
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATtiny1634

Rev. 8303D–AVR–06/12
Features
• High Performance, Low Power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 125 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation

• High Endurance, Non-volatile Memory Segments
– 16K Bytes of In-System, Self-Programmable Flash Program Memory

• Endurance: 10,000 Write/Erase Cycles
– 256 Bytes of In-System Programmable EEPROM

• Endurance: 100,000 Write/Erase Cycles
– 1K Byte of Internal SRAM
– Data retention: 20 years at 85°C / 100 years at 25°C
– Programming Lock for Self-Programming Flash & EEPROM Data Security

• Peripheral Features
– Dedicated Hardware and QTouch® Library Support for Capacitive Touch Sensing
– One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each
– 12-channel, 10-bit ADC
– Programmable Ultra Low Power Watchdog Timer
– On-chip Analog Comparator
– Two Full Duplex USARTs with Start Frame Detection
– Universal Serial Interface
– Slave I2C Serial Interface

• Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– Internal and External Interrupt Sources

• Pin Change Interrupt on 18 Pins
– Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit with Supply Voltage Sampling
– Calibrated 8MHz Oscillator with Temperature Calibration Option
– Calibrated 32kHz Ultra Low Power Oscillator
– On-chip Temperature Sensor

• I/O and Packages
– 18 Programmable I/O Lines
– 20-pad QFN/MLF, and 20-pin SOIC

• Operating Voltage:
– 1.8 – 5.5V

• Speed Grade:
– 0 – 2MHz @ 1.8 – 5.5V
– 0 – 8MHz @ 2.7 – 5.5V
– 0 – 12MHz @ 4.5 – 5.5V

• Temperature Range: -40°C to +85°C
• Low Power Consumption

– Active Mode: 0.2 mA at 1.8V and 1MHz
– Idle Mode: 30 µA at 1.8V and 1MHz
– Power-Down Mode (WDT Enabled): 1 µA at 1.8V
– Power-Down Mode (WDT Disabled): 100 nA at 1.8V

1. Pin Configurations

Figure 1-1. Pinout of ATtiny1634

1
2
3
4
5

QFN/MLF

15
14
13
12
11

20 19 18 17 16

6 7 8 9 10

NOTE
Bottom pad should be
soldered to ground.

(P
C

IN
T

1/
A

IN
0)

 P
A

1
(P

C
IN

T
0/

A
R

E
F

)
PA

0
 G

N
D

V
C

C
P

C
5

(X
TA

L1
/C

LK
I/P

C
IN

T
17

)

PC0 (ADC9/OC0A/XCK0/PCINT12)
PC1 (ADC10/ICP1/SCL/USCK/XCK1/PCINT13)
PC2 (ADC11/CLKO/INT0/PCINT14)
PC3 (RESET/dW/PCINT15)
PC4 (XTAL2/PCINT16)

PA
7

(P
C

IN
T

7/
R

X
D

0/
A

D
C

4)
P

B
0

(P
C

IN
T

8/
T

X
D

0/
A

D
C

5)
P

B
1

(A
D

C
6/

D
I/S

D
A

/R
X

D
1/

P
C

IN
T

9)
P

B
2

(A
D

C
7/

D
O

/T
X

D
1/

P
C

IN
T

10
)

P
B

3
(A

D
C

8/
O

C
1A

/P
C

IN
T

11
)

(PCINT6/OC1B/ADC3) PA6
(PCINT5/OC0B/ADC2) PA5

(PCINT4/T0/ADC1) PA4
(PCINT3/T1/SNS/ADC0) PA3

(PCINT2/AIN1) PA2

1
2
3
4
5
6
7
8
9
10

20
19
18
17
16
15
14
13
12
11

 (PCINT8/TXD0/ADC5) PB0
 (PCINT7/RXD0/ADC4) PA7
(PCINT6/OC1B/ADC3) PA6
(PCINT5/OC0B/ADC2) PA5

(PCINT4/T0/ADC1) PA4
(PCINT3/T1/SNS/ADC0) PA3

(PCINT2/AIN1) PA2
(PCINT1/AIN0) PA1

(PCINT0/AREF) PA0
 GND

PB1 (ADC6/DI/SDA/RXD1/PCINT9)
PB2 (ADC7/DO/TXD1/PCINT10)
PB3 (ADC8/OC1A/PCINT11)
PC0 (ADC9/OC0A/XCK0/PCINT12)
PC1 (ADC10/ICP1/SCL/USCK/XCK1/PCINT13)
PC2 (ADC11/CLKO/INT0/PCINT14)
PC3 (RESET/dW/PCINT15)
PC4 (XTAL2/PCINT16)
PC5 (XTAL1/CLKI/PCINT17)
VCC

SOIC
2
8303D–AVR–06/12

ATtiny1634

ATtiny1634
1.1 Pin Descriptions

1.1.1 VCC
Supply voltage.

1.1.2 GND
Ground.

1.1.3 XTAL1
Input to the inverting amplifier of the oscillator and the internal clock circuit. This is an alternative
pin configuration of PC5.

1.1.4 XTAL2
Output from the inverting amplifier of the oscillator. Alternative pin configuration of PC4.

1.1.5 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. The min-
imum pulse length is given in Table 24-5 on page 247. Shorter pulses are not guaranteed to
generate a reset.

The reset pin can also be used as a (weak) I/O pin.

1.1.6 Port A (PA7:PA0)
This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output
buffers have the following drive characteristics:

• PA7, PA4:PA0: Symmetrical, with standard sink and source capability
• PA6, PA5: Asymmetrical, with high sink and standard source capability

As inputs, port pins that are externally pulled low will source current provided that pull-up resis-
tors are activated. Port pins are tri-stated when a reset condition becomes active, even if the
clock is not running.

This port has alternate pin functions to serve special features of the device. See “Alternate Func-
tions of Port A” on page 67.

1.1.7 Port B (PB3:PB0)
This is a 4-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit).Output
buffers have the following drive characteristics:

• PB3: Asymmetrical, with high sink and standard source capability
• PB2:PB0: Symmetrical, with standard sink and source capability

As inputs, port pins that are externally pulled low will source current provided that pull-up resis-
tors are activated. Port pins are tri-stated when a reset condition becomes active, even if the
clock is not running.

This port has alternate pin functions to serve special features of the device. See “Alternate Func-
tions of Port B” on page 70.
3
8303D–AVR–06/12

1.1.8 Port C (PC5:PC0)
This is a 6-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output
buffers have the following drive characteristics:

• PC5:PC1: Symmetrical, with standard sink and source capability
• PC0: Asymmetrical, with high sink and standard source capability

As inputs, port pins that are externally pulled low will source current provided that pull-up resis-
tors are activated. Port pins are tri-stated when a reset condition becomes active, even if the
clock is not running.

This port has alternate pin functions to serve special features of the device. See “Alternate Func-
tions of Port C” on page 72.
4
8303D–AVR–06/12

ATtiny1634

ATtiny1634
2. Overview
ATtiny1634 is a low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny1634 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in a single instruction, executed in one clock cycle. The resulting archi-
tecture is compact and code efficient while achieving throughputs up to ten times faster than
conventional CISC microcontrollers.

DEBUG
INTERFACE

CALIBRATED ULP
OSCILLATOR

WATCHDOG
TIMER

CALIBRATED
OSCILLATOR

TIMING AND
CONTROL

VCC RESET GND

8-BIT DATA BUS

CPU CORE

PROGRAM
MEMORY

(FLASH)

DATA
MEMORY

(SRAM)

POWER
SUPERVISION:

POR
BOD

RESET

ISP
INTERFACE

PORT A PORT CPORT B

VOLTAGE
REFERENCE

MULTIPLEXERANALOG
COMPARATOR

ADC

TEMPERATURE
SENSOR

TWO-WIRE
INTERFACE

USART0

TOUCH
SENSING

EEPROM

ON-CHIP
DEBUGGER

PC[5:0]PB[3:0]PA[7:0]

8-BIT
TIMER/COUNTER

16-BIT
TIMER/COUNTER

USI

USART1
5
8303D–AVR–06/12

ATtiny1634 provides the following features:

• 16K bytes of in-system programmable Flash
• 1K bytes of SRAM data memory
• 256 bytes of EEPROM data memory
• 18 general purpose I/O lines
• 32 general purpose working registers
• An 8-bit timer/counter with two PWM channels
• A16-bit timer/counter with two PWM channels
• Internal and external interrupts
• A 10-bit ADC with 5 internal and 12 external chanels
• An ultra-low power, programmable watchdog timer with internal oscillator
• Two programmable USART’s with start frame detection
• A slave Two-Wire Interface (TWI)
• A Universal Serial Interface (USI) with start condition detector
• A calibrated 8MHz oscillator
• A calibrated 32kHz, ultra low power oscillator
• Four software selectable power saving modes.

The device includes the following modes for saving power:

• Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI,
TWI, and interrupt system to continue functioning

• ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping
the CPU and all I/O modules except the ADC

• Power-down mode: registers keep their contents and all chip functions are disabled until the
next interrupt or hardware reset

• Standby mode: the oscillator is running while the rest of the device is sleeping, allowing very
fast start-up combined with low power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
Flash program memory can be re-programmed in-system through a serial interface, by a con-
ventional non-volatile memory programmer or by an on-chip boot code, running on the AVR
core.

The ATtiny1634 AVR is supported by a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators and evaluation kits.
6
8303D–AVR–06/12

ATtiny1634

ATtiny1634
3. General Information

3.1 Resources
A comprehensive set of drivers, application notes, data sheets and descriptions on development
tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically, this
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all
AVR devices include an extended I/O map.

3.3 Capacitive Touch Sensing
Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel
AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisi-
tion methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the
Application Programming Interface (API) of the library to define the touch channels and sensors.
The application then calls the API to retrieve channel information and determine the state of the
touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more informa-
tion and details of implementation, refer to the QTouch Library User Guide – also available from
the Atmel website.

