

1回路入り入出力フルスイングオペアンプ

概要

NJM2730 は、1.8V の低電圧から動作する単電源 1 回路入りの入出力フルスイングオペアンプです。

入出力ともグランドレベルから、電源電圧までの広いダイナミックレンジを持ちます。単電源オペアンプの特徴であるグランドセンスに加え、電源電圧の検出も可能にします。

また、低ノイズ、高位相余裕などの特徴を備えており、さらに超小型パッケージのMTP-5に実装されているため、バッテリー機器やポータブルオーディオ機器等、各種アプリケーションへの応用が可能です。

外 形

NJM2730F

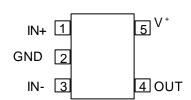
特 徴

動作電源電圧 1.8~5.0V

入力フルスイング V_{ICM}= 0~5.0V,at V⁺=5V

出力フルスイング V_{OH} 4.9V/ V_{OL} 0.1V,at V^{\dagger} =5V, R_L =20k 出力ドライブ能力 V_{OH} 4.75V/ V_{OL} 0.25V,at V^{\dagger} =5V, R_L =2k

入力オフセット電圧 5mV maxスルーレート 0.4V/μs typ.低入力換算雑音電圧 10nV/ Hz typ.


高位相マージン M=75deg. typ.,at R_L=2k ,ボルテージフォロア時

バイポーラ構造

外形 MTP-5

端子配列

(Top View)

絶対最大定格

(Ta=25)

		項	目			記号	定格	単 位
電	源		電	電		٧+	7.0	V
差	動	入	力	電	圧	V_{ID}	± 1.0	V
同	相	入	力	電	圧	V _{ICM}	0~7.0	V
許	,	容	損	Į	失	P_D	200	mW
動	作	温	度	範	囲	Topr	-40 ~ + 85	
保	存	温	度	範	囲	Tstg	-40 ~ + 125	

■ 注 1)入力電圧は、V⁺または 7.0V より小
- さい方の値を越えて印加しないで下さい。

推奨動作範囲

(Ta=25)

					/ ·	<u> </u>
	項	目		記号	定格	単 位
電	源	電	圧	V ⁺	1.8~5.0	V

電気的特性

DC特性 (V⁺=5V,Ta=25)

					. ,	,
項目	記号	条件	MIN	TYP	MAX	単位
消 費 電 流	Icc	無信号時	ı	320	550	μA
入 力 オフセット電 圧	V _{IO}		ı	1	5	mV
入 力 ハ ゙ イアス 電 流	I _B		ı	50	250	nA
入 力 オフセット 電 流	I _{IO}		ı	5	100	nA
電 圧 利 得	A _V	R _L =2k	60	85	-	dB
同相信号除去比	CMR	CMR+: 2.5V V _{CM} 5V, CMR-:0V V _{CM} 2.5V(注2)	55	70	-	dB
電源電圧変動除去比	SVR		70	85	-	dB
最大出力電圧 1	V _{OH1}	R _L =20k	4.9	4.95	-	V
取入山力电压 1	V_{OL1}	R _L =20k	-	0.05	0.1	V
最大出力電圧 2	V_{OH2}	R _L =2k	4.75	4.85	-	V
取八山刀电压 2	V_{OL2}	R _L =2k	ı	0.15	0.25	, v
同相入力電圧範囲	V _{ICM}	CMR>55dB	0	-	5	V

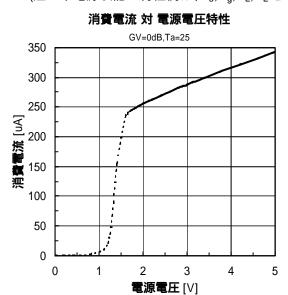
(注2)CMR は CMR+,CMR-両方を測定し低い方を採用します。

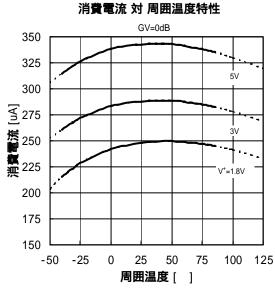
CMR+測定時の同相入力電田は2.5V V_{CM} 5V、CMR-測定時の同相入力電田は0V V_{CM} 2.5V です。

