z |
|  | AND | f, WREG | WREG = f.AND. WREG | 1 | 1 | N, Z |
|  | AND | \#lit10,Wn | Wd = lit10.AND. Wd | 1 | 1 | N, Z |
|  | AND | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb}$.AND. Ws | 1 | 1 | N, Z |
|  | AND | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb}$.AND. lit5 | 1 | 1 | N, Z |
| ASR | ASR | f | $\mathrm{f}=$ Arithmetic Right Shift f | 1 | 1 | C, N, OV, Z |
|  | ASR | f, WREG | WREG = Arithmetic Right Shift f | 1 | 1 | C, N, OV, Z |
|  | ASR | Ws, Wd | Wd = Arithmetic Right Shift Ws | 1 | 1 | C, N, OV, Z |
|  | ASR | Wb, Wns, Wnd | Wnd = Arithmetic Right Shift Wb by Wns | 1 | 1 | N, Z |
|  | ASR | Wb, \#lit5, Wnd | Wnd = Arithmetic Right Shift Wb by lit5 | 1 | 1 | N, Z |
| BCLR | BCLR | f,\#bit4 | Bit Clear f | 1 | 1 | None |
|  | BCLR | Ws, \#bit4 | Bit Clear Ws | 1 | 1 | None |
| BRA | BRA | C, Expr | Branch if Carry | 1 | 1 (2) | None |
|  | BRA | GE, Expr | Branch if Greater than or Equal | 1 | 1 (2) | None |
|  | BRA | GEU, Expr | Branch if Unsigned Greater than or Equal | 1 | 1 (2) | None |
|  | BRA | GT, Expr | Branch if Greater than | 1 | 1 (2) | None |
|  | BRA | GTU, Expr | Branch if Unsigned Greater than | 1 | 1 (2) | None |
|  | BRA | LE, Expr | Branch if Less than or Equal | 1 | 1 (2) | None |
|  | BRA | LEU, Expr | Branch if Unsigned Less than or Equal | 1 | 1 (2) | None |
|  | BRA | LT, Expr | Branch if Less than | 1 | 1 (2) | None |
|  | BRA | LTU, Expr | Branch if Unsigned Less than | 1 | 1 (2) | None |
|  | BRA | N, Expr | Branch if Negative | 1 | 1 (2) | None |
|  | BRA | NC, Expr | Branch if Not Carry | 1 | 1 (2) | None |
|  | BRA | NN, Expr | Branch if Not Negative | 1 | 1 (2) | None |
|  | BRA | NOV, Expr | Branch if Not Overflow | 1 | 1 (2) | None |
|  | BRA | NZ, Expr | Branch if Not Zero | 1 | 1 (2) | None |
|  | BRA | OV, Expr | Branch if Overflow | 1 | 1 (2) | None |
|  | BRA | Expr | Branch Unconditionally | 1 | 2 | None |
|  | BRA | z, Expr | Branch if Zero | 1 | 1 (2) | None |
|  | BRA | Wn | Computed Branch | 1 | 2 | None |
| BSET | BSET | f,\#bit4 | Bit Set f | 1 | 1 | None |
|  | BSET | Ws, \#bit4 | Bit Set Ws | 1 | 1 | None |
| BSW | BSW.C | Ws, Wb | Write C bit to Ws<Wb> | 1 | 1 | None |
|  | BSW.Z | Ws, Wb | Write Z bit to $\mathrm{Ws}<\mathrm{Wb}>$ | 1 | 1 | None |
| BTG | BTG | f,\#bit4 | Bit Toggle f | 1 | 1 | None |
|  | BTG | Ws, \#bit4 | Bit Toggle Ws | 1 | 1 | None |
| BTSC | BTSC | f,\#bit4 | Bit Test f, Skip if Clear | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \end{gathered}$ | None |
|  | BTSC | Ws, \#bit4 | Bit Test Ws, Skip if Clear | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$ | None |

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly Mnemonic | Assembly Syntax |  | Description | \# of Words | \# of Cycles | Status Flags Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BTSS | BTSS | f, \#bit4 | Bit Test f, Skip if Set | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \end{gathered}$ | None |
|  | BTSS | Ws, \#bit4 | Bit Test Ws, Skip if Set | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$ | None |
| BTST | BTST | f, \#bit4 | Bit Test f | 1 | 1 | Z |
|  | BTST.C | Ws, \#bit4 | Bit Test Ws to C | 1 | 1 | C |
|  | BTST.Z | Ws, \#bit4 | Bit Test Ws to Z | 1 | 1 | Z |
|  | BTST.C | Ws, Wb | Bit Test Ws<Wb> to C | 1 | 1 | C |
|  | BTST.Z | Ws, Wb | Bit Test Ws<Wb> to Z | 1 | 1 | Z |
| BTSTS | BTSTS | f,\#bit4 | Bit Test then Set f | 1 | 1 | Z |
|  | BTSTS.C | Ws, \#bit4 | Bit Test Ws to C, then Set | 1 | 1 | C |
|  | BTSTS.Z | Ws, \#bit4 | Bit Test Ws to Z, then Set | 1 | 1 | Z |
| CALL | CALL | lit23 | Call Subroutine | 2 | 2 | None |
|  | CALL | Wn | Call Indirect Subroutine | 1 | 2 | None |
| CLR | CLR | $f$ | $\mathrm{f}=0 \times 0000$ | 1 | 1 | None |
|  | CLR | WREG | WREG $=0 \times 0000$ | 1 | 1 | None |
|  | CLR | Ws | Ws = 0x0000 | 1 | 1 | None |
| CLRWDT | CLRWDT |  | Clear Watchdog Timer | 1 | 1 | WDTO, Sleep |
| COM | COM | f | $\mathrm{f}=\overline{\mathrm{f}}$ | 1 | 1 | N, Z |
|  | COM | f,WREG | WREG $=\overline{\mathrm{f}}$ | 1 | 1 | N, Z |
|  | COM | Ws, Wd | $\mathrm{Wd}=\overline{\mathrm{Ws}}$ | 1 | 1 | N, Z |
| CP | CP | $f$ | Compare f with WREG | 1 | 1 | C, DC, N, OV, Z |
|  | CP | Wb,\#lit5 | Compare Wb with lit5 | 1 | 1 | C, DC, N, OV, Z |
|  | CP | Wb, Ws | Compare Wb with Ws (Wb - Ws) | 1 | 1 | C, DC, N, OV, Z |
| CP0 | CP0 | $f$ | Compare f with 0x0000 | 1 | 1 | C, DC, N, OV, Z |
|  | CP0 | Ws | Compare Ws with 0x0000 | 1 | 1 | C, DC, N, OV, Z |
| CPB | CPB | $f$ | Compare f with WREG, with Borrow | 1 | 1 | C, DC, N, OV, Z |
|  | CPB | Wb,\#lit5 | Compare Wb with lit5, with Borrow | 1 | 1 | C, DC, N, OV, Z |
|  | CPB | Wb, Ws | Compare Wb with Ws, with Borrow $(\mathrm{Wb}-\mathrm{Ws}-\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
| CPSEQ | CPSEQ | Wb, Wn | Compare Wb with Wn, Skip if = | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \end{gathered}$ | None |
| CPSGT | CPSGT | Wb, Wn | Compare Wb with Wn, Skip if > | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \end{gathered}$ | None |
| CPSLT | CPSLT | Wb, Wn | Compare Wb with Wn, Skip if < | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$ | None |
| CPSNE | CPSNE | Wb, Wn | Compare Wb with Wn, Skip if $\neq$ | 1 | $\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$ | None |
| DAW | DAW. B | Wn | Wn = Decimal Adjust Wn | 1 | 1 | C |
| DEC | DEC | $f$ | $\mathrm{f}=\mathrm{f}-1$ | 1 | 1 | C, DC, N, OV, Z |
|  | DEC | f,WREG | WREG = f -1 | 1 | 1 | C, DC, N, OV, Z |
|  | DEC | Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}-1$ | 1 | 1 | C, DC, N, OV, Z |
| DEC2 | DEC2 | $f$ | $\mathrm{f}=\mathrm{f}-2$ | 1 | 1 | C, DC, N, OV, Z |
|  | DEC2 | f, WREG | WREG = $\mathrm{f}-2$ | 1 | 1 | C, DC, N, OV, Z |
|  | DEC2 | Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}-2$ | 1 | 1 | C, DC, N, OV, Z |
| DISI | DISI | \#lit14 | Disable Interrupts for k Instruction Cycles | 1 | 1 | None |
| DIV | DIV.SW | Wm, Wn | Signed 16/16-bit Integer Divide | 1 | 18 | N, Z, C, OV |
|  | DIV.SD | Wm, Wn | Signed 32/16-bit Integer Divide | 1 | 18 | N, Z, C, OV |
|  | DIV.UW | Wm, Wn | Unsigned 16/16-bit Integer Divide | 1 | 18 | N, Z, C, OV |
|  | DIV.UD | Wm, Wn | Unsigned 32/16-bit Integer Divide | 1 | 18 | N, Z, C, OV |
| EXCH | EXCH | Wns, Wnd | Swap Wns with Wnd | 1 | 1 | None |
| FF1L | FF1L | Ws, Wnd | Find First One from Left (MSb) Side | 1 | 1 | C |
| FF1R | FF1R | Ws, Wnd | Find First One from Right (LSb) Side | 1 | 1 | C |

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly Mnemonic |  | Assembly Syntax | Description | \# of <br> Words | \# of Cycles | Status Flags Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GOTO | GOTO | Expr | Go to Address | 2 | 2 | None |
|  | GOTO | Wn | Go to Indirect | 1 | 2 | None |
| INC | INC | f | $\mathrm{f}=\mathrm{f}+1$ | 1 | 1 | C, DC, N, OV, Z |
|  | INC | f, WREG | WREG $=\mathrm{f}+1$ | 1 | 1 | C, DC, N, OV, Z |
|  | INC | Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}+1$ | 1 | 1 | C, DC, N, OV, Z |
| INC2 | INC2 | f | $\mathrm{f}=\mathrm{f}+2$ | 1 | 1 | C, DC, N, OV, Z |
|  | INC2 | f, WREG | WREG $=\mathrm{f}+2$ | 1 | 1 | C, DC, N, OV, Z |
|  | INC2 | Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}+2$ | 1 | 1 | C, DC, N, OV, Z |
| IOR | IOR | f | $\mathrm{f}=\mathrm{f}$. IOR. WREG | 1 | 1 | N, Z |
|  | IOR | f, WREG | WREG = f.IOR. WREG | 1 | 1 | N, Z |
|  | IOR | \#lit10,Wn | $\mathrm{Wd}=$ lit10.IOR. Wd | 1 | 1 | N, Z |
|  | IOR | Wb, Ws, Wd | Wd = Wb .IOR. Ws | 1 | 1 | N, Z |
|  | IOR | Wb, \#lit5, Wd | Wd = Wb .IOR. lit5 | 1 | 1 | N, Z |
| LNK | LNK | \#lit14 | Link Frame Pointer | 1 | 1 | None |
| LSR | LSR | f | $\mathrm{f}=$ Logical Right Shift f | 1 | 1 | C, N, OV, Z |
|  | LSR | f, WREG | WREG = Logical Right Shift f | 1 | 1 | C, N, OV, Z |
|  | LSR | Ws, Wd | Wd = Logical Right Shift Ws | 1 | 1 | C, N, OV, Z |
|  | LSR | Wb, Wns, Wnd | Wnd = Logical Right Shift Wb by Wns | 1 | 1 | N, Z |
|  | LSR | Wb, \#lit5, Wnd | Wnd = Logical Right Shift Wb by lit5 | 1 | 1 | N, Z |
| MOV | MOV | f, Wn | Move f to Wn | 1 | 1 | None |
|  | MOV | [Wns+Slit10],Wnd | Move [Wns+Slit10] to Wnd | 1 | 1 | None |
|  | MOV | f | Move f to f | 1 | 1 | N, Z |
|  | MOV | f,WREG | Move f to WREG | 1 | 1 | N, Z |
|  | MOV | \#lit16, Wn | Move 16-bit Literal to Wn | 1 | 1 | None |
|  | MOV.b | \#lit8, Wn | Move 8-bit Literal to Wn | 1 | 1 | None |
|  | MOV | Wn, f | Move Wn to f | 1 | 1 | None |
|  | MOV | Wns, [Wns+Slit10] | Move Wns to [Wns+Slit10] | 1 | 1 | None |
|  | MOV | Wso, Wdo | Move Ws to Wd | 1 | 1 | None |
|  | MOV | WREG, f | Move WREG to f | 1 | 1 | N, Z |
|  | MOV.D | Wns, Wd | Move Double from W(ns):W(ns+1) to Wd | 1 | 2 | None |
|  | MOV.D | Ws, Wnd | Move Double from Ws to W(nd+1):W(nd) | 1 | 2 | None |
| MUL | MUL.SS | Wb, Ws, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Signed(Wb) * Signed(Ws) | 1 | 1 | None |
|  | MUL.SU | Wb, Ws, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Signed(Wb) * Unsigned(Ws) | 1 | 1 | None |
|  | MUL.US | Wb, Ws, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Unsigned(Wb) * Signed(Ws) | 1 | 1 | None |
|  | MUL.UU | Wb, Ws, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Unsigned(Wb) * Unsigned(Ws) | 1 | 1 | None |
|  | MUL.SU | Wb, \#lit5, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Signed(Wb) * Unsigned(lit5) | 1 | 1 | None |
|  | MUL.UU | Wb,\#lit5, Wnd | $\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ Unsigned(Wb) * Unsigned(lit5) | 1 | 1 | None |
|  | MUL | f | W3:W2 = f * WREG | 1 | 1 | None |
| NEG | NEG | f | $\mathrm{f}=\overline{\mathrm{f}}+1$ | 1 | 1 | C, DC, N, OV, Z |
|  | NEG | f, WREG | WREG $=\overline{\mathrm{f}}+1$ | 1 | 1 | C, DC, N, OV, Z |
|  | NEG | Ws, Wd | $\mathrm{Wd}=\overline{\mathrm{Ws}}+1$ | 1 | 1 | C, DC, N, OV, Z |
| NOP | NOP |  | No Operation | 1 | 1 | None |
|  | NOPR |  | No Operation | 1 | 1 | None |
| POP | POP | f | Pop f from Top-of-Stack (TOS) | 1 | 1 | None |
|  | POP | Wdo | Pop from Top-of-Stack (TOS) to Wdo | 1 | 1 | None |
|  | POP.D | Wnd | Pop from Top-of-Stack (TOS) to W(nd):W(nd+1) | 1 | 2 | None |
|  | POP.S |  | Pop Shadow Registers | 1 | 1 | All |
| PUSH | PUSH | f | Push f to Top-of-Stack (TOS) | 1 | 1 | None |
|  | PUSH | Wso | Push Wso to Top-of-Stack (TOS) | 1 | 1 | None |
|  | PUSH.D | Wns | Push W(ns):W(ns+1) to Top-of-Stack (TOS) | 1 | 2 | None |
|  | PUSH.S |  | Push Shadow Registers | 1 | 1 | None |