3.4 Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
7
8303D–AVR–06/12

4. CPU Core
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

4.1 Architectural Overview

Figure 4-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the Program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the Program memory. This concept enables instructions to be executed
in every clock cycle. The Program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

INTERRUPT
UNIT

STATUS AND
CONTROL

PROGRAM
MEMORY

(FLASH)

DATA
MEMORY

(SRAM)

PROGRAM
COUNTER

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

CONTROL
LINES

GENERAL
PURPOSE

REGISTERS
X
Y
Z

ALU

D
IR

E
C

T
 A

D
D

R
E

S
S

IN
G

IN
D

IR
E

C
T

 A
D

D
R

E
S

S
IN

G

8-BIT DATA BUS
8
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, capable of
directly addressing the whole address space. Most AVR instructions have a single 16-bit word
format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices
only implement a part of the instruction set.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATtiny1634
has Extended I/O Space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

4.2 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See external document “AVR Instruction Set” and “Instruction Set Sum-
mary” on page 290 section for more information.

4.3 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations. This
will in many cases remove the need for using the dedicated compare instructions, resulting in
faster and more compact code. See external document “AVR Instruction Set” and “Instruction
Set Summary” on page 290 section for more information.

The Status Register is neither automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt. This must be handled by software.
9
8303D–AVR–06/12

4.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input

Figure 4-2 below shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr. Special Function

R0 0x00

R1 0x01

R2 0x02

R3 0x03

… ...

R12 0x0C

R13 0x0D

R14 0x0E

R15 0x0F

R16 0x10

R17 0x11

… ...

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
10
8303D–AVR–06/12

ATtiny1634

ATtiny1634
4.4.1 The X-register, Y-register, and Z-register
The registers R26..R31 have added functions to their general purpose usage. These registers
are 16-bit address pointers for indirect addressing of the data space. The three indirect address
registers X, Y, and Z are defined as described in Figure 4-3 below.

Figure 4-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

4.5 Stack Pointer
The stack is mainly used for storing temporary data, local variables and return addresses after
interrupts and subroutine calls. The Stack Pointer registers (SPH and SPL) always point to the
top of the stack. Note that the stack grows from higher memory locations to lower memory loca-
tions. This means that the PUSH instructions decreases and the POP instruction increases the
stack pointer value.

The stack pointer points to the area of data memory where subroutine and interrupt stacks are
located. This stack space must be defined by the program before any subroutine calls are exe-
cuted or interrupts are enabled.

The pointer is decremented by one when data is put on the stack with the PUSH instruction, and
incremented by one when data is fetched with the POP instruction. It is decremented by two
when the return address is put on the stack by a subroutine call or a jump to an interrupt service
routine, and incremented by two when data is fetched by a return from subroutine (the RET
instruction) or a return from interrupt service routine (the RETI instruction).

The AVR stack pointer is typically implemented as two 8-bit registers in the I/O register file. The
width of the stack pointer and the number of bits implemented is device dependent. In some
AVR devices all data memory can be addressed using SPL, only. In this case, the SPH register
is not implemented.

The stack pointer must be set to point above the I/O register areas, the minimum value being the
lowest address of SRAM. See Table 5-2 on page 18.

15 0

X-register 7 XH 0 7 XL 0

R27 R26

15 0

Y-register 7 YH 0 7 YL 0

R29 R28

15 0

Z-register 7 ZH 0 7 ZL 0

R31 R30
11
8303D–AVR–06/12

4.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 4-4. The Parallel Instruction Fetches and Instruction Executions

Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-5. Single Cycle ALU Operation

4.7 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt.

The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 52. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
12
8303D–AVR–06/12

ATtiny1634

ATtiny1634
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Note: See “Code Examples” on page 7.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */
13
8303D–AVR–06/12

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in the following example.

Note: See “Code Examples” on page 7.

4.7.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the Program Vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

4.8 Register Description

4.8.1 CCP – Configuration Change Protection Register

• Bits 7:0 – CCP[7:0]: Configuration Change Protection
In order to change the contents of a protected I/O register the CCP register must first be written
with the correct signature. After CCP is written the protected I/O registers may be written to dur-
ing the next four CPU instruction cycles. All interrupts are ignored during these cycles. After
these cycles interrupts are automatically handled again by the CPU, and any pending interrupts
will be executed according to their priority.

When the protected I/O register signature is written, CCP0 will read as one as long as the pro-
tected feature is enabled, while CCP[7:1] will always read as zero.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

Bit 7 6 5 4 3 2 1 0

0x2F (0x4F) CCP[7:0] CCP
Read/Write W W W W W W W R/W

Initial Value 0 0 0 0 0 0 0 0
14
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Table 4-1 shows the signatures that are in recognised.

Notes: 1. Only WDE and WDP[3:0] bits are protected in WDTCSR.

4.8.2 SPH and SPL — Stack Pointer Registers

• Bits 10:0 – SP[10:0]: Stack Pointer
The Stack Pointer register points to the top of the stack, which is implemented growing from
higher memory locations to lower memory locations. Hence, a stack PUSH command decreases
the Stack Pointer.

The stack space in the data SRAM must be defined by the program before any subroutine calls
are executed or interrupts are enabled.

4.8.3 SREG – Status Register

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

Table 4-1. Signatures Recognised by the Configuration Change Protection Register

Signature Registers Description

0xD8 CLKSR, CLKPR, WDTCSR(1) Protected I/O register

Initial Value 0 0 0 0 0 RAMEND RAMEND RAMEND

Read/Write R R R R R R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) – – – – – SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL
Bit 7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
15
8303D–AVR–06/12

• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
16
8303D–AVR–06/12

ATtiny1634

ATtiny1634
5. Memories
The AVR architecture makes a distinction between program memory and data memory, locating
each memory type in a separate address space. Executable code is located in non-volatile pro-
gram memory (Flash), whereas data can be placed in either volatile (SRAM) or non-volatile
memory (EEPROM). See Figure 5-1, below.

Figure 5-1. Memory Overview.

All memory spaces are linear and regular.

5.1 Program Memory (Flash)
ATtiny1634 contains 16K byte of on-chip, in-system reprogrammable Flash memory for program
storage. Flash memories are non-volatile, i.e. they retain stored information even when not
powered.

Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8192 x 16 bits. The
Program Counter (PC) is 13 bits wide, thus capable of addressing all 8192 locations of program
memory, as illustrated in Table 5-1, below.

Constant tables can be allocated within the entire address space of program memory. See
instructions LPM (Load Program Memory), and SPM (Store Program Memory) in “Instruction Set
Summary” on page 290. Flash program memory can also be programmed from an external
device, as described in “External Programming” on page 228.

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 12.

The Flash memory has a minimum endurance of 10,000 write/erase cycles.

GENERAL PURPOSE
REGISTER FILE

I/O REGISTER FILE

EXTENDED
I/O REGISTER FILE

DATA MEMORY

DATA MEMORY

PROGRAM MEMORY

FLASH SRAM EEPROM

Table 5-1. Size of Program Memory (Flash).

Device Flash Size Address Range

ATtiny1634 16KB 8192 words 0x0000 – 0x1FFF
17
8303D–AVR–06/12

5.2 Data Memory (SRAM) and Register Files
Table 5-2 shows how the data memory and register files of ATtiny1634 are organized. These
memory areas are volatile, i.e. they do not retain information when power is removed.

Note: 1. Also known as data address. This mode of addressing covers the entire data memory and reg-
ister area. The address is contained in a 16-bit area of two-word instructions.

2. Also known as direct I/O address. This mode of addressing covers part of the register area,
only. It is used by instructions where the address is embedded in the instruction word.

The 1280 memory locations include the general purpose register file, I/O register file, extended
I/O register file, and the internal data memory.

For compatibility with future devices, reserved bits should be written to zero, if accessed.
Reserved I/O memory addresses should never be written.

5.2.1 General Purpose Register File
The first 32 locations are reserved for the general purpose register file. These registers are
described in detail in “General Purpose Register File” on page 10.

5.2.2 I/O Register File
Following the general purpose register file, the next 64 locations are reserved for I/O registers.
Registers in this area are used mainly for communicating with I/O and peripheral units of the
device. Data can be transferred between I/O space and the general purpose register file using
instructions such as IN, OUT, LD, ST, and derivatives.

All I/O registers in this area can be accessed with the instructions IN and OUT. These I/O spe-
cific instructions address the first location in the I/O register area as 0x00 and the last as 0x3F.

The low 32 registers (address range 0x00...0x1F) are accessible by some bit-specific instruc-
tions. In these registers, bits are easily set and cleared using SBI and CBI, while bit-conditional
branches are readily constructed using instructions SBIC, SBIS, SBRC, and SBRS.

Registers in this area may also be accessed with instructions LD/LDD/LDS and ST/STD/STS.
These instructions treat the entire volatile memory as one data space and, therefore, address
I/O registers starting at 0x20.

See “Instruction Set Summary” on page 290.

ATtiny1634 also contains three general purpose I/O registers that can be used for storing any
information. See GPIOR0, GPIOR1 and GPIOR2 in “Register Summary” on page 288. These
general purpose I/O registers are particularly useful for storing global variables and status flags,
since they are accessible to bit-specific instructions such as SBI, CBI, SBIC, SBIS, SBRC, and
SBRS.

Table 5-2. Layout of Data Memory and Register Area.

Device Memory Area Size
Long Address
(1) Short Address (2)

ATtiny1634

General purpose register file 32B 0x0000 – 0x001F n/a

I/O register file 64B 0x0020 – 0x005F 0x00 – 0x3F

Extended I/O register file 160B 0x0060 – 0x00FF n/a

Data SRAM 1024B 0x0100 – 0x04FF n/a
18
8303D–AVR–06/12

ATtiny1634

ATtiny1634
5.2.3 Extended I/O Register File
Following the standard I/O register file, the next 160 locations are reserved for extended I/O reg-
isters. ATtiny1634 is a complex microcontroller with more peripheral units than can be
addressed with the IN and OUT instructions. Registers in the extended I/O area must be
accessed using instructions LD/LDD/LDS and ST/STD/STS. See “Instruction Set Summary” on
page 290.

See “Register Summary” on page 288 for a list of I/O registers.

5.2.4 Data Memory (SRAM)
Following the general purpose register file and the I/O register files, the remaining 1024 loca-
tions are reserved for the internal data SRAM.