A C 特性 $(V^{\dagger}=5V, Ta=25)$

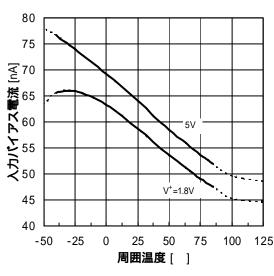
項			目	記号	条件	MIN	TYP	MAX	単位
利	得 帯	域	幅	GB	R _L =2k	•	1	-	MHz
位	相	余	裕	М	R _L =2k	1	75	-	Deg
入力	力換算	雑音電	王	V _{NI}	f=1kHz	-	10	-	nV/ Hz

過渡応答特性 (V⁺=5V, Ta=25)

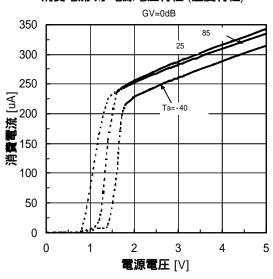

項	目	記号	条件	MIN	TYP	MAX	単位
ス ル ー	レート	SR	R _L =2k	-	0.4	-	V/us

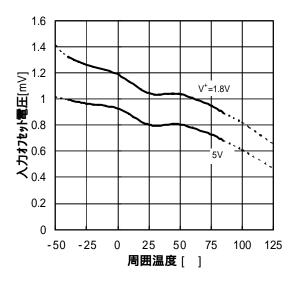

端子等価回路

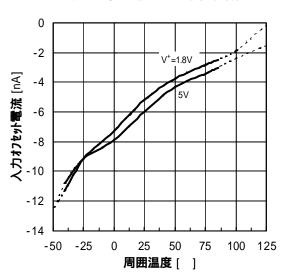
端子	端子名	内部等価回路	端子電圧	備考
1	+INPUT	等価回路 1		非反転入力端子
3	-INPUT	等価回路3		反転入力端子
4	VOUT	等価回路4		出力端子

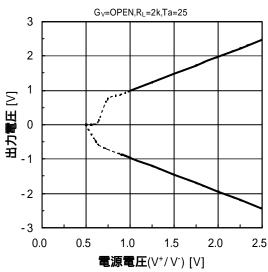

特性例

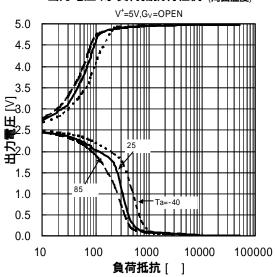
(注:単電源表記の特性例は、 R_s , R_g , R_L , C_L をそれぞれ V^+ /2 に接続しています。)

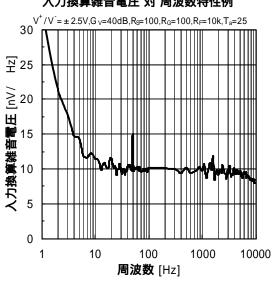


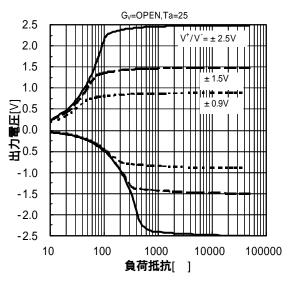

入力パイアス電流 対 周囲温度特性

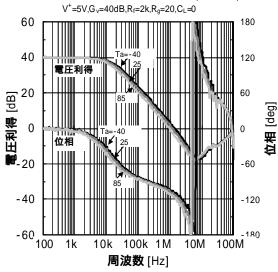

消費電流 対 電源電圧特性 (温度特性)

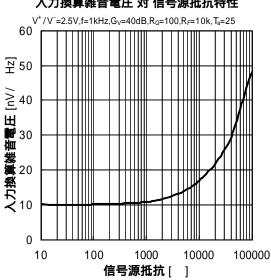

入力オフセット電圧 対 周囲温度特性

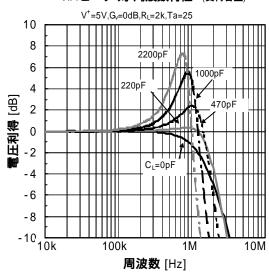

入力 オフセット電流 対 周囲温度特性

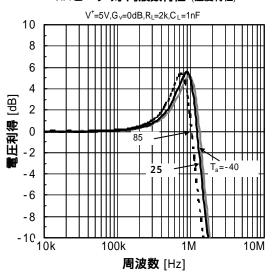

出力電圧範囲 対 電源電圧特性

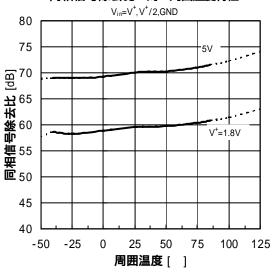

出力電圧 対 負荷抵抗特性例 (周囲温度)