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly Mnemonic | Assembly Syntax |  | Description | \# of Words | \# of Cycles | Status Flags Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PWRSAV | PWRSAV | \#lit1 | Go into Sleep or Idle mode | 1 | 1 | WDTO, Sleep |
| RCALL | RCALL | Expr | Relative Call | 1 | 2 | None |
|  | RCALL | Wn | Computed Call | 1 | 2 | None |
| REPEAT | REPEAT | \#lit14 | Repeat Next Instruction lit14 + 1 times | 1 | 1 | None |
|  | REPEAT | Wn | Repeat Next Instruction (Wn) + 1 times | 1 | 1 | None |
| RESET | RESET |  | Software Device Reset | 1 | 1 | None |
| RETFIE | RETFIE |  | Return from Interrupt | 1 | 3 (2) | None |
| RETLW | RETLW | \#lit10, Wn | Return with Literal in Wn | 1 | 3 (2) | None |
| RETURN | RETURN |  | Return from Subroutine | 1 | 3 (2) | None |
| RLC | RLC | f | $\mathrm{f}=$ Rotate Left through Carry f | 1 | 1 | C, N, Z |
|  | RLC | f, WREG | WREG = Rotate Left through Carry f | 1 | 1 | C, N, Z |
|  | RLC | Ws, Wd | Wd = Rotate Left through Carry Ws | 1 | 1 | C, N, Z |
| RLNC | RLNC | f | $\mathrm{f}=$ Rotate Left (No Carry) f | 1 | 1 | N, Z |
|  | RLNC | f, WREG | WREG = Rotate Left (No Carry) f | 1 | 1 | N, Z |
|  | RLNC | Ws, Wd | Wd = Rotate Left (No Carry) Ws | 1 | 1 | N, Z |
| RRC | RRC | f | $\mathrm{f}=$ Rotate Right through Carry f | 1 | 1 | C, N, Z |
|  | RRC | f,WREG | WREG = Rotate Right through Carry f | 1 | 1 | C, N, Z |
|  | RRC | Ws, Wd | Wd = Rotate Right through Carry Ws | 1 | 1 | C, N, Z |
| RRNC | RRNC | f | $\mathrm{f}=$ Rotate Right (No Carry) f | 1 | 1 | N, Z |
|  | RRNC | f, WREG | WREG = Rotate Right (No Carry) f | 1 | 1 | N, Z |
|  | RRNC | Ws, Wd | Wd = Rotate Right (No Carry) Ws | 1 | 1 | N, Z |
| SE | SE | Ws, Wnd | Wnd = Sign-Extended Ws | 1 | 1 | C, N, Z |
| SETM | SETM | f | $\mathrm{f}=\mathrm{FFFFh}$ | 1 | 1 | None |
|  | SETM | WREG | WREG = FFFFh | 1 | 1 | None |
|  | SETM | Ws | Ws = FFFFh | 1 | 1 | None |
| SL | SL | f | $\mathrm{f}=$ Left Shift f | 1 | 1 | C, N, OV, Z |
|  | SL | f, WREG | WREG = Left Shift f | 1 | 1 | C, N, OV, Z |
|  | SL | Ws, Wd | Wd = Left Shift Ws | 1 | 1 | C, N, OV, Z |
|  | SL | Wb, Wns, Wnd | Wnd = Left Shift Wb by Wns | 1 | 1 | N, Z |
|  | SL | Wb, \#lit5, Wnd | Wnd = Left Shift Wb by lit5 | 1 | 1 | N, Z |
| SUB | SUB | f | $f=f-$ WREG | 1 | 1 | C, DC, N, OV, Z |
|  | SUB | f,WREG | WREG = $\mathrm{f}-\mathrm{WREG}$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUB | \#lit10, Wn | $\mathrm{Wn}=\mathrm{W} \mathrm{n}-\mathrm{lit} 10$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUB | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUB | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}$ | 1 | 1 | C, DC, N, OV, Z |
| SUBB | SUBB | f | $\mathrm{f}=\mathrm{f}-\mathrm{WREG}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBB | f,WREG | WREG $=\mathrm{f}-\mathrm{WREG}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBB | \#lit10,Wn | $W \mathrm{n}=\mathrm{Wn}-\mathrm{lit} 10-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBB | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBB | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
| SUBR | SUBR | $f$ | $\mathrm{f}=$ WREG - f | 1 | 1 | C, DC, N, OV, Z |
|  | SUBR | f, WREG | WREG = WREG - f | 1 | 1 | C, DC, N, OV, Z |
|  | SUBR | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBR | Wb, \#lit5, Wd | $\mathrm{Wd}=$ lit5 - Wb | 1 | 1 | C, DC, N, OV, Z |
| SUBBR | SUBBR | $f$ | $\mathrm{f}=$ WREG $-\mathrm{f}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBBR | f, WREG | WREG $=$ WREG $-\mathrm{f}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBBR | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
|  | SUBBR | Wb, \#lit5, Wd | $\mathrm{Wd}=$ lit5 $-\mathrm{Wb}-(\overline{\mathrm{C}})$ | 1 | 1 | C, DC, N, OV, Z |
| SWAP | SWAP.b | Wn | Wn = Nibble Swap Wn | 1 | 1 | None |
|  | SWAP | Wn | Wn = Byte Swap Wn | 1 | 1 | None |

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly Mnemonic | Assembly Syntax |  | Description | \# of Words | \# of Cycles | Status Flags Affected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TBLRDH | TBLRDH | Ws, Wd | Read Prog<23:16> to Wd<7:0> | 1 | 2 | None |
| TBLRDL | TBLRDL | Ws, Wd | Read Prog<15:0> to Wd | 1 | 2 | None |
| TBLWTH | TBLWTH | Ws, Wd | Write Ws<7:0> to Prog<23:16> | 1 | 2 | None |
| TBLWTL | TBLWTL | Ws, Wd | Write Ws to Prog<15:0> | 1 | 2 | None |
| ULNK | ULNK |  | Unlink Frame Pointer | 1 | 1 | None |
| XOR | XOR | $f$ | $\mathrm{f}=\mathrm{f} . \mathrm{XOR}$. WREG | 1 | 1 | N, Z |
|  | XOR | f, WREG | WREG = f.XOR. WREG | 1 | 1 | N, Z |
|  | XOR | \#lit10,Wn | $\mathrm{Wd}=$ lit10.XOR. Wd | 1 | 1 | N, Z |
|  | XOR | Wb, Ws, Wd | $\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{Ws}$ | 1 | 1 | N, Z |
|  | XOR | Wb, \#lit5, Wd | $\mathrm{Wd}=\mathrm{Wb} . \mathrm{XOR} . \mathrm{lit5}$ | 1 | 1 | N, Z |
| ZE | ZE | Ws, Wnd | Wnd = Zero-Extend Ws | 1 | 1 | C, Z, N |

## NOTES:

### 33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ1024GA610/GB610 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC24FJ1024GA610/GB610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

## Absolute Maximum Ratings ${ }^{(\dagger)}$

Ambient temperature under bias.............................................................................................................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature ............................................................................................................................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on VDD with respect to Vss ......................................................................................................... - 0.3 V to +4.0 V
Voltage on any general purpose digital or analog pin (not 5.5 V tolerant) with respect to $\mathrm{Vss} . . . . . .-0.3 \mathrm{~V}$ to (VDD +0.3 V )
Voltage on any general purpose digital or analog pin ( 5.5 V tolerant, including $\overline{\mathrm{MCLR}}$ ) with respect to Vss:
When VDD $=0 \mathrm{~V}$ :
-0.3 V to +4.0 V
When VDD $\geq 2.0 \mathrm{~V}$ : ........................................................................................................................ 0.3 V to +6.0 V
Voltage on AVDD with respect to Vss .................................................(VDD - 0.3 V ) to (lesser of: 4.0V or (VDD + 0.3V))
Voltage on AVss with respect to Vss ..................................................................................................... - 0.3 V to +0.3V
Maximum current out of Vss pin .......................................................................................................................... 300 mA
Maximum current into VDD pin (Note 1)................................................................................................................ 250 mA
Maximum output current sunk by any I/O pin ......................................................................................................... 25 mA
Maximum output current sourced by any I/O pin ..................................................................................................... 25 mA
Maximum current sunk by all ports ....................................................................................................................... 200 mA
Maximum current sourced by all ports (Note 1).................................................................................................... 200 mA
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 33-1).
$\dagger$ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

### 33.1 DC Characteristics

FIGURE 33-1: PIC24FJ1024GA610/GB610 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)


Note 1: Lower operating boundary is 2.0 V or $\operatorname{VBOR}$ (when $B O R$ is enabled), whichever is lower. For best analog performance, operation above 2.2 V is suggested but not required.

TABLE 33-1: THERMAL OPERATING CONDITIONS


TABLE 33-2: THERMAL PACKAGING CHARACTERISTICS

| Characteristic | Symbol | Typ | Max | Unit | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Package Thermal Resistance, 9×9×0.9 mm QFN | $\theta \mathrm{JA}$ | 33.7 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | (Note 1) |
| Package Thermal Resistance, $10 \times 10 \times 1 \mathrm{~mm}$ TQFP | $\theta \mathrm{JA}$ | 28 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | (Note 1) |
| Package Thermal Resistance, $12 \times 12 \times 1 \mathrm{~mm}$ TQFP | $\theta \mathrm{JA}$ | 39.3 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | (Note 1) |
| Package Thermal Resistance, $10 \times 10 \times 1.1 \mathrm{~mm}$ TFBGA | $\theta \mathrm{JA}$ | 40.2 | - | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | (Note 1) |

Note 1: Junction to ambient thermal resistance; Theta-JA ( $\theta \mathrm{JA}$ ) numbers are achieved by package simulations.