There are five addressing modes available:

• Direct. This mode of addressing reaches the entire data space.
• Indirect.
• Indirect with Displacement. This mode of addressing reaches 63 address locations from the

base address given by the Y- or Z-register.
• Indirect with Pre-decrement. In this mode the address register is automatically decremented

before access. Address pointer registers (X, Y, and Z) are located in the general purpose
register file, in registers R26 to R31. See “General Purpose Register File” on page 10.

• Indirect with Post-increment. In this mode the address register is automatically incremented
after access. Address pointer registers (X, Y, and Z) are located in the general purpose
register file, in registers R26 to R31. See “General Purpose Register File” on page 10.

All addressing modes can be used on the entire volatile memory, including the general purpose
register file, the I/O register files and the data memory.

Internal SRAM is accessed in two clkCPU cycles, as illustrated in Figure 5-2, below.

Figure 5-2. On-chip Data SRAM Access Cycles

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction
19
8303D–AVR–06/12

5.3 Data Memory (EEPROM)
ATtiny1634 contains 256 bytes of non-volatile data memory. This EEPROM is organized as a
separate data space, in which single bytes can be read and written. All access registers are
located in the I/O space.

The EEPROM memory layout is summarised in Table 5-3, below.

The internal 8MHz oscillator is used to time EEPROM operations. The frequency of the oscillator
must be within the requirements described in “OSCCAL0 – Oscillator Calibration Register” on
page 35.

When powered by heavily filtered supplies, the supply voltage, VCC, is likely to rise or fall slowly
on power-up and power-down. Slow rise and fall times may put the device in a state where it is
running at supply voltages lower than specified. To avoid problems in situations like this, see
“Preventing EEPROM Corruption” on page 22.

The EEPROM has a minimum endurance of 100,000 write/erase cycles.

5.3.1 Programming Methods
There are two methods for EEPROM programming:

• Atomic byte programming. This is the simple mode of programming, where target locations
are erased and written in a single operation. In this mode of operation the target is
guaranteed to always be erased before writing but programmin times are longer.

• Split byte programming. It is possible to split the erase and write cycle in two different
operations. This is useful when short access times are required, for example when supply
voltage is falling. In order to take advantage of this method target locations must be erased
before writing to them. This can be done at times when the system allows time-critical
operations, typically at start-up and initialisation.

The programming method is selected using the EEPROM Programming Mode bits (EEPM1 and
EEPM0) in EEPROM Control Register (EECR). See Table 5-4 on page 25. Write and erase
times are given in the same table.

Since EEPROM programming takes some time the application must wait for one operation to
complete before starting the next. This can be done by either polling the EEPROM Program
Enable bit (EEPE) in EEPROM Control Register (EECR), or via the EEPROM Ready Interrupt.
The EEPROM interrupt is controlled by the EEPROM Ready Interrupt Enable (EERIE) bit in
EECR.

5.3.2 Read
To read an EEPROM memory location follow the procedure below:

1. Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to
make sure no other EEPROM operations are in process. If set, wait to clear.

2. Write target address to EEPROM Address Registers (EEARH/EEARL).

Table 5-3. Size of Non-Volatile Data Memory (EEPROM).

Device EEPROM Size Address Range

ATtiny1634 256B 0x00 – 0xFF
20
8303D–AVR–06/12

ATtiny1634

ATtiny1634
3. Start the read operation by setting the EEPROM Read Enable bit (EERE) in the
EEPROM Control Register (EECR). During the read operation, the CPU is halted for
four clock cycles before executing the next instruction.

4. Read data from the EEPROM Data Register (EEDR).

5.3.3 Erase
In order to prevent unintentional EEPROM writes, a specific procedure must be followed to
erase memory locations. To erase an EEPROM memory location follow the procedure below:

1. Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to
make sure no other EEPROM operations are in process. If set, wait to clear.

2. Set mode of programming to erase by writing EEPROM Programming Mode bits
(EEPM0 and EEPM1) in EEPROM Control Register (EECR).

3. Write target address to EEPROM Address Registers (EEARH/EEARL).
4. Enable erase by setting EEPROM Master Program Enable (EEMPE) in EEPROM Con-

trol Register (EECR). Within four clock cycles, start the erase operation by setting the
EEPROM Program Enable bit (EEPE) in the EEPROM Control Register (EECR). Dur-
ing the erase operation, the CPU is halted for two clock cycles before executing the
next instruction.

The EEPE bit remains set until the erase operation has completed. While the device is busy pro-
gramming, it is not possible to perform any other EEPROM operations.

5.3.4 Write
In order to prevent unintentional EEPROM writes, a specific procedure must be followed to write
to memory locations.

Before writing data to EEPROM the target location must be erased. This can be done either in
the same operation or as part of a split operation. Writing to an unerased EEPROM location will
result in corrupted data.

To write an EEPROM memory location follow the procedure below:

1. Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to
make sure no other EEPROM operations are in process. If set, wait to clear.

2. Set mode of programming by writing EEPROM Programming Mode bits (EEPM0 and
EEPM1) in EEPROM Control Register (EECR). Alternatively, data can be written in one
operation or the write procedure can be split up in erase, only, and write, only.

3. Write target address to EEPROM Address Registers (EEARH/EEARL).
4. Write target data to EEPROM Data Register (EEDR).
5. Enable write by setting EEPROM Master Program Enable (EEMPE) in EEPROM Con-

trol Register (EECR). Within four clock cycles, start the write operation by setting the
EEPROM Program Enable bit (EEPE) in the EEPROM Control Register (EECR). Dur-
ing the write operation, the CPU is halted for two clock cycles before executing the next
instruction.

The EEPE bit remains set until the write operation has completed. While the device is busy with
programming, it is not possible to do any other EEPROM operations.
21
8303D–AVR–06/12

5.3.5 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

At low supply voltages data in EEPROM can be corrupted in two ways:

• The supply voltage is too low to maintain proper operation of an otherwise legitimate
EEPROM program sequence.

• The supply voltage is too low for the CPU and instructions may be executed incorrectly.

EEPROM data corruption is avoided by keeping the device in reset during periods of insufficient
power supply voltage. This is easily done by enabling the internal Brown-Out Detector (BOD). If
BOD detection levels are not sufficient for the design, an external reset circuit for low VCC can be
used.

Provided that supply voltage is sufficient, an EEPROM write operation will be completed even
when a reset occurs.

5.3.6 Program Examples
The following code examples show one assembly and one C function for erase, write, or atomic
write of the EEPROM. The examples assume that interrupts are controlled (e.g., by disabling
interrupts globally) so that no interrupts occur during execution of these functions.

Note: See “Code Examples” on page 7.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address registers

out EEARH, r18

out EEARL, r17

; Write data (r19) to data register

out EEDR, r19

; Write logical one to EEMPE

sbi EECR, EEMPE

; Start eeprom write by setting EEPE

sbi EECR, EEPE

ret
22
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Note: See “Code Examples” on page 7.

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Note: See “Code Examples” on page 7.

C Code Example

void EEPROM_write(unsigned int ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE));

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address registers

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from data register

in r16, EEDR

ret
23
8303D–AVR–06/12

Note: See “Code Examples” on page 7.

5.4 Register Description

5.4.1 EEARL – EEPROM Address Register Low

• Bits 7:0 – EEAR[7:0]: EEPROM Address
The EEPROM address register is required by the read and write operations to indicate the mem-
ory location that is being accessed.

EEPROM data bytes are addressed linearly over the entire memory range (0...[256-1]). The ini-
tial value of these bits is undefined and a legitimate value must therefore be written to the
register before EEPROM is accessed.

Devices with 256 bytes of EEPROM, or less, do not require a high address registers (EEARH).
In such devices the high address register is therefore left out but, for compatibility issues, the
remaining register is still referred to as the low byte of the EEPROM address register (EEARL).

Devices that to do not fill an entire address byte, i.e. devices with an EEPROM size not equal to
256, implement read-only bits in the unused locations. Unused bits are located in the most sig-
nificant end of the address register and they always read zero.

5.4.2 EEDR – EEPROM Data Register

• Bits 7:0 – EEDR[7:0]: EEPROM Data
For EEPROM write operations, EEDR contains the data to be written to the EEPROM address
given in the EEAR Register. For EEPROM read operations, EEDR contains the data read out
from the EEPROM address given by EEAR.

C Code Example

unsigned char EEPROM_read(unsigned int ucAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE));

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
24
8303D–AVR–06/12

ATtiny1634

ATtiny1634
5.4.3 EECR – EEPROM Control Register

• Bits 7, 6 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
EEPROM programming mode bits define the action that will be triggered when EEPE is written.
Data can be programmed in a single atomic operation, where the previous value is automatically
erased before the new value is programmed, or Erase and Write can be split in two different
operations. The programming times for the different modes are shown in Table 5-4.

When EEPE is set any write to EEPMn will be ignored.

During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing this bit to one enables the EEPROM Ready Interrupt. Provided the I-bit in SREG is set,
the EEPROM Ready Interrupt is triggered when non-volatile memory is ready for programming.

Writing this bit to zero disables the EEPROM Ready Interrupt.

• Bit 2 – EEMPE: EEPROM Master Program Enable
The EEMPE bit determines whether writing EEPE to one will have effect or not.

When EEMPE is set and EEPE written within four clock cycles the EEPROM at the selected
address will be programmed. Hardware clears the EEMPE bit to zero after four clock cycles.

If EEMPE is zero the EEPE bit will have no effect.

• Bit 1 – EEPE: EEPROM Program Enable
This is the programming enable signal of the EEPROM. The EEMPE bit must be set before
EEPE is written, or EEPROM will not be programmed.

When EEPE is written, the EEPROM will be programmed according to the EEPMn bit settings.
When EEPE has been set, the CPU is halted for two cycles before the next instruction is exe-
cuted. After the write access time has elapsed, the EEPE bit is cleared by hardware.

Note that an EEPROM write operation blocks all software programming of Flash, fuse bits, and
lock bits.

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

Table 5-4. EEPROM Programming Mode Bits and Programming Times

EEPM1 EEPM0 Programming Time Operation

0 0 3.4 ms Atomic (erase and write in one operation)

0 1 1.8 ms Erase, only

1 0 1.8 ms Write, only

1 1 – Reserved
25
8303D–AVR–06/12

• Bit 0 – EERE: EEPROM Read Enable
This is the read strobe of the EEPROM. When the target address has been set up in the EEAR,
the EERE bit must be written to one to trigger the EEPROM read operation.