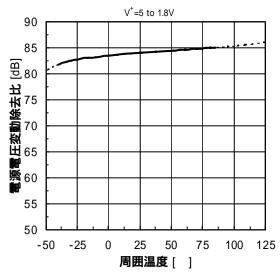

入力換算雑音電圧 対 周波数特性例

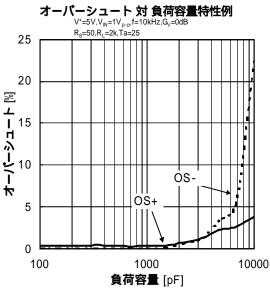

出力電圧 対 負荷抵抗特性例 (電源電圧)


電圧利得 位相 対 周波数特性 (周囲温度)

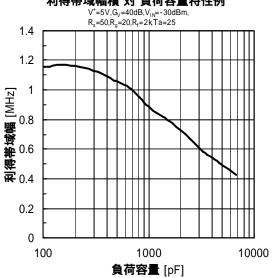

入力換算雑音電圧 対 信号源抵抗特性


V.F. ピーク 対 周波数特性 (負荷容量)

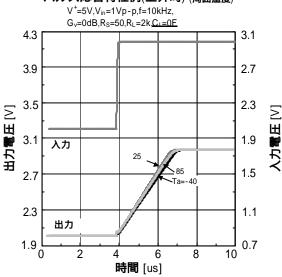

V.F. ピーク 対 周波数特性 (温度特性)

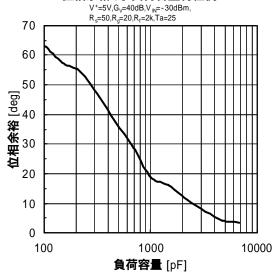


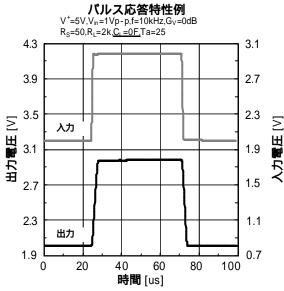
同相信号除去比 対 周囲温度特性



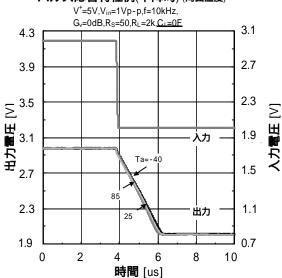
電源電圧変動除去比 対 周囲温度特性



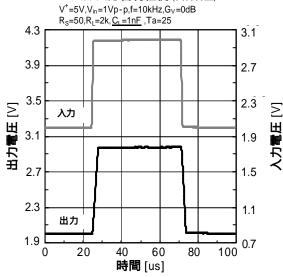

利得帯域幅積 対 負荷容量特性例



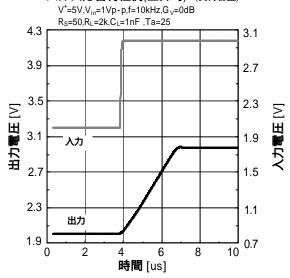
パルス応答特性例(上昇時)(周囲温度)

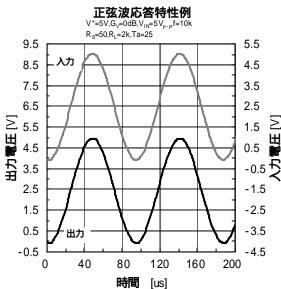


位相余裕 対 負荷容量特性例

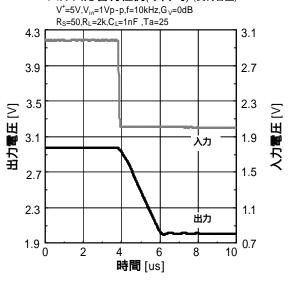


パルス応答特性例(下降時)(周囲温度)




NJM2730

パルス応答特性例 (負荷容量)



パルス応答特性例(上昇時) (負荷容量)

パルス応答特性例(下降時)(負荷容量)

<注意事項>
このデータブックの掲載内容の正確さには
万全を期しておりますが、掲載内容について
何らかの法的な保証を行うものではありませ
ん。特に応用回路については、製品の代表的
な応用例を説明するためのものです。また、
工業所有権その他の権利の実施権の許諾を伴
うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。