TABLE 33-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c\|} \hline \text { Param } \\ \text { No. } \end{array}$ | Symbol | Characteristic | Min | Typ | Max | Units | Conditions |
| Operating Voltage |  |  |  |  |  |  |  |
| DC10 | VDD | Supply Voltage | 2.0 | - | 3.6 | V | BOR is disabled |
|  |  |  | VBor | - | 3.6 | V | BOR is enabled |
| DC12 | VDR | RAM Data Retention Voltage ${ }^{(1)}$ | Greater of: Vporrel or VBOR | - | - | V | VBOR is used only if BOR is enabled (BOREN = 1) |
| DC16 | VPOR | Vdd Start Voltage to Ensure Internal Power-on Reset Signal | Vss | - | - | V | (Note 2) |
| DC17A | SVDD | Recommended Vdd Rise Rate to Ensure Internal Power-on Reset Signal | 1V/20 ms | - | 1V/10 $\mu \mathrm{S}$ | sec | (Note 2, Note 4) |
| DC17B | VBOR | Brown-out Reset Voltage on VdD Transition, High-to-Low | 2.0 | 2.1 | 2.2 | V | (Note 3) |

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.
2: If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.
3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).
4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

TABLE 33-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter No. | Typical ${ }^{(1)}$ | Max | Units | Operating Temperature | VDD | Conditions |
| Operating Current (IDD) ${ }^{(2)}$ |  |  |  |  |  |  |
| DC19 | 230 | 365 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 0.5 MIPS, Fosc $=1 \mathrm{MHz}$ |
|  | 250 | 365 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC20 | 430 | 640 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 1 MIPS, Fosc $=2 \mathrm{MHz}$ |
|  | 440 | 640 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC23 | 1.5 | 2.4 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 4 MIPS,$\text { Fosc = } 8 \mathrm{MHz}$ |
|  | 1.65 | 2.4 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC24 | 6.1 | 7.7 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 16 MIPS,$\text { Fosc }=32 \mathrm{MHz}$ |
|  | 6.3 | 7.7 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC31 | 43 | 100 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | LPRC (15.5 KIPS), Fosc $=31 \mathrm{kHz}$ |
|  | 46 | 100 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC32 | 1.63 | 2.5 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\begin{array}{\|l} \text { FRC (8 MHz), } \\ \text { Fosc }=4 \mathrm{MHz} \end{array}$ |
|  | 1.65 | 2.5 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC33 | 5.80 | 7.4 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\begin{array}{\|l} \hline \mathrm{DCO}(8 \mathrm{MHz}) \\ \text { Fosc }=4 \mathrm{MHz} \end{array}$ |
|  | 5.90 | 7.4 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |

Note 1: Data in the "Typical" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Typical parameters are for design guidance only and are not tested.
2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to Vss. $\overline{M C L R}=\mathrm{VDD}$; WDT and FSCM are disabled. CPU, program memory and data memory are operational. All peripheral modules are clocked but inactive (PMDx bits are all ' 1 ').

TABLE 33-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter No. | Typical ${ }^{(1)}$ | Max | Units | Operating Temperature | VDD | Conditions |
| Idle Current (IIDLE) ${ }^{(2)}$ |  |  |  |  |  |  |
| DC40 | 95 | 400 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 1 MIPS, Fosc $=2 \mathrm{MHz}$ |
|  | 105 | 400 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC43 | 290 | 1200 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | 4 MIPS,$\text { Fosc }=8 \mathrm{MHz}$ |
|  | 315 | 1200 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC47 | 1.05 | 3.7 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\begin{aligned} & 16 \mathrm{MIPS}, \\ & \text { Fosc }=32 \mathrm{MHz} \end{aligned}$ |
|  | 1.16 | 3.7 | mA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC50 | 350 | 1100 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\begin{aligned} & \text { FRC ( } 8 \mathrm{MHz} \text { ), } \\ & \text { Fosc }=4 \mathrm{MHz} \end{aligned}$ |
|  | 360 | 1100 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC51 | 29 | 76 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\begin{aligned} & \text { LPRC ( } 15.5 \mathrm{KIPS} \text { ), } \\ & \text { Fosc }=31 \mathrm{kHz} \end{aligned}$ |
|  | 33 | 76 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |

Note 1: Data in the "Typical" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: Base lidLE current is measured with the core off, the clock on and all modules turned off. Peripheral Module Disable SFR registers are ' 1 '. All I/O pins are configured as inputs and pulled to Vss.

TABLE 33-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter No. | Typical ${ }^{(1)}$ | Max | Units | Operating Temperature | Vdd | Conditions |
| Power-Down Current ${ }^{(4,5)}$ |  |  |  |  |  |  |
| DC60 | 2.5 | 10 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ | 2.0 V | Sleep ${ }^{(2)}$ |
|  | 3.2 | 10 | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ |  |  |
|  | 11.5 | 45 | $\mu \mathrm{A}$ | $+85^{\circ} \mathrm{C}$ |  |  |
|  | 3.2 | 10 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ | 3.3 V |  |
|  | 4.0 | 10 | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ |  |  |
|  | 12.2 | 45 | $\mu \mathrm{A}$ | $+85^{\circ} \mathrm{C}$ |  |  |
| DC61 | 165 | - | nA | $-40^{\circ} \mathrm{C}$ | 2.0 V | Low-Voltage Retention Sleep ${ }^{(3)}$ |
|  | 190 | - | nA | $+25^{\circ} \mathrm{C}$ |  |  |
|  | 14.5 | - | $\mu \mathrm{A}$ | $+85^{\circ} \mathrm{C}$ |  |  |
|  | 220 | - | nA | $-40^{\circ} \mathrm{C}$ | 3.3 V |  |
|  | 300 | - | nA | $+25^{\circ} \mathrm{C}$ |  |  |
|  | 15 | - | $\mu \mathrm{A}$ | $+85^{\circ} \mathrm{C}$ |  |  |

Note 1: Data in the "Typical" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: The retention low-voltage regulator is disabled; RETEN $(R C O N<12>)=0, \overline{\text { LPCFG }}($ FPOR $<2>)=1$.
3: The retention low-voltage regulator is enabled; RETEN $($ RCON $<12>)=1, \overline{\text { LPCFG }}$ (FPOR<2>) $=0$.
4: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.
5: These currents are measured on the device containing the most memory in this family.

TABLE 33-7: DC CHARACTERISTICS: $\Delta$ CURRENT (BOR, WDT, HLVD, RTCC) ${ }^{(3)}$

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter No. | Typical ${ }^{(1)}$ | Max | Units | Operating Temperature | VDD | Conditions |
| Incremental Current Brown-out Reset ( $\triangle \mathrm{BOR})^{(2)}$ |  |  |  |  |  |  |
| DC25 | 3 | 5 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\triangle \mathrm{BOR}^{(2)}$ |
|  | 4 | 5 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| Incremental Current Watchdog Timer ( $\triangle$ WDT) ${ }^{(2)}$ |  |  |  |  |  |  |
| DC71 | 0.22 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\Delta W D T^{(2)}$ |
|  | 0.3 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| Incremental Current High/Low-Voltage Detect ( $\triangle$ HLVD) ${ }^{(2)}$ |  |  |  |  |  |  |
| DC75 | 1.3 | 5 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\Delta \mathrm{HLVD}^{(2)}$ |
|  | 1.9 | 5 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| Incremental Current Real-Time Clock and Calendar ( $\triangle$ RTCC) ${ }^{(2)}$ |  |  |  |  |  |  |
| DC77 | 0.3 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\Delta \mathrm{RTCC}$ (with SOSC) ${ }^{(2)}$ |
|  | 0.35 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |
| DC77A | 0.3 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 2.0 V | $\triangle \mathrm{RTCC}$ (with LPRC) ${ }^{(2)}$ |
|  | 0.35 | 1 | $\mu \mathrm{A}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 3.3 V |  |

Note 1: Data in the "Typical" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: Incremental current while the module is enabled and running.
3: The $\Delta$ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 33-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: Negative current is defined as current sourced by the pin.
3: Refer to Table 1-1 for I/O pin buffer types.

TABLE 33-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0V to 3.6 V (unless otherwise stated) Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min | Typ ${ }^{(1)}$ | Max | Units | Conditions |
| DO10 <br> DO16 | Vol | Output Low Voltage I/O Ports OSCO/CLKO |  | $\begin{aligned} & - \\ & - \\ & - \end{aligned}$ | $\begin{gathered} 0.4 \\ 0.8 \\ 0.35 \\ 0.18 \\ 0.2 \end{gathered}$ | $\begin{aligned} & V \\ & V \\ & V \\ & V \\ & V \end{aligned}$ | $\begin{aligned} & \mathrm{IOL}=6.6 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOL}=18 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOL}=5.0 \mathrm{~mA}, \mathrm{VDD}=2 \mathrm{~V} \\ & \mathrm{IOL}=6.6 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOL}=5.0 \mathrm{~mA}, \mathrm{VDD}=2 \mathrm{~V} \end{aligned}$ |
| DO20 | VOH | Output High Voltage I/O Ports OSCO/CLKO | $\begin{gathered} 3.4 \\ 3.25 \\ 2.8 \\ 1.65 \\ 1.4 \\ 3.3 \\ 1.85 \end{gathered}$ | - - - - - - - | - - - - - - | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOH}=-6.0 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOH}=-18 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{VDD}=2 \mathrm{~V} \\ & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{VDD}=2 \mathrm{~V} \\ & \mathrm{IOH}=-6.0 \mathrm{~mA}, \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{VDD}=2 \mathrm{~V} \end{aligned}$ |

Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-10: DC CHARACTERISTICS: PROGRAM MEMORY

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min | Typ ${ }^{(1)}$ | Max | Units | Conditions |
|  |  | Program Flash Memory |  |  |  |  |  |
| D130 | Ep | Cell Endurance | 10000 | - | - | E/W | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| D131 | VPR | VDD for Read | Vmin | - | 3.6 | V | Vmin $=$ Minimum operating voltage |
| D132B |  | VDD for Self-Timed Write | Vmin | - | 3.6 | V | VMIN $=$ Minimum operating voltage |
| D133A | Tiw | Self-Timed Word Write Cycle Time | - | 20 | - | $\mu \mathrm{s}$ |  |
|  |  | Self-Timed Row Write Cycle Time | - | 1.5 | - | ms |  |
| D133B | Tie | Self-Timed Page Erase Time | 20 | - | 40 | ms |  |
| D134 | TRETD | Characteristic Retention | 20 | - | - | Year | If no other specifications are violated |
| D135 | IDDP | Supply Current during Programming | - | 5 | - | mA |  |

Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated.

TABLE 33-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

| Operating Conditions: $-40^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C}$ (unless otherwise stated) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param <br> No. | Symbol | Characteristics | Min | Typ | Max | Units | Comments |
| DVR | TVREG | Voltage Regulator Start-up Time | - | 10 | - | $\mu \mathrm{S}$ | VREGS $=0$ with any POR or BOR |
| DVR10 | VBG | Internal Band Gap Reference | 1.14 | 1.2 | 1.26 | V |  |
| DVR11 | TBG | Band Gap Reference Start-up Time | - | 1 | - | ms |  |
| DVR20 | VRgout | Regulator Output Voltage | 1.6 | 1.8 | 2 | V | VDD > 2.1V |
| DVR21 | Cefc | External Filter Capacitor Value | 10 | - | - | $\mu \mathrm{F}$ | Series resistance $<3 \Omega$ recommended; < $5 \Omega$ required |
| DVR30 | VLVR | Low-Voltage Regulator Output Voltage | - | 1.2 | - | V | RETEN $=1, \overline{\text { LPCFG }}=0$ |

TABLE 33-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

| Operating Conditions: $-40^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C}$ (unless otherwise stated) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic |  | Min | Typ | Max | Units | Conditions |
| DC18 | VhLVD | HLVD Voltage on VDD Transition | HLVDL<3:0> = 0100 ${ }^{(1)}$ | 3.40 | - | 3.74 | V | $V \mathrm{DIR}=1$ |
|  |  |  | HLVDL<3:0> $=0101$ | 3.25 | - | 3.58 | V |  |
|  |  |  | HLVDL<3:0> $=0110$ | 2.95 | - | 3.25 | V |  |
|  |  |  | HLVDL<3:0> = 0111 | 2.75 | - | 3.04 | V |  |
|  |  |  | HLVDL<3:0> $=1000$ | 2.65 | - | 2.93 | V |  |
|  |  |  | HLVDL<3:0> $=1001$ | 2.45 | - | 2.75 | V |  |
|  |  |  | HLVDL<3:0> = 1010 | 2.35 | - | 2.64 | V |  |
|  |  |  | HLVDL<3:0> = 1011 | 2.25 | - | 2.50 | V |  |
|  |  |  | HLVDL<3:0> = 1100 | 2.15 | - | 2.39 | V |  |
|  |  |  | HLVDL<3:0> = 1101 | 2.08 | - | 2.28 | V |  |
|  |  |  | HLVDL<3:0> $=1110$ | 2.00 | - | 2.17 | V |  |
| DC101 | VTHL | HLVD Voltage on HLVDIN Pin Transition | HLVDL<3:0> = 1111 | - | 1.20 | - | V |  |
| DC105 | TonlvD | HLVD Module Enable Ti |  | - | 5 | - | $\mu \mathrm{S}$ | From POR or HLVDEN $=1$ |

Note 1: Trip points for values of $\mathrm{HLVD}<3: 0>$, from ' 0000 ' to ' 0011 ', are not implemented.