EEPROM read access takes one instruction, and the requested data is available immediately.
When the EEPROM is read, the CPU is halted for four cycles before the next instruction is
executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it not possible to read the EEPROM, or to change the address register (EEAR).

5.4.4 GPIOR2 – General Purpose I/O Register 2

This register may be used freely for storing any kind of data.

5.4.5 GPIOR1 – General Purpose I/O Register 1

This register may be used freely for storing any kind of data.

5.4.6 GPIOR0 – General Purpose I/O Register 0

This register may be used freely for storing any kind of data.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) MSB LSB GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) MSB LSB GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x14 (0x34) MSB LSB GPIOR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
26
8303D–AVR–06/12

ATtiny1634

ATtiny1634
6. Clock System
Figure 6-1 presents the principal clock systems and their distribution in ATtiny1634. All of the
clocks need not be active at a given time. In order to reduce power consumption, the clocks to
modules not being used can be halted by using different sleep modes and power reduction reg-
ister bits, as described in “Power Management and Sleep Modes” on page 37. The clock
systems is detailed below.

Figure 6-1. Clock Distribution

6.1 Clock Subsystems
The clock subsystems are detailed in the sections below.

6.1.1 CPU Clock – clkCPU
The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
Data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

General I/O
Modules

CPU Core RAM

clkI/O AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

Source clock

Watchdog Timer

32 kHz ULP Oscillator

Reset Logic

Clock
Multiplexer

Watchdog clock

Calibrated
Internal Oscillator

Calibrated RC
Oscillator

External Clock

ADC

clkADC

Crystal
Oscillator

System Clock
Prescaler
27
8303D–AVR–06/12

6.1.2 I/O Clock – clkI/O
The I/O clock is used by the majority of the I/O modules, like Timer/Counter. The I/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected
by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted.

6.1.3 Flash Clock – clkFLASH
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

6.1.4 ADC Clock – clkADC
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

6.2 Clock Sources
The device can use any of the following sources for the system clock:

• External Clock (see page 28)
• Calibrated Internal 8MHz Oscillator (see page 29)
• Internal 32kHz Ultra Low Power (ULP) Oscillator (see page 29)
• Crystal Oscillator / Ceramic Resonator (see page 30)

The clock source is selected using either CKSEL bits in the CLKSR register or CKSEL fuses.
The difference between CKSEL fuses and bits is that CKSEL fuses are automatically loaded to
CKSEL bits at device power on or reset. The initial value of CKSEL bits is therefore determined
by CKSEL fuses.

CKSEL fuse bits can be read by firmware (see “Reading Lock, Fuse and Signature Data from
Software” on page 225), but firmware can not write to fuse bits. Therefore, the CKSEL bits must
be used if system clock source needs to be changed at run-time. The clock system has been
designed to guarantee glitch-free performance when switching between clock sources. See
“CLKSR – Clock Setting Register” on page 32.

When the device wakes up from power-down the selected clock source is used to time the start-
up, ensuring stable oscillator operation before instruction execution starts. When the CPU starts
from reset, the internal 32kHz oscillator is used for generating an additional delay, allowing sup-
ply voltage to reach a stable level before normal device operation is started.

System clock alternatives are discussed in the following sections.

6.2.1 External Clock
To drive the device from an external clock source, CLKI should be connected as shown in Figure
6-2 on page 29.

To ensure stable operation of the MCU it is required to avoid sudden changes in the external
clock frequency . A variation in frequency of more than 2% from one clock cycle to the next can
lead to unpredictable behavior. It is required to ensure that the MCU is kept in Reset during such
changes in the clock frequency.

Stable operation for large step changes in system clock frequency is guaranteed when using the
system clock prescaler. See “System Clock Prescaler” on page 31.
28
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 6-2. External Clock Drive Configuration

Start-up time for this clock source is determined by the SUT bit, as shown in Table 6-2 on page
32.

6.2.2 Calibrated Internal 8MHz Oscillator
The internal 8MHz oscillator operates with no external components and, by default, provides a
clock source with an approximate frequency of 8MHz. Though voltage and temperature depen-
dent, this clock can be very accurately calibrated by the user. See Table 24-2 on page 245,
“Calibrated Oscillator Frequency (Nominal = 1MHz) vs. VCC” on page 286, and “Calibrated
Oscillator Frequency (Nominal = 1MHz) vs. Temperature” on page 286 for more details.

During reset, hardware loads the pre-programmed calibration value into the OSCCAL0 register
and thereby automatically calibrates the oscillator. The accuracy of this calibration is referred to
as “Factory Calibration” in Table 24-2 on page 245. For more information on automatic loading
of pre-programmed calibration value, see section “Calibration Bytes” on page 225.

It is possible to reach higher accuracies than factory defaults, especially when the application
allows temperature and voltage ranges to be narrowed. The firmware can reprogram the calibra-
tion data in OSCCAL0 either at start-up or during run-time. The continuous, run-time calibration
method allows firmware to monitor voltage and temperature and compensate for any detected
variations. See “OSCCAL0 – Oscillator Calibration Register” on page 35, “Temperature Mea-
surement” on page 207, and Table 19-3 on page 208. The accuracy of this calibration is referred
to as “User Calibration” in Table 24-2 on page 245.

The oscillator temperature calibration registers, OSCTCAL0A and OSCTCAL0B, can be used
for one-time temperature calibration of oscillator frequency. See “OSCTCAL0A – Oscillator Tem-
perature Calibration Register A” on page 35 and “OSCTCAL0B – Oscillator Temperature
Calibration Register B” on page 36. During reset, hardware loads the pre-programmed calibra-
tion values into OSCTCAL0A and OSCTCAL0B registers.

Start-up time for this clock source is determined by the SUT bit, as shown in Table 6-2 on page
32.

Supply voltage restrictions apply for running the device at this clock frequency. See “Speed” on
page 245.

6.2.3 Internal 32kHz Ultra Low Power (ULP) Oscillator
The internal 32kHz oscillator is a low power oscillator that operates with no external compo-
nents. It provides a clock source with an approximate frequency of 32kHz. The frequency

EXTERNAL
CLOCK
SIGNAL

CLKI

GND
29
8303D–AVR–06/12

depends on supply voltage, temperature and batch variations. See Table 24-3 on page 246 for
accuracy details.

During reset, hardware loads the pre-programmed calibration value into the OSCCAL1 register
and thereby automatically calibrates the oscillator. The accuracy of this calibration is referred to
as “Factory Calibration” in Table 24-3 on page 246. For more information on automatic loading
of pre-programmed calibration value, see section “Calibration Bytes” on page 225.

When this oscillator is used as the chip clock, it will still be used for the Watchdog Timer and for
the Reset Time-out.

Start-up time for this clock source is determined by the SUT bit, as shown in Table 6-2 on page
32.

6.2.4 Crystal Oscillator / Ceramic Resonator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an on-chip oscillator, as shown in Figure 6-3. Either a quartz crystal or a
ceramic resonator may be used.

Figure 6-3. Crystal Oscillator Connections

Capacitors C1 and C2 should always be equal, both for crystals and resonators. The optimal
value of the capacitors depends on the crystal or resonator in use, the amount of stray capaci-
tance, and the electromagnetic noise of the environment. Some initial guidelines for choosing
capacitors for use with crystals are given in Table 6-1, below. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

The oscillator can operate in different modes, each optimized for a specific frequency range.
See Table 6-4 on page 34.

Start-up time for this clock source is determined by the SUT bit, as shown in Table 6-2 on page
32.

Table 6-1. Crystal Oscillator Operating Modes

 Frequency Range Recommended C1 and C2 Note

< 1MHz – Crystals, only. Not ceramic resonators.

> 1MHz 12 – 22 pF

XTAL2

XTAL1

GND

C2

C1
30
8303D–AVR–06/12

ATtiny1634

ATtiny1634
6.2.5 Default Clock Settings
The device is shipped with following fuse settings:

• Calibrated Internal 8MHz Oscillator (see CKSEL bits on page 33)
• Longest possible start-up time (see SUT bit on page 32)
• System clock prescaler set to 8 (see CKDIV8 fuse bit on page 224)

The default setting gives a 1MHz system clock and ensures all users can make their desired
clock source setting using an in-system or high-voltage programmer.

6.3 System Clock Prescaler
The ATtiny1634 system clock can be divided by setting the “CLKPR – Clock Prescale Register”
on page 33. This feature can be used to decrease power consumption when the requirement for
processing power is low. This can be used with all clock source options, and it will affect the
clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH
are divided by a factor as shown in Table 6-4 on page 34.

6.3.1 Switching Prescaler Setting
When switching between prescaler settings, the System Clock Prescaler ensures that no glitch
occurs in the clock system and that no intermediate frequency is higher than neither the clock
frequency corresponding to the previous setting, nor the clock frequency corresponding to the
new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler - even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

6.4 Clock Output Buffer
The device can output the system clock on the CLKO pin. To enable the output, the CKOUT_IO
bit has to be programmed. The CKOUT fuse determines the initial value of the CKOUT_IO bit
that is loaded to the CLKSR register when the device is powered up or has been reset. The
clock output can be switched at run-time by setting the CKOUT_IO bit in CLKSR as described in
chapter “CLKSR – Clock Setting Register” on page 32.

This mode is suitable when the chip clock is used to drive other circuits on the system. Note that
the clock will not be output during reset and that the normal operation of the I/O pin will be over-
ridden when the fuse is programmed. Any clock source, including the internal oscillators, can be
selected when the clock is output on CLKO. If the System Clock Prescaler is used, it is the
divided system clock that is output.
31
8303D–AVR–06/12

6.5 Register Description

6.5.1 CLKSR – Clock Setting Register

• Bit 7 – OSCRDY: Oscillator Ready
This bit is set when oscillator time-out is complete. When OSCRDY is set the oscillator is stable
and the clock source can be changed safely.

• Bit 6 – CSTR: Clock Select Trigger
This bit triggers the clock selection. It can be used to enable the oscillator in advance and select
the clock source, before the oscillator is stable.

If CSTR is set at the same time as the CKSEL bits are written, the contents are directly copied to
the CKSEL register and the system clock is immediately switched.

If CKSEL bits are written without setting CSTR, the oscillator selected by the CKSEL bits is
enabled, but the system clock is not switched yet.

• Bit 5 – CKOUT_IO: Clock Output
This bit enables the clock output buffer. The CKOUT fuse determines the initial value of the
CKOUT_IO bit that is loaded to the CLKSR register when the device is powered up or has been
reset

• Bit 4 – SUT: Start-Up Time
The SUT and CKSEL bits define the start-up time of the device, as shown in Table 6-2, below.
The initial value of the SUT bit is determined by the SUT fuse. The SUT fuse is loaded to the
SUT bit when the device is powered up or has been reset.

Note: 1. Device start-up time from power-down sleep mode.
2. When BOD has been disabled by software, the wake-up time from sleep mode will be approx-

imately 60µs to ensure the BOD is working correctly before MCU continues executing code.

Bit 7 6 5 4 3 2 1 0

0x32 (0x52) OSCRDY CSTR CKOUT_IO SUT CKSEL3 CKSEL2 CKSEL1 CKSEL0 CLKSR
Read/Write R W R R R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Table 6-2. Device Start-up Times

SUT CKSEL Clock From Power-Down (1)(2) From Reset (3)

0 (4)

0000 External 6 CK 22 CK + 16ms

0010 (4) Internal 8MHz 6 CK 20 CK + 16ms

0100 Internal 32kHz 6 CK 22 CK + 16ms

0001
0011

0101 ... 0111
Reserved

1XX0 Ceramic resonator (5) 258 CK (6) 274 CK + 16ms

1XX1 Crystal oscillator 16K CK 16K CK + 16 ms

1
0000 ... 0111

1XX1 Reserved

1XX0 Ceramic resonator 1K CK (7) 1K CK +16ms
32
8303D–AVR–06/12

ATtiny1634

ATtiny1634
3. Device start-up time after reset.
4. The device is shipped with this option selected.
5. This option is not suitable for use with crystals.
6. This option should not be used when operating close to the maximum frequency of the device,

and only if frequency stability at start-up is not important for the application.
7. This option is intended for use with ceramic resonators and will ensure frequency stability at

start-up. It can also be used with crystals when not operating close to the maximum frequency
of the device, and if frequency stability at start-up is not important for the application.

• Bits 3:0 – CKSEL[3:0]: Clock Select Bits
These bits select the clock source of the system clock and can be written at run-time. The clock
system ensures glitch free switching of the clock source. CKSEL fuses determine the initial
value of the CKSEL bits when the device is powered up or reset.

The clock alternatives are shown in Table 6-3 below.

Note: 1. For all fuses “1” means unprogrammed and “0” means programmed.
2. This is the default setting. The device is shipped with this fuse combination.

To avoid unintentional switching of clock source, a protected change sequence must be followed
to change the CKSEL bits, as follows:

1. Write the signature for change enable of protected I/O register to register CCP.
2. Within four instruction cycles, write the CKSEL bits with the desired value.

6.5.2 CLKPR – Clock Prescale Register

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

Table 6-3. Device Clocking Options

 CKSEL[3:0] (1) Frequency Device Clocking Option

0000 Any External Clock (see page 28)

0010 8MHz Calibrated Internal 8MHz Oscillator (see page 29) (2)

0100 32kHz Internal 32kHz Ultra Low Power (ULP) Oscillator (see page 29)

00X1
0101 ... 0111 — Reserved

100X 0.4...0.9MHz

Crystal Oscillator / Ceramic Resonator (see page 30)
101X 0.9...3MHz

110X 3...8MHz

111X > 8MHz

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
33
8303D–AVR–06/12

• Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 6-4 on page 34.

To avoid unintentional changes of clock frequency, a protected change sequence must be fol-
lowed to change the CLKPS bits:

1. Write the signature for change enable of protected I/O register to register CCP.
2. Within four instruction cycles, write the desired value to CLKPS bits.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

Note: 1. This is the initial value when CKDIV8 fuse has been unprogrammed.
2. This is the initial value when CKDIV8 fuse has been programmed. The device is shipped with

the CKDIV8 Fuse programmed.

The initial value of clock prescaler bits is determined by the CKDIV8 fuse (see Table 22-5 on
page 224). When CKDIV8 is unprogrammed, the system clock prescaler is set to one and, when
programmed, to eight. Any value can be written to the CLKPS bits regardless of the CKDIV8
fuse bit setting.

Table 6-4. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1 (1)

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8 (2)

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1

Reserved

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
34
8303D–AVR–06/12

ATtiny1634

ATtiny1634
When CKDIV8 is programmed the initial value of CLKPS bits give a clock division factor of eight
at start up. This is useful when the selected clock source has a higher frequency than allowed
under present operating conditions. See “Speed” on page 245.

6.5.3 OSCCAL0 – Oscillator Calibration Register

Although temperature slope and frequency are in part controlled by registers OSCTCAL0A and
OSCTCAL0B it is possible to replace factory calibration by simply writing to this register alone.
Optimal accuracy is achieved when OSCCAL0, OSCTAL0A and OSCTCAL0B are calibrated
together.

• Bits 7:0 – CAL0[7:0]: Oscillator Calibration Value
The oscillator calibration register is used to trim the internal 8MHz oscillator and to remove pro-
cess variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the factory calibrated frequency
specified in Table 24-2 on page 245.

The application software can write this register to change the oscillator frequency. The oscillator
can be calibrated to frequencies specified in Table 24-2 on page 245. Calibration outside that
range is not guaranteed.

The lowest oscillator frequency is reached by programming these bits to zero. Increasing the
register value increases the oscillator frequency. A typical frequency response curve is shown in
“Calibrated Oscillator Frequency (Nominal = 8MHz) vs. OSCCAL Value” on page 285.

Note that this oscillator is used to time EEPROM and Flash write accesses, and write times will
be affected accordingly. Do not calibrate to more than 8.8MHz if EEPROM or Flash is to be writ-
ten. Otherwise, the EEPROM or Flash write may fail.

To ensure stable operation of the MCU the calibration value should be changed in small steps. A
step change in frequency of more than 2% from one cycle to the next can lead to unpredictable
behavior. Also, the difference between two consecutive register values should not exceed 0x20.
If these limits are exceeded the MCU must be kept in reset during changes to clock frequency.

6.5.4 OSCTCAL0A – Oscillator Temperature Calibration Register A

This register is used for changing the temperature slope and frequency of the internal 8MHz
oscillator. A pre-programmed calibration value is automatically written to this register during chip
reset, giving the factory calibrated frequency specified in Table 24-2 on page 245.

This register need not be updated if factory defaults in OSCCAL0 are overwritten although opti-
mal accuracy is achieved when OSCCAL0, OSCTAL0A and OSCTCAL0B are calibrated
together.

• Bit 7 – Sign of Oscillator Temperature Calibration Value
This is the sign bit of the calibration data.

Bit 7 6 5 4 3 2 1 0

(0x63) CAL07 CAL06 CAL05 CAL04 CAL03 CAL02 CAL01 CAL00 OSCCAL0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x64) Oscillator Temperature Calibration Data OSCTCAL0A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value
35
8303D–AVR–06/12

• Bits 6:0 – Oscillator Temperature Calibration Value
These bits contain the numerical value of the calibration data.

6.5.5 OSCTCAL0B – Oscillator Temperature Calibration Register B

A pre-programmed calibration value is automatically written to this register during chip reset, giv-
ing the factory calibrated frequency specified in Table 24-2 on page 245.

This register need not be updated if factory defaults in OSCCAL0 are overwritten although opti-
mal accuracy is achieved when OSCCAL0, OSCTAL0A and OSCTCAL0B are calibrated
together.

• Bit 7 – Temperature Compensation Enable
When this bit is set the contents of registers OSCTCAL0A and OSCTCAL0B are used for cali-
bration. When this bit is cleared the temperature compensation hardware is disabled and
registers OSCTCAL0A and OSCTCAL0B have no effect on the frequency of the internal 8MHz
oscillator.

Note that temperature compensation has a large effect on oscillator frequency and, hence, when
enabled or disabled the OSCCAL0 register must also be adjusted to compensate for this effect.

• Bits 6:0 – Temperature Compensation Step Adjust
These bits control the step size of the calibration data in OSCTCAL0A. The largest step size is
achieved for 0x00 and smallest step size for 0x7F.

6.5.6 OSCCAL1 – Oscillator Calibration Register

• Bits 7:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 1:0 – CAL1[1:0]: Oscillator Calibration Value
The oscillator calibration register is used to trim the internal 32kHz oscillator and to remove pro-
cess variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the factory calibrated frequency as
specified in Table 24-3 on page 246.

The application software can write this register to change the oscillator frequency. The oscillator
can be calibrated to frequencies as specified in Table 24-3 on page 246. Calibration outside that
range is not guaranteed.

The lowest oscillator frequency is reached by programming these bits to zero. Increasing the
register value increases the oscillator frequency.

Bit 7 6 5 4 3 2 1 0

(0x65) Oscillator Temperature Calibration Data OSCTCAL0B
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x66) – – – – – – CAL11 CAL10 OSCCAL1
Read/Write R R R R R R R/W R/W

Initial Value Device Specific Calibration Value
36
8303D–AVR–06/12

ATtiny1634

ATtiny1634
7. Power Management and Sleep Modes
The high performance and industry leading code efficiency makes the AVR microcontrollers an
ideal choise for low power applications. In addition, sleep modes enable the application to shut
down unused modules in the MCU, thereby saving power. The AVR provides various sleep
modes allowing the user to tailor the power consumption to the application’s requirements.

7.1 Sleep Modes
Figure 6-1 on page 27 presents the different clock systems and their distribution in ATtiny1634.
The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep
modes and the sources that may be used for wake up.

Note: 1. Start frame detection, only.
2. Start condition, only.
3. Address match interrupt, only.
4. For INT0 level interrupt, only.