TABLE 33-13: COMPARATOR DC SPECIFICATIONS
Operating Conditions: $2.0 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C}$ (unless otherwise stated)

| Param <br> No. | Symbol | Characteristic | Min | Typ | Max | Units | Comments |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| D300 | VIOFF | Input Offset Voltage | - | 12 | 60 | mV |  |
| D301 | VICM | Input Common-Mode Voltage | 0 | - | VDD | V | (Note 1) |
| D302 | CMRR | Common-Mode Rejection Ratio | 55 | - | - | dB | (Note 1) |
| D306 | IQCMP | AVDD Quiescent Current per Comparator | - | 27 | - | $\mu \mathrm{A}$ | Comparator is enabled |
| D307 | TRESP | Response Time | - | 300 | - | ns | (Note 2) |
| D308 | TMC2OV | Comparator Mode Change to Valid Output | - | - | 10 | $\mu \mathrm{~s}$ |  |
| D309 | IDD | Operating Supply Current | - | 30 | - | $\mu \mathrm{A}$ | AVDD $=3.3 \mathrm{~V}$ |

Note 1: Parameters are characterized but not tested.
2: Measured with one input at VDD/2 and the other transitioning from Vss to VDD, 40 mV step, 15 mV overdrive.

## TABLE 33-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

| Operating Conditions: $2.0 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{TA}<+85^{\circ} \mathrm{C}$ (unless otherwise stated) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param <br> No. | Symbol | Characteristic | Min | Typ | Max | Units | Comments |
| VR310 | TSET | Settling Time | - | - | 10 | $\mu \mathrm{~s}$ | (Note 1) |
| VRD311 | CVRAA | Absolute Accuracy | -100 | - | +100 | mV |  |
| VRD312 | CVRUR | Unit Resistor Value (R) | - | 4.5 | - | $\mathrm{k} \Omega$ |  |

Note 1: Measures the interval while CVR<4:0> transitions from ‘ 11111 ' to ‘ 00000 ’.

TABLE 33-15: CTMU CURRENT SOURCE SPECIFICATIONS

| DC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Sym | Characteristic | Min | Typ ${ }^{(1)}$ | Max | Units | Comments | Conditions |
| DCT10 | Iout1 | CTMU Current Source, Base Range | - | 550 | 850 | nA | CTMUCON1L<1:0> $=00^{(2)}$ |  |
| DCT11 | IOUT2 | CTMU Current Source, 10x Range | - | 5.5 | - | $\mu \mathrm{A}$ | CTMUCON1L<1:0> = 01 |  |
| DCT12 | Iout3 | CTMU Current Source, 100x Range | - | 55 | - | $\mu \mathrm{A}$ | CTMUCON1L<1:0> = 10 | 2.5 V < VDD < VdDMAX |
| DCT13 | Iout4 | CTMU Current Source, 1000x Range | - | 550 | - | $\mu \mathrm{A}$ | $\begin{aligned} & \text { CTMUCON1L<1:0> }=11^{(2)}, \\ & \text { CTMUCON1H }<0>=0 \end{aligned}$ |  |
| DCT14 | Iout5 | CTMU Current Source, High Range | - | 2.2 | - | mA | $\begin{aligned} & \text { CTMUCON1L<1:0> = 01, } \\ & \text { CTMUCON1H<0> = } \end{aligned}$ |  |
| DCT21 | Vdelta1 | Temperature Diode Voltage Change per Degree Celsius | - | -1.8 | - | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | Current $=5.5 \mu \mathrm{~A}$ |  |
| DCT22 | Vdelta2 | Temperature Diode Voltage Change per Degree Celsius | - | -1.55 | - | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ | Current $=55 \mu \mathrm{~A}$ |  |
| DCT23 | VD1 | Forward Voltage | - | 710 | - | mV | At $0^{\circ} \mathrm{C}, 5.5 \mu \mathrm{~A}$ |  |
| DCT24 | VD2 | Forward Voltage | - | 760 | - | mV | At $0^{\circ} \mathrm{C}, 55 \mu \mathrm{~A}$ |  |

Note 1: Nominal value at center point of current trim range (CTMUCON1L<7:2> $=000000$ ).
2: Do not use this current range with the internal temperature sensing diode.

### 33.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ1024GA610/GB610 family AC characteristics and timing parameters.

TABLE 33-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

| AC CHARACTERISTICS | Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) <br> Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial <br> Operating voltage VDD range as described in Section 33.1 "DC Characteristics" |
| :---: | :---: |

FIGURE 33-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
$\square$
Load Condition 1 - for all pins except OSCO Load Condition 2-for OSCO

$R \mathrm{~L}=464 \Omega$
$\mathrm{CL}=50 \mathrm{pF}$ for all pins except OSCO
15 pF for OSCO output

TABLE 33-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| Param <br> No. | Symbol | Characteristic | Min | Typ $^{(1)}$ | Max | Units | Conditions |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| DO50 | Cosco | OSCO/CLKO Pin | - | - | 15 | pF | In XT and HS modes when <br> external clock is used to drive <br> OSCI |
| DO56 | CIO | All I/O Pins and OSCO | - | - | 50 | pF | EC mode |
| DO58 | CB | SCLx, SDAx | - | - | 400 | pF | In I2C mode |

Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-3: EXTERNAL CLOCK TIMING


TABLE 33-18: EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: Operating temperature |  |  | 2.0V to 3.6 V (unless otherwise stated) $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min | Typ ${ }^{(1)}$ | Max | Units | Conditions |
| OS10 | Fosc | External CLKI Frequency (External clocks allowed only in EC mode) | $\begin{gathered} \hline \mathrm{DC} \\ 4 \end{gathered}$ | - | $\begin{aligned} & 32 \\ & 48 \end{aligned}$ | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & \text { EC } \\ & \text { ECPLL (Note 2) } \end{aligned}$ |
|  |  | Oscillator Frequency | $\begin{gathered} 3.5 \\ 4 \\ 10 \\ 12 \\ 31 \end{gathered}$ | $\begin{aligned} & - \\ & - \\ & - \end{aligned}$ | $\begin{gathered} 10 \\ 8 \\ 32 \\ 24 \\ 33 \end{gathered}$ | MHz <br> MHz <br> MHz <br> MHz <br> kHz | XT <br> XTPLL <br> HS <br> HSPLL <br> SOSC |
| OS20 | Tosc | Tosc $=1 / \mathrm{Fosc}$ | - | - | - | - | See Parameter OS10 for Fosc value |
| OS25 | TCY | Instruction Cycle Time ${ }^{(3)}$ | 62.5 | - | DC | ns |  |
| OS30 | TosL, TosH | External Clock in (OSCI) High or Low Time | $0.45 \times$ Tosc | - | - | ns | EC |
| OS31 | TosR, TosF | External Clock in (OSCI) Rise or Fall Time | - | - | 20 | ns | EC |
| OS40 | TckR | CLKO Rise Time ${ }^{(4)}$ | - | 15 | 30 | ns |  |
| OS41 | TckF | CLKO Fall Time ${ }^{(4)}$ | - | 15 | 30 | ns |  |

Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 33-1.
3: Instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TCY).

TABLE 33-19: AC SPECIFICATIONS FOR PHASE-LOCKED LOOP MODE

| AC CHARACTERISTICS |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sym | Characteristic | Min | Typ | Max | Units | Conditions |
| FIN | Input Frequency Range | 2 | - | 24 | MHz |  |
| Fmin | Minimum Output Frequency from the Frequency Multiplier | - | - | 16 | MHz | 4 MHz FIN with $4 x$ feedback ratio, 2 MHz FIN with 8 x feedback ratio |
| Fmax | Maximum Output Frequency from the Frequency Multiplier | 96 | - | - | MHz | 4 MHz Fin with 24 x net multiplication ratio, 24 MHz Fin with $4 x$ net multiplication ratio |
| FsLEW | Maximum Step Function of FIN at which the PLL will be Ensured to Maintain Lock | -4 | - | +4 | \% | Full input range of Fin |
| TLock | Lock Time for VCO | - | - | 24 | $\mu \mathrm{s}$ | With the specified minimum, TrEF, and a lock timer count of one cycle, this is the maximum VCO lock time supported |
| JFM8 | Cumulative Jitter of Frequency Multiplier Over Voltage and Temperature During Any Eight Consecutive Cycles of the PLL Output | - | - | $\pm 0.12$ | \% | External 8 MHz crystal and 96 MHz PLL mode |

TABLE 33-20: INTERNAL RC ACCURACY

| AC CHARACTERISTICS |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Characteristic | Min | Typ | Max | Units | Conditions |
| F20 | FRC Accuracy @ 8 MHz | -1.5 | +0.15 | 1.5 | \% | $\begin{aligned} & 2.0 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \\ & \text { (Note 1) } \end{aligned}$ |
|  |  | -2.0 | - | 2.0 | \% | $2.0 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 0^{\circ} \mathrm{C}$ |
|  |  | -0.20 | +0.05 | -0.20 | \% | $2.0 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C},$ self-tune is enabled and locked (Note 2) |
| F21 | LPRC @ 31 kHz | -20 | - | 20 | \% | VCAP Output Voltage $=1.8 \mathrm{~V}$ |
| F22 | OSCTUN Step-Size | - | 0.05 | - | \%/bit |  |
| F23 | FRC Self-Tune Lock Time | - | 5 | 8 | ms | (Note 3) |

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.
2: Accuracy is measured with respect to the reference source.
3: Time from reference clock stable, and in range, to FRC tuned within range specified by F20 (with self-tune).

TABLE 33-21: RC OSCILLATOR START-UP TIME

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: <br> Operating temperature |  |  |  | 2.0 V to 3.6 V (unless otherwise stated) |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Param <br> No. | Symbol | Characteristic | Min | Typ | Max | Units | Conditions |
| FR0 | TFRC | FRC Oscillator Start-up <br> Time | - | 15 | - | $\mu \mathrm{s}$ |  |
| FR1 | TLPRC | Low-Power RC Oscillator <br> Start-up Time | - | 50 | - | $\mu \mathrm{s}$ |  |

TABLE 33-22: INTERNAL DCO ACCURACY

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V <br> (unless otherwise stated) <br> Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \text { Param } \\ \text { No. } \end{array}$ | Symbol | Characteristic | Min | Typ | Max | Units | Conditions |
| F30 | Fdco | DCO Frequency | 7.60 | 8.00 | 8.40 | MHz |  |
|  |  |  | 15.2 | 16.0 | 16.8 | MHz |  |
|  |  |  | 30.4 | 32.0 | 33.6 | MHz |  |
| F31 | DCOsu | DCO Start-up Time | - | 1.0 | 2.0 | us |  |
| F32 | DCOstable | DCO Stabilization Period | - | 8 | - | Clocks |  |
| F33 | DCOdt | DCO Temperature Drift | - | 0.4 | - | \%/ ${ }^{\circ} \mathrm{C}$ |  |
| F34 | DCOVT | DCO Voltage Drift | - | 0.2 | - | \%/V |  |
| F35 | DCOdc | DCO Duty Cycle | 48 | 50 | 52 | \% |  |

FIGURE 33-4: CLKO AND I/O TIMING CHARACTERISTICS


## TABLE 33-23: CLKO AND I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min | Typ ${ }^{(1)}$ | Max | Units | Conditions |
| DO31 | TIoR | Port Output Rise Time | - | 10 | 25 | ns |  |
| DO32 | TIOF | Port Output Fall Time | - | 10 | 25 | ns |  |
| DI35 | TINP | INTx Pin High or Low Time (input) | 1 | - | - | TCY |  |
| DI40 | TRBP | CNx High or Low Time (input) | 1 | - | - | TCY |  |

Note 1: Data in the "Typ" column is at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ unless otherwise stated.