To enter a sleep mode, the SE bit in MCUCR must be set and a SLEEP instruction must be exe-
cuted. The SMn bits in MCUCR select which sleep mode will be activated by the SLEEP
instruction. See Table 7-2 on page 41 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

Note that if a level triggered interrupt is used for wake-up the changed level must be held for
some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See
“External Interrupts” on page 54 for details.

Table 7-1. Active Clock Domains and Wake-up Sources in Different Sleep Modes

Sleep Mode

Oscillators Active Clock Domains Wake-up Sources
M

ai
n

C
lo

ck

S
ou

rc
e

E
na

bl
ed

cl
k C

P
U

cl
k F

LA
S

H

cl
k I

O

cl
k A

D
C

W
at

ch
do

g
In

te
rru

pt

IN
T0

 a
nd

Pi

n
C

ha
ng

e

S
P

M
/E

E
P

R
O

M
R

ea
dy

 In
te

rru
pt

AD
C

 In
te

rru
pt

U
S

A
R

T

U
S

I

TW
I S

la
ve

O
th

er
 I/

O

Idle X X X X X X X X X X X

ADC Noise
Reduction X X X X (4) X X X (1) X (2) X (3)

Standby X X X (4) X (1) X (2) X (3)

Power-down X X (4) X (1) X (2) X (3)
37
8303D–AVR–06/12

7.1.1 Idle Mode
This sleep mode basically halts clkCPU and clkFLASH, while allowing other clocks to run. In Idle
Mode, the CPU is stopped but the following peripherals continue to operate:

• Watchdog and interrupt system
• Analog comparator, and ADC
• USART, TWI, and timer/counters

Idle mode allows the MCU to wake up from external triggered interrupts as well as internal ones,
such as Timer Overflow. If wake-up from the analog comparator interrupt is not required, the
analog comparator can be powered down by setting the ACD bit in ACSRA. See “ACSRA – Ana-
log Comparator Control and Status Register” on page 194. This will reduce power consumption
in Idle mode.

If the ADC is enabled, a conversion starts automatically when this mode is entered.

7.1.2 ADC Noise Reduction Mode
This sleep mode halts clkI/O, clkCPU, and clkFLASH, while allowing other clocks to run. In ADC
Noise Reduction mode, the CPU is stopped but the following peripherals continue to operate:

• Watchdog (if enabled), and external interrupts
• ADC
• USART start frame detector, and TWI

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered.

The following events can wake up the MCU:

• Watchdog reset, external reset, and brown-out reset
• External level interrupt on INT0, and pin change interrupt
• ADC conversion complete interrupt, and SPM/EEPROM ready interrupt
• USI start condition, USART start frame detection, and TWI address match

7.1.3 Power-Down Mode
This sleep mode halts all generated clocks, allowing operation of asynchronous modules, only.
In Power-down Mode the oscillator is stopped, while the following peripherals continue to
operate:

• Watchdog (if enabled), external interrupts

The following events can wake up the MCU:

• Watchdog reset, external reset, and brown-out reset
• External level interrupt on INT0, and pin change interrupt
• USI start condition, USART start frame detection, and TWI address match
38
8303D–AVR–06/12

ATtiny1634

ATtiny1634
7.1.4 Standby Mode
Standby Mode is identical to power-down, with the exception that the oscillator is kept running.
From Standby mode, the device wakes up in six clock cycles.

7.2 Power Reduction Register
The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 41, pro-
vides a method to reduce power consumption by stopping the clock to individual peripherals.
When the clock for a peripheral is stopped then:

• The current state of the peripheral is frozen.
• The associated registers can not be read or written.
• Resources used by the peripheral will remain occupied.

The peripheral should in most cases be disabled before stopping the clock. Clearing the PRR bit
wakes up the peripheral and puts it in the same state as before shutdown.

Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the over-
all power consumption. In all other sleep modes, the clock is already stopped.

7.3 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

7.3.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. See “Analog to Digital Converter” on page 197 for
details on ADC operation.

7.3.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. See “Analog Comparator” on page 193 for details on how to config-
ure the Analog Comparator.

7.3.3 Brown-out Detector
If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODPD Fuses, it will be enabled in all sleep modes, and
hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. If the Brown-out Detector is needed in the application, this module
can also be set to Sampled BOD mode to save power. See “Brown-Out Detection” on page 45
for details on how to configure the Brown-out Detector.
39
8303D–AVR–06/12

7.3.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. See Internal Bandgap
Reference in Table 24-5 on page 247 for details on the start-up time.

7.3.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute to the total current consumption. See
“Watchdog Timer” on page 47 for details on how to configure the Watchdog Timer.

7.3.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device
will be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. See the section “Digital Input Enable and Sleep Modes” on page 63 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or has an
analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Register (DIDR0). See
“DIDR0 – Digital Input Disable Register 0” on page 213 for details.

7.3.7 On-chip Debug System
If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the
main clock source is enabled and hence always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.

7.4 Register Description

7.4.1 MCUCR – MCU Control Register
The MCU Control Register contains control bits for power management.

• Bits 7, 3:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) – SM1 SM0 SE – – ISC01 ISC00 MCUCR
Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
40
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bits 6:5 – SM[1:0]: Sleep Mode Select Bits 1 and 0
These bits select between available sleep modes, as shown in Table 7-2.

Note: 1. Only recommended with external crystal or resonator selected as clock source

• Bit 4 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

7.4.2 PRR – Power Reduction Register
The Power Reduction Register provides a method to reduce power consumption by allowing
peripheral clock signals to be disabled.

• Bit 7 – Res: Reserved Bit
This bit is a reserved bit and will always read zero.

• Bit 6 – PRTWI: Power Reduction Two-Wire Interface
Writing a logic one to this bit shuts down the Two-Wire Interface module.

• Bit 5 – PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

• Bit 4 – PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0
is enabled, operation will continue like before the shutdown.

• Bit 3 – PRUSI: Power Reduction USI
Writing a logic one to this bit shuts down the USI by stopping the clock to the module. When
waking up the USI again, the USI should be re initialized to ensure proper operation.

• Bit 2 – PRUSART1: Power Reduction USART1
Writing a logic one to this bit shuts down the USART1 module. When the USART1 is enabled,
operation will continue like before the shutdown.

Table 7-2. Sleep Mode Select

SM1 SM0 Sleep Mode

0 0 Idle

0 1 ADC Noise Reduction

1 0 Power-down

1 1 Standby(1)

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – PRTWI PRTIM1 PRTIM0 PRUSI PRUSART1 PRUSART0 PRADC PRR
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
41
8303D–AVR–06/12

• Bit 1 – PRUSART0: Power Reduction USART0
Writing a logic one to this bit shuts down the USART0 module. When the USART0 is enabled,
operation will continue like before the shutdown.

• Bit 0 – PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot be used when the ADC is shut down.
42
8303D–AVR–06/12

ATtiny1634

ATtiny1634
8. System Control and Reset

8.1 Resetting the AVR
During reset, all I/O registers are set to their initial values, and the program starts execution from
the Reset Vector. The instruction placed at the Reset Vector should be a JMP (two-word, direct
jump) instruction to the reset handling routine, although other one- or two-word jump instructions
can be used. If the program never enables an interrupt source, the interrupt vectors are not
used, and regular program code can be placed at these locations.

The circuit diagram in Figure 8-1 shows the reset logic. Electrical parameters of the reset cir-
cuitry are defined in section “System and Reset” on page 247.

Figure 8-1. Reset Logic

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts.

8.2 Reset Sources
The ATtiny1634 has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT)

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length when RESET function is enabled

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out
Reset threshold (VBOT) and the Brown-out Detector is enabled

8.2.1 Power-on Reset
A Power-on Reset (POR) pulse is generated by an on-chip detection circuit. The detection level
is defined in “System and Reset” on page 247. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a
failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the

DATA BUS

RESET FLAG REGISTERRESET FLAG REGISTER
(RSTFLR)(RSTFLR)

POWER-ONPOWER-ON
RESET CIRCUITRESET CIRCUIT

PULL-UPPULL-UP
RESISTORRESISTOR

BODLEVEL2...0BODLEVEL2...0

VCCCC

SPIKESPIKE
FILTERFILTER

RESETRESET

EXTERNALEXTERNAL
RESET CIRCUITRESET CIRCUIT

BROWN OUTBROWN OUT
RESET CIRCUITRESET CIRCUIT

RSTDISBLRSTDISBL

WATCHDOGWATCHDOG
TIMERTIMER

DELAYDELAY
COUNTERSCOUNTERS

S

R

Q

WATCHDOGWATCHDOG
OSCILLATOROSCILLATOR

CLOCKCLOCK
GENERATORGENERATOR

B
O

R
F

P
O

R
F

E
X

T
R

F

W
D

R
F

INTERNALINTERNAL
RESETRESET

CKCK

TIMEOUTTIMEOUT

COUNTER RESETCOUNTER RESET
43
8303D–AVR–06/12

device is kept in reset after VCC rise. The reset signal is activated again, without any delay, when
VCC decreases below the detection level.

Figure 8-2. MCU Start-up, RESET Tied to VCC

Figure 8-3. MCU Start-up, RESET Extended Externally

8.2.2 External Reset
An External Reset is generated by a low level on the RESET pin if enabled. Reset pulses longer
than the minimum pulse width (see section “System and Reset” on page 247) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the
delay counter starts the MCU after the time-out period – tTOUT – has expired.

External reset is ignored during Power-on start-up count. After Power-on reset the internal reset
is extended only if RESET pin is low when the initial Power-on delay count is complete. See Fig-
ure 8-2 and Figure 8-3.

V

TIME-OUT

RESET

RESET

TOUT

INTERNAL

t

V POT

V RST

CC

V

TIME-OUT

TOUT

TOUT

INTERNAL

CC

t

V POT

V RST

> t

RESET

RESET
44
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 8-4. External Reset During Operation

8.2.3 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse. On the falling edge of this
pulse, the delay timer starts counting the time-out period tTOUT. See page 47 for details on oper-
ation of the Watchdog Timer and Table 24-5 on page 247 for details on reset time-out.

Figure 8-5. Watchdog Reset During Operation

8.2.4 Brown-Out Detection
The Brown-Out Detection (BOD) circuit monitors that the VCC level is kept above a configurable
trigger level, VBOT. When the BOD is enabled, a BOD reset will be given when VCC falls and
remains below the trigger level for the length of the detection time, tBOD. The reset is kept active
until VCC again rises above the trigger level.

CC

CK

CC
45
8303D–AVR–06/12

Figure 8-6. Brown-out Detection reset.

The BOD circuit will not detect a drop in VCC unless the voltage stays below the trigger level for
the detection time, tBOD (see “System and Reset” on page 247).

The BOD circuit has three modes of operation:

• Disabled: In this mode of operation VCC is not monitored and, hence, it is recommended only
for applications where the power supply remains stable.

• Enabled: In this mode the VCC level is continuously monitored. If VCC drops below VBOT for at
least tBOD a brown-out reset will be generated.

• Sampled: In this mode the VCC level is sampled on each negative edge of a 1kHz clock that
has been derived from the 32kHz ULP oscillator. Between each sample the BOD is turned
off. Compared to the mode where BOD is constantly enabled this mode of operation reduces
power consumption but fails to detect drops in VCC between two positive edges of the 1kHz
clock. When a brown-out is detected in this mode, the BOD circuit is set to enabled mode to
ensure that the device is kept in reset until VCC has risen above VBOT . The BOD will return to
sampled mode after reset has been released and the fuses have been read in.

The BOD mode of operation is selected using BODACT and BODPD fuse bits. The BODACT
fuse bits determine how the BOD operates in active and idle mode, as shown in Table 8-1.

Table 8-1. Setting BOD Mode of Operation in Active and Idle Modes

BODACT1 BODACT0 Mode of Operation

0 0 Reserved

0 1 Sampled

1 0 Enabled

1 1 Disabled

VCC

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

tBOD
46
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The BODPD fuse bits determine the mode of operation in all sleep modes except idle mode, as
shown in Table 8-2.

See “Fuse Bits” on page 223.

8.3 Internal Voltage Reference
ATtiny1634 features an internal bandgap reference. This reference is used for Brown-out Detec-
tion, and it can be used as an input to the Analog Comparator or the ADC. The bandgap voltage
varies with supply voltage and temperature.

8.3.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset” on page 247. To save power, the reference is not
always turned on. The reference is on during the following situations:

1. When the BOD is enabled (see “Brown-Out Detection” on page 45).
2. When the internal reference is connected to the Analog Comparator (by setting the

ACBG bit in ACSRA).
3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

8.4 Watchdog Timer
The Watchdog Timer is clocked from the internal 32kHz ultra low power oscillator (see page 29).
By controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 8-5 on page 51. The WDR – Watchdog Reset – instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs. Ten
different clock cycle periods can be selected to determine the reset period. If the reset period
expires without another Watchdog Reset, the ATtiny1634 resets and executes from the Reset
Vector. For timing details on the Watchdog Reset, refer to Table 8-5 on page 51.

The Wathdog Timer can also be configured to generate an interrupt instead of a reset. This can
be very helpful when using the Watchdog to wake-up from Power-down.

Table 8-2. Setting BOD Mode of Operation in Sleep Modes Other Than Idle

BODPD1 BODPD0 Mode of Operation

0 0 Reserved

0 1 Sampled

1 0 Enabled

1 1 Disabled
47
8303D–AVR–06/12

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 8-3 See “Timed
Sequences for Changing the Configuration of the Watchdog Timer” on page 48 for details.

Figure 8-7. Watchdog Timer

8.4.1 Timed Sequences for Changing the Configuration of the Watchdog Timer
The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

• Safety Level 1
In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the
WDE bit to one without any restriction. A timed sequence is needed when disabling an
enabled Watchdog Timer. To disable an enabled Watchdog Timer, the following procedure
must be followed:

a. Write the signature for change enable of protected I/O registers to register CCP
b. Within four instruction cycles, in the same operation, write WDE and WDP bits

• Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as
one. A timed sequence is needed when changing the Watchdog Time-out period. To change
the Watchdog Time-out, the following procedure must be followed:

a. Write the signature for change enable of protected I/O registers to register CCP
b. Within four instruction cycles, write the WDP bit. The value written to WDE is

irrelevant

Table 8-3. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON
Safety
Level

WDT Initial
State

How to Disable the
WDT

How to Change Time-
out

Unprogrammed 1 Disabled Timed sequence No limitations

Programmed 2 Enabled Always enabled Timed sequence

O
S

C
/5

12

O
S

C
/1

K

O
S

C
/2

K

O
S

C
/4

K

O
S

C
/8

K

O
S

C
/1

6K

O
S

C
/3

2K

O
S

C
/6

4K

O
S

C
/1

28
K

O
S

C
/2

56
K

MCU RESET

WATCHDOG
PRESCALER

32 kHz
ULP OSCILLATOR

WATCHDOG

RESET

WDP0

WDP1

WDP2

WDP3

WDE

MUX
48
8303D–AVR–06/12

ATtiny1634

ATtiny1634
8.4.2 Code Examples
The following code example shows how to turn off the WDT. The example assumes that inter-
rupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during
execution of these functions.

Note: See “Code Examples” on page 7.

8.5 Register Description

8.5.1 MCUSR – MCU Status Register
The MCU Status Register provides information on which reset source caused an MCU Reset.

• Bits 7:4 – Res: Reserved Bits
These bits are reserved bits in the ATtiny1634 and will always read as zero.

• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

Assembly Code Example

WDT_off:

wdr

; Clear WDRF in RSTFLR

in r16, RSTFLR

andi r16, ~(1<<WDRF)

out RSTFLR, r16

; Write signature for change enable of protected I/O register

ldi r16, 0xD8

out CCP, r16

; Within four instruction cycles, turn off WDT

ldi r16, (0<<WDE)

out WDTCSR, r16

ret

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – – WDRF BORF EXTRF PORF MCUSR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
49
8303D–AVR–06/12

To make use of the Reset Flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the Reset Flags.

8.5.2 WDTCSR – Watchdog Timer Control and Status Register

• Bit 7 – WDIF: Watchdog Timeout Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 – WDIE: Watchdog Timeout Interrupt Enable
When this bit is written to one, WDE is cleared, and the I-bit in the Status Register is set, the
Watchdog Time-out Interrupt is enabled. In this mode the corresponding interrupt is executed
instead of a reset if a timeout in the Watchdog Timer occurs.

If WDE is set, WDIE is automatically cleared by hardware when a time-out occurs. This is useful
for keeping the Watchdog Reset security while using the interrupt. After the WDIE bit is cleared,
the next time-out will generate a reset. To avoid the Watchdog Reset, WDIE must be set after
each interrupt.

• Bit 4 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny1634 and will always read as zero.

• Bit 3 – WDE: Watchdog Enable
This bit enables and disables the Watchdog Timer. See “Timed Sequences for Changing the
Configuration of the Watchdog Timer” on page 48.

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) WDIF WDIE WDP3 – WDE WDP2 WDP1 WDP0 WDTCSR
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 8-4. Watchdog Timer Configuration

WDE WDIE Watchdog Timer State Action on Time-out

0 0 Stopped None

0 1 Running Interrupt

1 0 Running Reset

1 1 Running Interrupt
50
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bits 5, 2:0 – WDP[3:0]: Watchdog Timer Prescaler 3 - 0
The WDP[3:0] bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in
Table 8-5.

Note: 1. If selected, one of the valid settings below 0b1010 will be used.

Table 8-5. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0 WDT Oscillator Cycles Typical Time-out @VCC = 5V

0 0 0 0 512 cycles 16 ms

0 0 0 1 1K cycles 32 ms

0 0 1 0 2K cycles 64 ms

0 0 1 1 4K cycles 0.125 s

0 1 0 0 8K cycles 0.25 s

0 1 0 1 16K cycles 0.5 s

0 1 1 0 32K cycles 1.0 s

0 1 1 1 64K cycles 2.0 s

1 0 0 0 128K cycles 4.0 s

1 0 0 1 256K cycles 8.0 s

1 0 1 0

Reserved(1)

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
51
8303D–AVR–06/12

9. Interrupts
This section describes the specifics of the interrupt handling as performed in ATtiny1634. For a
general explanation of the AVR interrupt handling, see “Reset and Interrupt Handling” on page
12.

9.1 Interrupt Vectors
The interrupt vectors of ATtiny1634 are described in Table 9-1, below.

Table 9-1. Reset and Interrupt Vectors

Vector No. Program Address Label Interrupt Source

1 0x0000 RESET External Pin, Power-on Reset,
Brown-out Reset, Watchdog Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 PCINT0 Pin Change Interrupt Request 0

4 0x0006 PCINT1 Pin Change Interrupt Request 1

5 0x0008 PCINT2 Pin Change Interrupt Request 2

6 0x000A WDT Watchdog Time-out

7 0x000C TIM1_CAPT Timer/Counter1 Input Capture

8 0x000E TIM1_COMPA Timer/Counter1 Compare Match A

9 0x0010 TIM1_COMPB Timer/Counter1 Compare Match B

10 0x0012 TIM1_OVF Timer/Counter1 Overflow

11 0x0014 TIM0_COMPA Timer/Counter0 Compare Match A

12 0x0016 TIM0_COMPB Timer/Counter0 Compare Match B

13 0x0018 TIM0_OVF Timer/Counter0 Overflow

14 0x001A ANA_COMP Analog Comparator

15 0x001C ADC_READY ADC Conversion Complete

16 0x001E USART0_RXS USART0 Rx Start

17 0x0020 USART0_RXC USART0 Rx Complete

18 0x0022 USART0_DRE USART0 Data Register Empty

19 0x0024 USART0_TXC USART0 Tx Complete

20 0x0026 USART1_RXS USART1 Rx Start

21 0x0028 USART1_RXC USART1 Rx Complete

22 0x002A USART1_DRE USART1 Data Register Empty

23 0x002C USART1_TXC USART1 Tx Complete

24 0x002E USI_STR USI START

25 0x0030 USI_OVF USI Overflow

26 0x0032 TWI Two-Wire Interface

27 0x0034 EE_RDY EEPROM Ready

28 0x0036 QTRIP QTRIP QTouch
52
8303D–AVR–06/12

ATtiny1634

ATtiny1634
In case the program never enables an interrupt source, the Interrupt Vectors will not be used
and, consequently, regular program code can be placed at these locations.