TABLE 33-24: RESET AND BROWN-OUT RESET REQUIREMENTS

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: Operating temperature |  |  | 2.0 V to 3.6 V (unless otherwise stated) $40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \text { Param } \\ \text { No. } \end{array}$ | Symbol | Characteristic | Min | Typ | Max | Units | Conditions |
| SY10 | Tmcl | $\overline{\text { MCLR Pulse Width (Low) }}$ | 2 | - | - | $\mu \mathrm{s}$ |  |
| SY12 | TPOR | Power-on Reset Delay | - | 2 | - | $\mu \mathrm{S}$ |  |
| SY13 | Tioz | I/O High-Impedance from MCLR Low or Watchdog Timer Reset | $\begin{gathered} \text { Lesser of: } \\ \text { (3 TCY + 2) } \\ \text { or } 700 \end{gathered}$ | - | (3 TCY + 2) | $\mu \mathrm{s}$ |  |
| SY25 | Tbor | Brown-out Reset Pulse Width | 1 | - | - | $\mu \mathrm{s}$ | $\mathrm{VDD} \leq \mathrm{V}_{\mathrm{B}} \mathrm{R}$ |
| SY45 | TRST | Internal State Reset Time | - | 50 | - | $\mu \mathrm{S}$ |  |
| SY71 | TPM | Program Memory Wake-up Time | - | 20 | - | $\mu \mathrm{s}$ | Sleep wake-up with VREGS = 1 |
|  |  |  | - | 1 | - | $\mu \mathrm{s}$ | Sleep wake-up with VREGS = 0 |
| SY72 | TlvR | Low-Voltage Regulator Wake-up Time | - | 90 | - | $\mu \mathrm{s}$ | Sleep wake-up with VREGS = 1 |
|  |  |  | - | 70 | - | $\mu \mathrm{s}$ | Sleep wake-up with VREGS = 0 |

## TABLE 33-25: AID MODULE SPECIFICATIONS

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min. | Typ | Max. | Units | Conditions |
| Device Supply |  |  |  |  |  |  |  |
| AD01 | AVDD | Module VDD Supply | Greater of: $\text { VDD - } 0.3$ $\text { or } 2.2$ | - | Lesser of: $\text { VDD }+0.3$ $\text { or } 3.6$ | V |  |
| AD02 | AVss | Module Vss Supply | Vss-0.3 | - | Vss + 0.3 | V |  |
| Reference Inputs |  |  |  |  |  |  |  |
| AD05 | VREFH | Reference Voltage High | AVss + 1.7 | - | AVDD | V |  |
| AD06 | VREFL | Reference Voltage Low | AVss | - | AVDD - 1.7 | V |  |
| AD07 | VREF | Absolute Reference Voltage | AVss - 0.3 | - | $\mathrm{AVDD}+0.3$ | V |  |
| Analog Inputs |  |  |  |  |  |  |  |
| AD10 | VINH-VINL | Full-Scale Input Span | VREFL | - | VREFH | V | (Note 1) |
| AD11 | VIN | Absolute Input Voltage | AVss -0.3 | - | AVDD + 0.3 | V |  |
| AD12 | VINL | Absolute VINL Input Voltage | AVss - 0.3 | - | AVDD/3 | V |  |
| AD13 |  | Leakage Current | - | $\pm 1.0$ | $\pm 610$ | nA | $\begin{aligned} & \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V}, \\ & \text { Source Impedance }=2.5 \mathrm{k} \Omega \end{aligned}$ |
| AD17 | RIN | Recommended Impedance of Analog Voltage Source | - | - | 2.5 K | $\Omega$ | 10-bit |
| A/D Accuracy |  |  |  |  |  |  |  |
| AD20B | Nr | Resolution | - | 12 | - | bits |  |
| AD21B | INL | Integral Nonlinearity | - | $\pm 1$ | $< \pm 2$ | LSb | $\begin{aligned} & \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$ |
| AD22B | DNL | Differential Nonlinearity | - | - | $< \pm 1$ | LSb | $\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \text { AVDD }=\mathrm{VREFH}=3 \mathrm{~V} \end{aligned}$ |
| AD23B | GERR | Gain Error | - | $\pm 1$ | $\pm 4$ | LSb | $\begin{aligned} & \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$ |
| AD24B | Eoff | Offset Error | - | $\pm 1$ | $\pm 2$ | LSb | $\begin{aligned} & \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$ |
| AD25B |  | Monotonicity ${ }^{(1)}$ | - | - | - | - | Guaranteed |

Note 1: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.

TABLE 33-26: A/D CONVERSION TIMING REQUIREMENTS ${ }^{(1)}$

| AC CHARACTERISTICS |  |  | Standard Operating Conditions: 2.0 V to 3.6 V (unless otherwise stated) <br> Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param No. | Symbol | Characteristic | Min. | Typ | Max. | Units | Conditions |
| Clock Parameters |  |  |  |  |  |  |  |
| AD50 | TAd | A/D Clock Period | 278 |  | - | ns |  |
| AD51 | tRC | A/D Internal RC Oscillator Period | - | 250 | - | ns |  |
| Conversion Rate |  |  |  |  |  |  |  |
| AD55 | tCONV | SAR Conversion Time, 12-Bit Mode | - | 14 | - | TAD |  |
| AD55A |  | SAR Conversion Time, 10-Bit Mode | - | 12 | - | TAD |  |
| AD56 | Fcnv | Throughput Rate | - |  | 200 | ksps | AVDD > $2.7 \mathrm{~V}^{(2)}$ |
| AD57 | tSAMP | Sample Time | - | 1 | - | TAD | (Note 1) |
| Clock Synchronization |  |  |  |  |  |  |  |
| AD61 | tPSS | Sample Start Delay from Setting Sample bit (SAMP) | 1.5 | - | 2.5 | TAD |  |

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

FIGURE 33-5: INL vs. CODE (10-BIT MODE)


FIGURE 33-6: DNL vs. CODE (10-BIT MODE)


FIGURE 33-7: INL vs. CODE (12-BIT MODE)


FIGURE 33-8: DNL vs. CODE (12-BIT MODE) ${ }^{(1)}$
$\square$

## NOTES:

### 34.0 PACKAGING INFORMATION

### 34.1 Package Marking Information

64-Lead QFN (9x9x0.9 mm)


Example


Example


64-Lead TQFP (10x10x1 mm)


Legend: $\mathrm{XX} \ldots$...X Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

### 34.1 Package Marking Information (Continued)

100-Lead TQFP ( $12 \times 12 \times 1 \mathrm{~mm}$ )


Example


Example


### 34.2 Package Details

The following sections give the technical details of the packages.
64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] With $7.70 \times 7.70$ Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Microchip Technology Drawing C04-213B Sheet 1 of 2

## 64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN] <br> With $7.70 \times 7.70$ Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN

|  | Units |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MILLIMETERS |  |  |  |  |  |  |
|  |  |  |  |  |  | MIN | NOM | MAX |
| Contact Pitch | E | 0.50 BSC |  |  |  |  |  |  |
| Optional Center Pad Width | W2 |  |  | 7.50 |  |  |  |  |
| Optional Center Pad Length | T2 |  |  | 7.50 |  |  |  |  |
| Contact Pad Spacing | C1 |  | 8.90 |  |  |  |  |  |
| Contact Pad Spacing | C2 |  | 8.90 |  |  |  |  |  |
| Contact Pad Width (X20) | X1 |  |  | 0.30 |  |  |  |  |
| Contact Pad Length (X20) | Y1 |  |  | 0.90 |  |  |  |  |
| Contact Pad to Center Pad (X20) | G | 0.20 |  |  |  |  |  |  |
| Thermal Via Diameter | V |  | 0.30 |  |  |  |  |  |
| Thermal Via Pitch | EV |  | 1.00 |  |  |  |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


TOP VIEW


SIDE VIEW

## 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


SECTION A-A


DETAIL 1

|  | Units | MILLIMETERS |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN | NOM | MAX |  |
| Number of Leads | N | 64 |  |  |  |
| Lead Pitch | e | 0.50 BSC |  |  |  |
| Overall Height | A | - | - | 1.20 |  |
| Molded Package Thickness | A 2 | 0.95 | 1.00 | 1.05 |  |
| Standoff | A 1 | 0.05 | - | 0.15 |  |
| Foot Length | L | 0.45 | 0.60 | 0.75 |  |
| Footprint | L 1 | 1.00 REF |  |  |  |
| Foot Angle | $\phi$ | $0^{\circ}$ | $3.5^{\circ}$ | $7^{\circ}$ |  |
| Overall Width | E | 12.00 BSC |  |  |  |
| Overall Length | D | 12.00 BSC |  |  |  |
| Molded Package Width | E 1 | 10.00 BSC |  |  |  |
| Molded Package Length | D 1 |  |  |  |  |
| Lead Thickness | C | 0.09 | - | 0.20 |  |
| Lead Width | b | 0.17 | 0.22 | 0.27 |  |
| Mold Draft Angle Top | $\alpha$ | $11^{\circ}$ | $12^{\circ}$ | $13^{\circ}$ |  |
| Mold Draft Angle Bottom | $\beta$ | $11^{\circ}$ | $12^{\circ}$ | $13^{\circ}$ |  |

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN

|  | Units | MILLIMETERS |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN |  | NOM |
| MAX |  |  |  |  |
| Contact Pitch | E | 0.50 BSC |  |  |
| Contact Pad Spacing | C1 |  | 11.40 |  |
| Contact Pad Spacing | C2 |  | 11.40 |  |
| Contact Pad Width (X28) | X1 |  |  | 0.30 |
| Contact Pad Length (X28) | Y1 |  |  | 1.50 |
| Distance Between Pads | G | 0.20 |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2085B Sheet 1 of 1

## 100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


|  | Units | MILLIMETERS |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimension Limits |  |  |  |  |  |  | MIN |  | NOM | MAX |
| Contact Pitch | E | 0.40 BSC |  |  |  |  |  |  |  |  |
| Contact Pad Spacing | C1 |  | 13.40 |  |  |  |  |  |  |  |
| Contact Pad Spacing | C2 |  | 13.40 |  |  |  |  |  |  |  |
| Contact Pad Width (X100) | X1 |  |  | 0.20 |  |  |  |  |  |  |
| Contact Pad Length (X100) | Y1 |  |  | 1.50 |  |  |  |  |  |  |
| Distance Between Pads | G | 0.20 |  |  |  |  |  |  |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2100B

## 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


SIDE VIEW


## BOTTOM VIEW

## 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) $10 \times 10 \times 1.10 \mathrm{~mm}$ Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


DETAIL B

| Units |  | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN | NOM | MAX |
| Number of Contacts | N | 121 |  |  |
| Contact Pitch | e | 0.80 BSC |  |  |
| Overall Height | A | 1.00 | 1.10 | 1.20 |
| Ball Height | A1 | 0.25 | 0.30 | 0.35 |
| Overall Width | E | 10.00 BSC |  |  |
| Array Width | E1 | 8.00 BSC |  |  |
| Overall Length | D | 10.00 BSC |  |  |
| Array Length | D1 | 8.00 BSC |  |  |
| Contact Diameter | b | 0.35 | 0.40 | 0.45 |

Notes:

1. Ball A1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
3. The outer rows and colums of balls are located with respect to datums $A$ and $B$.
4. Ball interface to package body: 0.37 mm nominal diameter.

## 121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


RECOMMENDED LAND PATTERN

|  | Units | MILLIMETERS |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Dimension Limits |  | MIN |  | NOM |
|  | E1 | 0.80 BSC |  |  |
| Contact Pitch | E2 | 0.80 BSC |  |  |
| Contact Pitch | C1 |  | 8.00 |  |
| Contact Pad Spacing | C2 |  | 8.00 |  |
| Contact Pad Spacing | X |  |  | 0.32 |
| Contact Pad Diameter (X121) |  |  |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2148 Rev D

## NOTES:

## APPENDIX A: REVISION HISTORY

## Revision A (March 2015)

Original data sheet for the PIC24FJ1024GA610/ GB610 family of devices.

## Revision B (November 2015)

This revision incorporates the following updates:

- Sections:
- Changed 12-bit conversion rate to 200 ksps in the Analog Features section on Page 1.
- Added Smart Card support (ISO 7816) information to the Peripheral Features section on Page 2.
- Added Section 9.3.1 "DCO Overview".
- Added Section 25.4 "Achieving Maximum AID Converter (ADC) Performance".
- Added Section 30.2 "Unique Device Identifier (UDID)".
- Updated Section 6.6 "Programming Operations", Section 9.6 "Oscillator Modes and USB Operation", Section 9.6.1 "Considerations for USB Operation", Section 9.7 "Reference Clock Output", Section 9.8 "Secondary Oscillator", Section 10.2 "Instruction-Based Power-Saving Modes", Section 10.2.2 "Idle Mode", Section 12.0 "Timer1", Section 16.1 "Time Base Generator" and Section 33.0 "Electrical Characteristics"
- Registers
- Updated Register 5-1, Register 6-1, Register 7-1, Register 9-4, Register 9-5, Register 18-1, Register 22-3, Register 25-2, Register 25-3, Register 25-6, Register 25-7, Register 30-1, Register 30-5, Register 30-7, Register 30-8 and Register 30-9
- Figures:
- Updated Figure 2-1, Figure 9-2 and Figure 25-3
- Added Figure 33-5, Figure 33-6, Figure 33-7 and Figure 33-8
- Tables:
- Updated Table 2-1, Table 4-1, Table 4-2, Table 4-3, Table 4-10, Table 9-2, Table 9-3, Table 30-1, Table 33-3, Table 33-4, Table 33-5, Table 33-6, Table 33-7, Table 33-8, Table 33-9, Table 33-11, Table 33-12, Table 33-13, Table 33-15, Table 33-19, Table 33-24, Table 33-25 and Table 33-26.
- Examples:
- Updated Example 15-1.
- Other minor typographic changes and updates throughout the document.


## Revision C (November 2015)

This revision incorporates the following updates:

- Tables:
- Updated Table 33-5 and Table 33-20.
- Figures:
- Updated Figure 33-8.


## NOTES:

## INDEX

A
A/D
Control Registers ..... 348
Extended DMA Operations ..... 347
Operation ..... 345
Transfer Functions
10-Bit ..... 365
12-Bit ..... 364
AC Characteristics
A/D Conversion Timing Requirements. ..... 435
A/D Specifications ..... 434
and Timing Parameters ..... 427
Capacitive Loading on Output Pins. ..... 427
CLKO and I/O Timing Requirements ..... 432
External Clock Timing Requirements ..... 428
Internal DCO Accuracy ..... 431
Internal RC Accuracy ..... 430
Load Conditions for Device Timing ..... 427
Phase-Locked Loop Mode ..... 429
RC Oscillator Start-up Time ..... 430
Reset and Brown-out Reset Requirements ..... 433
Assembler
MPASM Assembler ..... 406
B
Block Diagrams
12-Bit A/D Converter ..... 346
12-Bit A/D Converter Analog Input Model ..... 363
16-Bit Asynchronous Timer3 and Timer5 ..... 187
16-Bit Synchronous Timer2 and Timer4 ..... 187
16-Bit Timer1 Module ..... 183
32-Bit Timer Mode ..... 210
Accessing Program Memory Using
Table Instructions ..... 78
Addressing for Table Registers. ..... 89
BDT Mapping for Endpoint Buffering Modes ..... 268
Buffer Address Generation in PIA Mode ..... 350
CALL Stack Frame ..... 75
CLCx Input Source Selection. ..... 337
CLCx Logic Function Combinatorial Options ..... 336
CLCx Module ..... 335
Comparator Voltage Reference ..... 373
Conceptual MCCPx/SCCPx Modules ..... 207
CPU Programmer's Model ..... 49
CRC Module ..... 329
CRC Shift Engine Detail. ..... 329
CTMU Connections and Internal Configuration for Capacitance Measurement. ..... 376
CTMU Typical Connections and Internal Configuration for Pulse Delay Generation ..... 377
CTMU Typical Connections and Internal Configuration for Time Measurement ..... 377
Data Access from Program Space Address Generation ..... 77
DMA Module ..... 81
Dual 16-Bit Timer Mode. ..... 209
EDS Address Generation for Read ..... 73
EDS Address Generation for Write ..... 74
High/Low-Voltage Detect (HLVD) ..... 385
I2Cx Module ..... 246
Individual Comparator Configurations,
CREF $=0$ ..... 368
Individual Comparator Configurations, CREF $=1$, CVREFP $=0$ ..... 368
Individual Comparator Configurations,
CREF $=1$, CVREFP $=1$ ..... 369
Input Capture x Module ..... 191, 212
$\overline{M C L R}$ Pin Connection Example ..... 42
On-Chip Regulator Connections ..... 401
Oscillator Circuit Placement ..... 45
Output Compare x (16-Bit Mode) ..... 198
Output Compare x (Double-Buffered, 16-Bit PWM Mode) ..... 200
Output Compare x Module ..... 211
PIC24F CPU Core ..... 48
PIC24FJ1024GA610/GB610 Family (General) ..... 25
PLL Module ..... 129
PSV Operation (Lower Word) ..... 80
PSV Operation (Upper Word) ..... 80
Recommended Minimum Connections. ..... 41
Reset System ..... 97
RTCC Module ..... 310
Shared I/O Port Structure ..... 147
SPIx Master, Frame Master Connection ..... 243
SPIx Master, Frame Slave Connection ..... 244
SPIx Master/Slave Connection
(Enhanced Buffer Modes) ..... 242
SPIx Master/Slave Connection (Standard Mode) ..... 241
SPIx Module (Enhanced Mode). ..... 227
SPIx Slave, Frame Master Connection ..... 244
SPIx Slave, Frame Slave Connection ..... 244
System Clock ..... 115
Timer Clock Generator ..... 208
Timer2/3 and Timer4/5 (32-Bit) ..... 186
Triple Comparator Module ..... 367
UARTx (Simplified) ..... 254
USB OTG Bus-Powered Interface Example ..... 265
USB OTG Dual Power Mode Example ..... 265
USB OTG Host Interface Example ..... 266
USB OTG Interface Example ..... 266
USB OTG Interrupt Funnel ..... 272
USB OTG Module. ..... 264
USB OTG Self-Power Only Mode ..... 265
Watchdog Timer (WDT) ..... 403
C
C Compilers MPLAB C18 ..... 406
Capture/Compare/PWM/Timer ..... 213
Auxiliary Output .............
General Purpose Timer Auxiliary Output .............
General Purpose Timer ..... 209
Input Capture Mode. ..... 212
Output Compare Mode ..... 210
Synchronization Sources ..... 217
Time Base Generator ..... 208
Capture/Compare/PWM/Timer (MCCP, SCCP) ..... 207
Charge Time Measurement Unit. See CTMU. CLC
Control Registers ..... 338
Module-Specific Input Sources ..... 341

$\square$
Code Examples
Basic Clock Switching ..... 127
Configuring UART1 Input/Output Functions ..... 161
Double-Word Flash Programming (C Language) ..... 96
EDS Read from Program Memory in Assembly ..... 79
EDS Read in Assembly ..... 73
EDS Write in Assembly ..... 74
Erasing a Program Memory Block (C Language) ..... 94
Initiating a Programming Sequence ..... 94
IOC Status Read/Clear in Assembly ..... 152
Port Read/Write in Assembly ..... 152
Port Read/Write in C ..... 152
PWRSAV Instruction Syntax ..... 135
Setting WRLOCK Bit ..... 311
Code Memory Programming Example Double-Word Programming ..... 95
Page Erase ..... 93
Code Protection ..... 404
Comparator Voltage Reference ..... 373
Configuring ..... 373
Configurable Logic Cell (CLC) ..... 335
Configurable Logic Cell. See CLC.
Configuration Bits ..... 387
Configuration Word Addresses ..... 388
Core Features ..... 21
CPU ..... 47
Arithmetic Logic Unit (ALU) ..... 52
Clocking Scheme ..... 116
Control Registers ..... 50
Core Registers ..... 48
Programmer's Model ..... 47
CRC
Data Shift Direction ..... 331
Interrupt Operation ..... 331
Polynomials ..... 330
Setup Examples for 16 and 32-Bit Polynomials ..... 330
User Interface ..... 330
CTMU
Measuring Capacitance ..... 375
Measuring Die Temperature ..... 378
Measuring Time/Routing Current to A/D Input Pin ..... 376
Pulse Generation and Delay ..... 376
Customer Change Notification Service ..... 461
Customer Notification Service ..... 461
Customer OTP Memory ..... 404
Customer Support ..... 461
Cyclic Redundancy Check. See CRC.
D
Data Memory Space ..... 59
Extended Data Space (EDS) ..... 72
Memory Map ..... 59
Near Data Space ..... 60
Organization, Alignment ..... 60
SFR Space. ..... 60
Implemented Regions ..... 60
Map, 0000h Block ..... 61
Map, 0100h Block ..... 62
Map, 0200h Block ..... 63
Map, 0300h Block ..... 65
Map, 0400h Block ..... 67
Map, 0500h Block ..... 69
Map, 0600h Block ..... 70
Map, 0700h Block ..... 71
Software Stack ..... 75
DC Characteristics
Comparator Specifications ..... 426
Comparator Voltage Reference Specifications ..... 426
CTMU Current Source ..... 426
$\Delta$ Current (BOR, WDT, HLVD, RTCC) ..... 422
High/Low-Voltage Detect. ..... 425
I/O Pin Input Specifications ..... 423
I/O Pin Output Specifications ..... 424
Idle Current (IIDLE) ..... 420
Internal Voltage Regulator Specifications ..... 425
Operating Current (IDD) ..... 420
Power-Down Current (IPD) ..... 421
Program Memory ..... 424
Temperature and Voltage Specifications ..... 419
Thermal Operating Conditions ..... 418
Thermal Packaging ..... 418
Development Support ..... 405
Device Features
100 and 121-Pin Devices ..... 24
64-Pin Devices ..... 23
Device ID
Bit Field Descriptions ..... 400
Registers ..... 400
Direct Memory Access Controller. See DMA. DMA
Channel Trigger Sources ..... 88
Control Registers ..... 84
Peripheral Module Disable (PMD) Registers ..... 84
Summary of Operations ..... 82
Types of Data Transfers ..... 83
Typical Setup ..... 84
DMA Controller ..... 22
DNL. ..... 437
E
Electrical Characteristics ..... 417
Absolute Maximum Ratings ..... 417
V/F Graph (Industrial) ..... 418
Enhanced Parallel Master Port (EPMP) ..... 297
Enhanced Parallel Master Port. See EPMP
EPMP
Key Features ..... 297
Package Variations ..... 297
Pin Descriptions ..... 298
PMDIN1, PMDIN2 Registers ..... 297
PMDOUT1, PMDOUT2 Registers ..... 297
Equations
16-Bit, 32-Bit CRC Polynomials ..... 330
A/D Conversion Clock Period ..... 363
Baud Rate Reload Calculation. ..... 247
Calculating the PWM Period ..... 200
Calculation for Maximum PWM Resolution ..... 201
Estimating USB Transceiver Current Consumption ..... 267
Relationship Between Device and SPIx Clock Speed ..... 244
UARTx Baud Rate with BRGH = 0 ..... 255
UARTx Baud Rate with BRGH = 1 ..... 255
Errata ..... 19
Extended Data Space (EDS) ..... 297
F
Flash Program Memory ..... 89
and Table Instructions ..... 89
Control Registers ..... 90
Double-Word Programming ..... 95
Enhanced ICSP Operation ..... 90
JTAG Operation ..... 90
Operations ..... 90
Programming Algorithm ..... 93
RTSP Operation ..... 90
G
Guidelines for Getting Started with 16-Bit MCUs ..... 41
Analog/Digital Pins Configuration During ICSP ..... 46
External Oscillator Pins ..... 45
ICSP Pins. ..... 44
Master Clear ( $\overline{\mathrm{MCLR}}$ ) Pin ..... 42
Power Supply Pins ..... 42
Unused I/Os ..... 46
Voltage Regulator Pin (VcAP) ..... 43
H
High/Low-Voltage Detect (HLVD) ..... 385
High/Low-Voltage Detect. See HLVD.
I
I/O Ports ..... 147
Analog Port Pins Configuration (ANSx) ..... 148
Configuring Analog/Digital Function of I/O Pins ..... 148
Input Voltage Levels for Port/Pin Tolerated Description Input ..... 148
Open-Drain Configuration ..... 148
Parallel (PIO) ..... 147
Peripheral Pin Select ..... 157
Write/Read Timing ..... 148
${ }^{2} \mathrm{C}$
Clock Rates ..... 247
Communicating as Master in Single Master Environment ..... 245
Reserved Addresses ..... 247
Setting Baud Rate as Bus Master ..... 247
Slave Address Masking ..... 247
In-Circuit Debugger ..... 404
Input Capture
32-Bit Cascaded Mode ..... 192
Operations ..... 192
Synchronous and Trigger Modes ..... 191
Input Capture with Dedicated Timers ..... 191
Instruction Set
Overview ..... 411
Summary. ..... 409
Symbols Used in Opcode Descriptions ..... 410
Interfacing Program and Data Memory Spaces ..... 76
Inter-Integrated Circuit. See $I^{2} \mathrm{C}$.
Internet Address ..... 461
Interrupt Controller ..... 103
Control and Status Registers ..... 108
INTCON1 ..... 108
INTCON2 ..... 108
INTCON4 ..... 108
INTTREG ..... 108
Interrupt Vector Details ..... 105
Interrupt Vector Table (IVT) ..... 103
Reset Sequence ..... 103
Resources. ..... 108
Interrupt-on-Change (IOC) ..... 152

## J

JTAG Interface ..... 404
K
Key Features ..... 387
L
Low-Voltage/Retention Regulator ..... 401
M
Memory Organization ..... 53
Program Memory Space ..... 53
Microchip Internet Web Site. ..... 461
MPLAB ASM30 Assembler, Linker, Librarian ..... 406
MPLAB Integrated Development Environment Software ..... 405
MPLAB PM3 Device Programmer ..... 407
MPLAB REAL ICE In-Circuit Emulator System ..... 407
MPLINK Object Linker/MPLIB Object Librarian ..... 406
N
Near Data Space ..... 60
0
On-Chip Voltage Regulator ..... 401
POR. ..... 401
Standby Mode ..... 401
Oscillator Configuration ..... 115
Clock Switching ..... 126
Sequence ..... 126
Configuration Bit Values for Clock Selection ..... 117
Control Registers ..... 117
FRC Self-Tuning ..... 127
Initial Configuration on POR ..... 116
USB Operation ..... 128
Special Considerations ..... 130
Output Compare with Dedicated Timers. ..... 197
Operating Modes ..... 197
32-Bit Cascaded Mode ..... 197
Synchronous and Trigger Modes ..... 197
Operations ..... 198
P
Packaging
Details ..... 441
Marking ..... 439
Peripheral Enable Bits ..... 137
Peripheral Module Disable Bits ..... 137
Peripheral Pin Select (PPS). ..... 157
Available Peripherals and Pins. ..... 157
Configuration Control ..... 160
Considerations for Selection. ..... 161
Control Registers ..... 162
Input Mapping ..... 158
Mapping Exceptions ..... 160
Output Mapping ..... 159
Peripheral Priority. ..... 157
Selectable Input Sources. ..... 158
Selectable Output Sources ..... 159
PIC24FJ1024GA610/GB610 Family
Pinout Descriptions ..... 26
Pin Descriptions
PIC24FJXXXGA606 ..... 5
PIC24FJXXXGA610 .....  9
PIC24FJXXXGA610 BGA ..... 13
PIC24FJXXXGB606 .....  7
PIC24FJXXXGB610 BGA ..... 16
PIC24FJXXXGB610 TQFP ..... 11
Power-Saving Features. ..... 135
Clock Frequency, Clock Switching ..... 135
Doze Mode. ..... 136
Instruction-Based Modes ..... 135
Idle ..... 136
Sleep. ..... 135
Selective Peripheral Power Control ..... 137
Program Memory Space
Access Using Table Instructions ..... 78
Addressing ..... 76
Configuration Bits Code-Protect ..... 58
Overview ..... 55
Configuration Word Addresses ..... 57
Customer OTP Memory ..... 58
Dual Partition Configuration Words ..... 58
Dual Partition Flash Memory Organization ..... 55
Hard Memory Vectors ..... 55
Memory Map ..... 54
Organization ..... 55
Reading Data Using EDS ..... 79
Sizes and Boundaries ..... 54
Program Verification ..... 404
Pulse-Width Modulation (PWM) Mode ..... 199
Pulse-Width Modulation. See PWM.
PWM
Duty Cycle and Period ..... 200
R
Real-Time Clock and Calendar (RTCC) ..... 309
Real-Time Clock and Calendar. See RTCC. Reference Clock Output ..... 130
Register Summary
Peripheral Module Disable (PMD) ..... 138
Registers
AD1CHITH (A/D Scan Compare Hit,High Word).360
AD1CHITL (A/D Scan Compare Hit, Low Word) ..... 360
AD1CHS (A/D Sample Select) ..... 358
AD1CON1 (A/D Control 1) ..... 351
AD1CON2 (A/D Control 2) ..... 353
AD1CON3 (A/D Control 3) ..... 355
AD1CON4 (A/D Control 4) ..... 356
AD1CON5 (A/D Control 5) ..... 357
AD1CSSH (A/D Input Scan Select, High Word) ..... 361
AD1CSSL (A/D Input Scan Select, Low Word) ..... 361
AD1CTMENH (A/D CTMU Enable, High Word) ..... 362
AD1CTMENL (A/D CTMU Enable, Low Word) ..... 362
ALMDATEH (RTCC Alarm Date High) ..... 321
ALMDATEL (RTCC Alarm Date Low) ..... 321
ALMTIMEH (RTCC Alarm Time High) ..... 320
ALMTIMEL (RTCC Alarm Time Low) ..... 320
ANCFG (A/D Band Gap Reference Configuration) ..... 359
ANSA (PORTA Analog Function Selection) ..... 149
ANSB (PORTB Analog Function Selection) ..... 149
ANSC (PORTC Analog Function Selection) ..... 150
ANSD (PORTD Analog Function Selection) ..... 150
ANSE (PORTE Analog Function Selection) ..... 151
ANSG (PORTG Analog Function Selection) ..... 151
BDnSTAT (Buffer Descriptor n Status Prototype, CPU Mode (BDOSTAT Through BD63STAT)) ..... 271
BDnSTAT (Buffer Descriptor n Status Prototype, USB Mode (BDOSTAT Through BD63STAT)) ..... 270
CCPxCON1H (CCPx Control 1 High) ..... 216
CCPxCON1L (CCPx Control 1 Low) ..... 214
CCPxCON2H (CCPx Control 2 High) ..... 219
CCPxCON2L (CCPx Control 2 Low) ..... 218
CCPxCON3H (CCPx Control 3 High) ..... 221
CCPxCON3L (CCPx Control 3 Low) ..... 220
CCPxSTATH (CCPx Status High) ..... 223
CCPxSTATL (CCPx Status Low) ..... 222
CLCxCONH (CLCx Control High) ..... 339
CLCxCONL (CLCx Control Low) ..... 338
CLCxGLSH (CLCx Gate Logic Input Select High) ..... 343
CLCxGLSL (CLCx Gate Logic Input Select Low) ..... 341
CLCxSEL (CLCx Input MUX Select) ..... 340
CLKDIV (Clock Divider) ..... 120
CMSTAT (Comparator Module Status) ..... 371
CMxCON (Comparator x Control Comparators 1 Through 3) ..... 370
CORCON (CPU Core Control) ..... 51, 110
CRCCON1 (CRC Control 1) ..... 332
CRCCON2 (CRC Control 2) ..... 333
CRCXORH (CRC XOR Polynomial, High Byte) ..... 334
CRCXORL (CRC XOR Polynomial, Low Byte) ..... 334
CTMUCON1H (CTMU Control 1 High) ..... 381
CTMUCON1L (CTMU Control 1 Low) ..... 379
CTMUCON2L (CTMU Control 2 Low) ..... 383
CVRCON (Comparator Voltage Reference Control) ..... 374
DATEH (RTCC Date High) ..... 319
DATEL (RTCC Date Low) ..... 319
DCOCON (Digitally Controlled Oscillator Enable) ..... 123
DCOTUN (Digitally Controlled Oscillator Tune) ..... 122
DMACHn (DMA Channel n Control). ..... 86
DMACON (DMA Engine Control) ..... 85
DMAINTn (DMA Channel n Interrupt) ..... 87
FBOOT Configuration ..... 389
FBSLIM Configuration ..... 391
FBTSEQ Configuration ..... 389
FDEVOPT1 Configuration ..... 399
FICD Configuration ..... 398
FOSC Configuration ..... 394
FOSCSEL Configuration ..... 393
FPOR Configuration ..... 397
FSEC Configuration ..... 390
FSIGN Configuration ..... 392
FWDT Configuration ..... 395
HLVDCON (High/Low-Voltage Detect Control) ..... 386
I2CxCONH (I2Cx Control High) ..... 250
I2CxCONL (I2Cx Control Low) ..... 248
I2CxMSK (I2Cx Slave Mode Address Mask) ..... 252
I2CxSTAT (I2Cx Status) ..... 251
ICxCON1 (Input Capture x Control 1) ..... 193
ICxCON2 (Input Capture x Control 2) ..... 194
INTCON1 (Interrupt Control 1) ..... 111
INTCON2 (Interrupt Control 2). ..... 112
NTCON4 (Interrupt Control 4) ..... 113
INTTREG (Interrupt Control and Status) ..... 114
IOCFx (Interrupt-on-Change Flag x) ..... 156
IOCNx (Interrupt-on-Change Negative Edge x) ..... 155
IOCPx (Interrupt-on-Change Positive Edge x) ..... 155
IOCSTAT (Interrupt-on-Change Status) ..... 154
NVMCON (Flash Memory Control) ..... 91
OCxCON1 (Output Compare $x$ Control 1) ..... 202
OCxCON2 (Output Compare x Control 2) ..... 204
OSCCON (Oscillator Control) ..... 118
OSCDIV (Oscillator Divisor) ..... 124
OSCFDIV (Oscillator Fractional Divisor) ..... 125
OSCTUN (FRC Oscillator Tune) ..... 121
PADCON (Pad Configuration Control) ..... 307
PADCON (Port Configuration) ..... 153
PMCON1 (EPMP Control 1) ..... 299
PMCON2 (EPMP Control 2) ..... 300
PMCON3 (EPMP Control 3) ..... 301
PMCON4 (EPMP Control 4) ..... 302
PMCSxBS (EPMP Chip Select $x$ Base Address) ..... 304
PMCSxCF (EPMP Chip Select x Configuration) ..... 303
PMCSxMD (EPMP Chip Select x Mode) ..... 305
PMD1 (Peripheral Module Disable 1) ..... 139
PMD2 (Peripheral Module Disable 2) ..... 140
PMD3 (Peripheral Module Disable 3) ..... 141
PMD4 (Peripheral Module Disable 4) ..... 142
PMD5 (Peripheral Module Disable 5) ..... 143
PMD6 (Peripheral Module Disable 6) ..... 144
PMD7 (Peripheral Module Disable 7) ..... 144
PMD8 (Peripheral Module Disable 8) ..... 145
PMSTAT (EPMP Status, Slave Mode). ..... 306
RCON (Reset Control) ..... 98
REFOCONH (Reference Oscillator Control High) ..... 133
REFOCONL (Reference Oscillator Control Low) ..... 132
REFOTRIML (Reference Oscillator Trim Low) ..... 134
RPINR0 (Peripheral Pin Select Input 0) ..... 162
RPINR1 (Peripheral Pin Select Input 1) ..... 162
RPINR11 (Peripheral Pin Select Input 11) ..... 166
RPINR12 (Peripheral Pin Select Input 12) ..... 167
RPINR14 (Peripheral Pin Select Input 14) ..... 167
RPINR15 (Peripheral Pin Select Input 15) ..... 168
RPINR17 (Peripheral Pin Select Input 17) ..... 168
RPINR18 (Peripheral Pin Select Input 18) ..... 169
RPINR19 (Peripheral Pin Select Input 19) ..... 169
RPINR2 (Peripheral Pin Select Input 2) ..... 163
RPINR20 (Peripheral Pin Select Input 20) ..... 170
RPINR21 (Peripheral Pin Select Input 21) ..... 170
RPINR22 (Peripheral Pin Select Input 22) ..... 171
RPINR23 (Peripheral Pin Select Input 23) ..... 171
RPINR25 (Peripheral Pin Select Input 25) ..... 172
RPINR27 (Peripheral Pin Select Input 27) ..... 172
RPINR28 (Peripheral Pin Select Input 28) ..... 173
RPINR29 (Peripheral Pin Select Input 29) ..... 173
RPINR3 (Peripheral Pin Select Input 3). ..... 163
RPINR4 (Peripheral Pin Select Input 4) ..... 164
RPINR5 (Peripheral Pin Select Input 5) ..... 164
RPINR6 (Peripheral Pin Select Input 6) ..... 165
RPINR7 (Peripheral Pin Select Input 7) ..... 165
RPINR8 (Peripheral Pin Select Input 8) ..... 166
RPOR0 (Peripheral Pin Select Output 0) ..... 174
RPOR1 (Peripheral Pin Select Output 1) ..... 174
RPOR10 (Peripheral Pin Select Output 10) ..... 179
RPOR11 (Peripheral Pin Select Output 11) ..... 179
RPOR12 (Peripheral Pin Select Output 12) ..... 180
RPOR13 (Peripheral Pin Select Output 13) ..... 180
RPOR14 (Peripheral Pin Select Output 14) ..... 181
RPOR15 (Peripheral Pin Select Output 15) ..... 181
RPOR2 (Peripheral Pin Select Output 2) ..... 175
RPOR3 (Peripheral Pin Select Output 3) ..... 175
RPOR4 (Peripheral Pin Select Output 4) ..... 176
RPOR5 (Peripheral Pin Select Output 5) ..... 176
RPOR6 (Peripheral Pin Select Output 6) ..... 177
RPOR7 (Peripheral Pin Select Output 7) ..... 177
RPOR8 (Peripheral Pin Select Output 8) ..... 178
RPOR9 (Peripheral Pin Select Output 9) ..... 178
RTCCON1H (RTCC Control 1 High) ..... 313
RTCCON1L (RTCC Control 1 Low), ..... 312
RTCCON2H (RTCC Control 2 High) ..... 315
RTCCON2L (RTCC Control 2 Low). ..... 314
RTCCON3L (RTCC Control 3 Low). ..... 316
RTCSTATL (RTCC Status Low) ..... 317
SPIxBRGL (SPIx Baud Rate Generator Low) ..... 237
SPIxBUFH (SPlx Buffer High) ..... 236
SPIxBUFL (SPIx Buffer Low) ..... 236
SPIxCON1H (SPIx Control 1 High) ..... 230
SPIxCON1L (SPIx Control 1 Low) ..... 228
SPIxCON2L (SPIx Control 2 Low). ..... 232
SPIxIMSKH (SPIx Interrupt Mask High) ..... 239
SPIxIMSKL (SPIx Interrupt Mask Low). ..... 238
SPIxSTATH (SPIx Status High) ..... 235
SPIxSTATL (SPIx Status Low) ..... 233
SPIxURDTH (SPIx Underrun Data High) ..... 240
SPIxURDTL (SPIx Underrun Data Low) ..... 240
SR (ALU STATUS) ..... 50, 109
T1CON (Timer1 Control) ..... 184
TIMEH (RTCC Time High) ..... 318
TIMEL (RTCC Time Low) ..... 318
TSADATEH (RTCC Timestamp A Date High) ..... 325
TSADATEL (RTCC Timestamp A Date Low) ..... 324
TSATIMEH (RTCC Timestamp A Time High) ..... 323
TSATIMEL (RTCC Timestamp A Time Low). ..... 322
TxCON (Timer2/Timer4 Control) ..... 188
TyCON (Timer3/Timer5 Control) ..... 190
U10TGSTAT (USB OTG Status, Host Mode). ..... 278
U1ADDR (USB Address) ..... 284
U1CNFG1 (USB Configuration 1). ..... 286
U1CNFG2 (USB Configuration 2). ..... 287
U1CON (USB Control, Device Mode). ..... 282
U1CON (USB Control, Host Mode) ..... 283
U1EIE (USB Error Interrupt Enable) ..... 294
U1EIR (USB Error Interrupt Status). ..... 293
U1EPn (USB Endpoint $n$ Control). ..... 295
U1IE (USB Interrupt Enable, All Modes) ..... 292
U1IR (USB Interrupt Status, Device Mode) ..... 290
U1IR (USB Interrupt Status, Host Mode) ..... 291
U1OTGCON (USB OTG Control) ..... 279
U10TGIE (USB OTG Interrupt Enable, Host Mode) ..... 289
U10TGIR (USB OTG Interrupt Status, Host Mode) ..... 288
U1PWRC (USB Power Control) ..... 280
U1SOF (USB OTG Start-of-Token Threshold, Host Mode) ..... 285
U1STAT (USB Status) ..... 281
U1TOK (USB Token, Host Mode) ..... 284
UxADMD (UARTx Address Detect and Match) ..... 262
UxBRG (UARTx Baud Rate Generator) ..... 262
UxMODE (UARTx Mode). ..... 257
UxRXREG (UARTx Receive,
Normally Read-Only) ..... 261
UxSTA (UARTx Status and Control) ..... 259
UxTXREG (UARTx Transmit, Normally Write-Only) ..... 261
Resets
BOR (Brown-out Reset) ..... 97
Brown-out Reset (BOR) ..... 100
Clock Source Selection. ..... 100
CM (Configuration Mismatch Reset) ..... 97
Delay Times ..... 101
Device Times ..... 100
IOPUWR (Illegal Opcode Reset) ..... 97
MCLR (Master Clear Pin Reset) ..... 97
POR (Power-on Reset) ..... 97
RCON Flags, Operation ..... 99
SFR States ..... 100
SWR (RESET Instruction) ..... 97
TRAPR (Trap Conflict Reset). ..... 97
UWR (Uninitialized W Register Reset) ..... 97
WDT (Watchdog Timer Reset) ..... 97
Revision History ..... 453
RTCC
Alarm Configuration ..... 326
Alarm Mask Settings (figure) ..... 327
Alarm Value Registers ..... 320
Calibration ..... 326
Clock Source Selection ..... 311
Control Registers ..... 312
Event Timestamping ..... 328
Power Control ..... 327
Register Mapping ..... 311
RTCVAL Register Mappings ..... 315
Source Clock ..... 309
Timestamp Registers ..... 322
Value Registers ..... 318
Write Lock ..... 311
S
Secondary Oscillator Operation ..... 131
Serial Peripheral Interface (SPI) ..... 225
Serial Peripheral Interface. See SPI.
Software Simulator (MPLAB SIM). ..... 407
Software Stack ..... 75
Special Features ..... 22
Special Features of the CPU. ..... 387
SPI
Audio Mode Operation ..... 227
Control Registers ..... 228
Master Mode Operation ..... 226
Slave Mode Operation ..... 226

## T

Timer1 ..... 183
Timer2/3 and Timer4/5 ..... 185
Timing Diagrams
CLKO and I/O Characteristics ..... 432
DNL vs. Code (10-Bit Mode). ..... 436
DNL vs. Code (12-Bit Mode). ..... 437
External Clock. ..... 428
INL vs. Code (10-Bit Mode) ..... 436
INL vs. Code (12-Bit Mode) ..... 437
Triple Comparator ..... 367
Triple Comparator Module ..... 367
U
UART
Baud Rate Generator (BRG) ..... 255
Infrared Support. ..... 256
Operation of UxCTS and UxRTS Pins ..... 256
Receiving 8-Bit or 9-Bit Data Mode ..... 256
Transmitting 8-Bit Data Mode. ..... 256
9-Bit Data Mode. ..... 256
Break and Sync Sequence ..... 256
Unique Device Identifier (UDID) ..... 400
Addresses. ..... 400
Universal Asynchronous Receiver Transmitter. See UART.Universal Serial Bus. See USB OTG.
USB OTG263
Buffer Descriptors Assignment in Different Buffering Modes ..... 269
Buffer Descriptors and BDT ..... 268
Control Registers ..... 277
Device Mode Operation ..... 273
DMA Interface ..... 269
Hardware
Calculating
Transceiver Power Requirements ..... 267
Hardware Configuration ..... 265
Device Mode ..... 265
Host and OTG Modes ..... 266
Host Mode Operation. ..... 274
Interrupts ..... 272
Interrupts and USB Transactions. ..... 273
Operation ..... 276
HNP ..... 277
SRP ..... 276
W
Watchdog Timer (WDT) ..... 402
Control Register. ..... 402
Windowed Operation ..... 402
WWW Address ..... 461
WWW, On-Line Support ..... 19

## THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives


## CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

## CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://microchip.com/support

## NOTES:

## PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.


## NOTES:

## Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

## Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC ${ }^{32}$ logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestlC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0003-5

## QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Microchip

## Worldwide Sales and Service

| AMERICAS | ASIA/PACIFIC | ASIA/PACIFIC | EUROPE |
| :---: | :---: | :---: | :---: |
| Corporate Office | Asia Pacific Office | China - Xiamen | Austria - Wels |
| 2355 West Chandler Blvd. | Suites 3707-14, 37 th Floor | Tel: 86-592-2388138 | Tel: 43-7242-2244-39 |
| Chandler, AZ 85224-6199 | Tower 6, The Gateway | Fax: 86-592-2388130 | Fax: 43-7242-2244-393 |
| Tel: 480-792-7200 | Harbour City, Kowloon | China - Zhuhai | Denmark - Copenhagen |
| Fax: 480-792-7277 | Hong Kong | Tel: 86-756-3210040 | Tel: 45-4450-2828 |
| Technical Support: | Tel: 852-2943-5100 | Fax: 86-756-3210049 | Fax: 45-4485-2829 |
| http://www.microchip.com/ | Fax: 852-2401-3431 | India - Bangalore | France - Paris |
| Web Address: | Australia - Sydney | Tel: 91-80-3090-4444 | Tel: 33-1-69-53-63-20 |
| Web Address: | Tel: 61-2-9868-6733 | Fax: 91-80-3090-4123 | Fax: 33-1-69-30-90-79 |
| www.microchip.com | Fax: 61-2-9868-6755 | India - New Delhi | Germany - Dusseldorf |
| Atlanta <br> Duluth, GA | China - Beijing | Tel: 91-11-4160-8631 | Tel: 49-2129-3766400 |
| Tel: 678-957-9614 | Tel: 86-10-8569-7000 | Fax: 91-11-4160-8632 | Germany - Karlsruhe |
| Fax: 678-957-1455 | Fax: 86-10-8528-2104 | India - Pune | Tel: 49-721-625370 |
| Austin, TX <br> Tel: 512-257-3370 | China - Chengdu <br> Tel: 86-28-8665-5511 <br> Fax: 86-28-8665-7889 | Tel: 91-20-3019-1500 <br> Japan - Osaka <br> Tel: 81-6-6152-7160 | Germany - Munich <br> Tel: 49-89-627-144-0 <br> Fax: 49-89-627-144-44 |
| Boston <br> Westborough, MA <br> Tel: 774-760-0087 <br> Fax: 774-760-0088 | China - Chongqing <br> Tel: 86-23-8980-9588 <br> Fax: 86-23-8980-9500 | Fax: 81-6-6152-9310 <br> Japan - Tokyo <br> Tel: 81-3-6880-3770 | Italy - Milan <br> Tel: 39-0331-742611 <br> Fax: 39-0331-466781 |
| Chicago <br> Itasca, IL | China - Dongguan <br> Tel: 86-769-8702-9880 | Fax: 81-3-6880-3771 Korea - Daegu | Italy - Venice <br> Tel: 39-049-7625286 |
| Tel: 630-285-0071 <br> Fax: 630-285-0075 | China - Hangzhou <br> Tel: 86-571-8792-8115 | Tel: 82-53-744-4301 <br> Fax: 82-53-744-4302 | Netherlands - Drunen <br> Tel: 31-416-690399 |
| Cleveland <br> Independence, OH <br> Tel: 216-447-0464 <br> Fax: 216-447-0643 | Fax: 86-571-8792-8116 <br> China - Hong Kong SAR <br> Tel: 852-2943-5100 <br> Fax: 852-2401-3431 | Korea - Seoul <br> Tel: 82-2-554-7200 <br> Fax: 82-2-558-5932 or 82-2-558-5934 | Fax: 31-416-690340 <br> Poland - Warsaw <br> Tel: 48-22-3325737 <br> Spain - Madrid |
| Dallas <br> Addison, TX <br> Tel: 972-818-7423 | China - Nanjing <br> Tel: 86-25-8473-2460 <br> Fax: 86-25-8473-2470 | Malaysia - Kuala Lumpur <br> Tel: 60-3-6201-9857 <br> Fax: 60-3-6201-9859 | Tel: 34-91-708-08-90 <br> Fax: 34-91-708-08-91 <br> Sweden - Stockholm |
| Fax: 972-818-2924 | China - Qingdao <br> Tel: 86-532-8502-7355 | Malaysia - Penang <br> Tel: 60-4-227-8870 | Tel: 46-8-5090-4654 |
| Detroit <br> Novi, MI | Fax: 86-532-8502-7205 | Fax: 60-4-227-4068 | UK - Wokingham <br> Tel: 44-118-921-5800 |
| Tel: 248-848-4000 | China - Shanghai Tel: 86-21-5407-5533 | Philippines - Manila Tel: 63-2-634-9065 | Fax: 44-118-921-5820 |
| Houston, TX <br> Tel: 281-894-5983 | Fax: 86-21-5407-5066 | Fax: 63-2-634-9069 |  |
| Indianapolis <br> Noblesville, IN <br> Tel: 317-773-8323 | China - Shenyang <br> Tel: 86-24-2334-2829 <br> Fax: 86-24-2334-2393 | Singapore <br> Tel: 65-6334-8870 <br> Fax: 65-6334-8850 |  |
| Fax: 317-773-5453 | China - Shenzhen <br> Tel: 86-755-8864-2200 | Taiwan - Hsin Chu Tel: 886-3-5778-366 |  |
| Los Angeles <br> Mission Viejo, CA | Fax: 86-755-8203-1760 | Fax: 886-3-5770-955 |  |
| Tel: 949-462-9523 | China - Wuhan | Taiwan - Kaohsiung |  |
| Fax: 949-462-9608 | Tel: 86-27-5980-5300 | Tel: 886-7-213-7828 |  |
| New York, NY <br> Tel: 631-435-6000 | Fax: 86-27-5980-5118 China - Xian | Taiwan - Taipei Tel: 886-2-2508-8600 |  |
| San Jose, CA <br> Tel: 408-735-9110 | Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 | Fax: 886-2-2508-0102 Thailand - Bangkok |  |
| Canada - Toronto <br> Tel: 905-673-0699 <br> Fax: 905-673-6509 |  | Tel: 66-2-694-1351 Fax: 66-2-694-1350 |  |


[^0]:    Legend: See Table 2 for a complete description of pin functions. Pinouts are subject to change.
    Note 1: It is recommended to connect the metal pad on the bottom of the 64 -pin QFN package to Vss.
    2: Gray shading indicates 5.5 V tolerant input pins.

[^1]:    ST = Schmitt Trigger input buffer
    $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
    XCVR = Dedicated Transceiver

[^2]:    $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
    XCVR = Dedicated Transceiver

[^3]:    ST = Schmitt Trigger input buffer $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer XCVR = Dedicated Transceiver

[^4]:    ST = Schmitt Trigger input buffer
    $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
    XCVR = Dedicated Transceiver

[^5]:    ST = Schmitt Trigger input buffer
    $1^{2} \mathrm{C}=1^{2} \mathrm{C} /$ SMBus input buffer
    XCVR = Dedicated Transceiver

[^6]:    Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

[^7]:    Note: Only one control transaction can be performed per frame.