A typical and general setup for interrupt vector addresses in ATtiny1634 is shown in the program
example below.

Note: See “Code Examples” on page 7.

Assembly Code Example

.org 0x0000 ;Set address of next statement

jmp RESET ; Address 0x0000

jmp INT0_ISR ; Address 0x0002

jmp PCINT0_ISR ; Address 0x0004

jmp PCINT1_ISR ; Address 0x0006

jmp PCINT2_ISR ; Address 0x0008

jmp WDT_ISR ; Address 0x000A

jmp TIM1_CAPT_ISR ; Address 0x000C

jmp TIM1_COMPA_ISR ; Address 0x000E

jmp TIM1_COMPB_ISR ; Address 0x0010

jmp TIM1_OVF_ISR ; Address 0x0012

jmp TIM0_COMPA_ISR ; Address 0x0014

jmp TIM0_COMPB_ISR ; Address 0x0016

jmp TIM0_OVF_ISR ; Address 0x0018

jmp ANA_COMP_ISR ; Address 0x001A

jmp ADC_ISR ; Address 0x001C

jmp USART0_RXS_ISR ; Address 0x001E

jmp USART0_RXC_ISR ; Address 0x0020

jmp USART0_DRE_ISR ; Address 0x0022

jmp USART0_TXC_ISR ; Address 0x0024

jmp USART1_RXS_ISR ; Address 0x0026

jmp USART1_RXC_ISR ; Address 0x0028

jmp USART1_DRE_ISR ; Address 0x002A

jmp USART1_TXC_ISR ; Address 0x002C

jmp USI_START_ISR ; Address 0x002E

jmp USI_OVF_ISR ; Address 0x0030

jmp TWI_ISR ; Address 0x0032

jmp EE_RDY_ISR ; Address 0x0034

jmp QTRIP_ISR ; Address 0x0036

RESET: ; Main program start

<instr> ; Address 0x0038

...
53
8303D–AVR–06/12

9.2 External Interrupts
External Interrupts are triggered by the INT0 pin, or by any of the PCINTn pins. Note that, if
enabled, the interrupts will trigger even if the INTn or PCINTn pins are configured as outputs.
This feature provides a way of generating software interrupts.

The pin change interrupts trigger as follows:

• Pin Change Interrupt 0 (PCI0): triggers if any enabled PCINT[7:0] pin toggles
• Pin Change Interrupt 1 (PCI1): triggers if any enabled PCINT[11:8] pin toggles
• Pin Change Interrupt 2 (PCI2): triggers if any enabled PCINT[17:12] pin toggles

Registers PCMSK0, PCMSK1, and PCMSK2 control which pins contribute to the pin change
interrupts.

Pin change interrupts on PCINT[17:0] are detected asynchronously, which means that these
interrupts can be used for waking the part also from sleep modes other than Idle mode.

External interrupt INT0 can be triggered by a falling or rising edge, or a low level. See “MCUCR
– MCU Control Register” on page 40. When INT0 is enabled and configured as level triggered,
the interrupt will trigger as long as the pin is held low.

Note that recognition of falling or rising edge interrupts on INT0 requires the presence of an I/O
clock, as described in “Clock System” on page 27.

9.2.1 Low Level Interrupt
A low level interrupt on INT0 is detected asynchronously. This means that the interrupt source
can be used for waking the part also from sleep modes other than Idle (the I/O clock is halted in
all sleep modes except Idle).

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL fuses, as described
in “Clock System” on page 27.

If the low level on the interrupt pin is removed before the device has woken up then program
execution will not be diverted to the interrupt service routine but continue from the instruction fol-
lowing the SLEEP command.

9.2.2 Pin Change Interrupt Timing
A timing example of a pin change interrupt is shown in Figure 9-1.
54
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 9-1. Timing of pin change interrupts

clk

PCINT(0)

pin_lat

pin_sync

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync
pcint_syn

pin_lat
D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0) 0

x

55
8303D–AVR–06/12

9.3 Register Description

9.3.1 MCUCR – MCU Control Register

• Bits 1:0 – ISC0[1:0]: Interrupt Sense Control 0 Bit 1 and Bit 0
External Interrupt 0 is triggered by activity on pin INT0, provided that the SREG I-flag and the
corresponding interrupt mask are set. The conditions required to trigger the interrupt are defined
in Table 9-2.

Note: 1. If low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

2. The value on the INT0 pin is sampled before detecting edges. If edge or toggle interrupt is
selected, pulses that last longer than one clock period will generate an interrupt. Shorter
pulses are not guaranteed to generate an interrupt.

9.3.2 GIMSK – General Interrupt Mask Register

• Bits 7, 2:0 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 6 – INT0: External Interrupt Request 0 Enable
The external interrupt for pin INT0 is enabled when this bit and the I-bit in the Status Register
(SREG) are set. The trigger conditions are set with the ISC0n bits.

Activity on the pin will cause an interrupt request even if INT0 has been configured as an output.

• Bit 5 – PCIE2: Pin Change Interrupt Enable 2
When this bit and the I-bit of SREG are set the Pin Change Interrupt 2 is enabled. Any change
on an enabled PCINT[17:12] pin will cause a PCINT2 interrupt. See Table 9-1 on page 52.

Each pin can be individually enabled. See “PCMSK2 – Pin Change Mask Register 2” on page
58.

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) – SM1 SM0 SE – – ISC01 ISC00 MCUCR
Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 9-2. External Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request (1)

0 1 Any logical change on INT0 generates an interrupt request (2)

1 0 The falling edge of INT0 generates an interrupt request (2)

1 1 The rising edge of INT0 generates an interrupt request (2)

Bit 7 6 5 4 3 2 1 0

0x3C (0x5C) – INT0 PCIE2 PCIE1 PCIE0 – – – GIMSK
Read/Write R R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
56
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bit 4 – PCIE1: Pin Change Interrupt Enable 1
When this bit and the I-bit of SREG are set the Pin Change Interrupt 1 is enabled. Any change
on an enabled PCINT[11:8] pin will cause a PCINT1 interrupt. See Table 9-1 on page 52.

Each pin can be individually enabled. See “PCMSK1 – Pin Change Mask Register 1” on page
58.

• Bit 3 – PCIE0: Pin Change Interrupt Enable 0
When this bit and the I-bit of SREG are set the Pin Change Interrupt 0 is enabled. Any change
on an enabled PCINT[7:0] pin will cause a PCINT0 interrupt. See Table 9-1 on page 52.

Each pin can be individually enabled. See “PCMSK0 – Pin Change Mask Register 0” on page
58.

9.3.3 GIFR – General Interrupt Flag Register

• Bits 7, 2:0 – Res: Reserved Bits
These bits are reserved and will always read as zero.

• Bit 6 – INTF0: External Interrupt Flag 0
This bit is set when activity on INT0 has triggered an interrupt request. Provided that the I-bit in
SREG and the INT0 bit in GIMSK are set, the MCU will jump to the corresponding interrupt
vector.

The flag is cleared when the interrupt service routine is executed. Alternatively, the flag can be
cleared by writing a logical one to it.

This flag is always cleared when INT0 is configured as a level interrupt.

• Bit 5 – PCIF2: Pin Change Interrupt Flag 2
This bit is set when a logic change on any PCINT[17:12] pin has triggered an interrupt request.
Provided that the I-bit in SREG and the PCIE2 bit in GIMSK are set, the MCU will jump to the
corresponding interrupt vector.

The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared
by writing a logical one to it.

• Bit 4 – PCIF1: Pin Change Interrupt Flag 1
This bit is set when a logic change on any PCINT[11:8] pin has triggered an interrupt request.
Provided that the I-bit in SREG and the PCIE1 bit in GIMSK are set, the MCU will jump to the
corresponding interrupt vector.

The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared
by writing a logical one to it.

• Bit 3 – PCIF0: Pin Change Interrupt Flag 0
This bit is set when a logic change on any PCINT[7:0] pin has triggered an interrupt request.
Provided that the I-bit in SREG and the PCIE0 bit in GIMSK are set, the MCU will jump to the
corresponding interrupt vector.

Bit 7 6 5 4 3 2 1 0

0x3B (0x5B) – INTF0 PCIF2 PCIF1 PCIF0 – – – GIFR
Read/Write R R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
57
8303D–AVR–06/12

The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared
by writing a logical one to it.

9.3.4 PCMSK2 – Pin Change Mask Register 2

• Bits 7:6 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 5:0 – PCINT[17:12]: Pin Change Enable Mask 17:12
Each PCINTn bit selects if the pin change interrupt of the corresponding I/O pin is enabled. Pin
change interrupt on a pin is enabled by setting the mask bit for the pin (PCINTn) and the corre-
sponding group bit (PCIEn) in GIMSK.

When this bit is cleared the pin change interrupt on the corresponding pin is disabled.

9.3.5 PCMSK1 – Pin Change Mask Register 1

• Bits 7:4 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bits 3:0 – PCINT[11:8]: Pin Change Enable Mask 11:8
Each PCINTn bit selects if the pin change interrupt of the corresponding I/O pin is enabled. Pin
change interrupt on a pin is enabled by setting the mask bit for the pin (PCINTn) and the corre-
sponding group bit (PCIEn) in GIMSK.

When this bit is cleared the pin change interrupt on the corresponding pin is disabled.

9.3.6 PCMSK0 – Pin Change Mask Register 0

• Bits 7:0 – PCINT[7:0]: Pin Change Enable Mask 7:0
Each PCINTn bit selects if the pin change interrupt of the corresponding I/O pin is enabled. Pin
change interrupt on a pin is enabled by setting the mask bit for the pin (PCINTn) and the corre-
sponding group bit (PCIEn) in GIMSK.

When this bit is cleared the pin change interrupt on the corresponding pin is disabled.

Bit 7 6 5 4 3 2 1 0

0x29 (0x49) – – PCINT17 PCINT16 PCINT15 PCINT14 PCINT13 PCINT12 PCMSK2
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) – – – – PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
58
8303D–AVR–06/12

ATtiny1634

ATtiny1634
10. I/O Ports

10.1 Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Most output buffers have symmetrical drive characteristics with both high sink and source
capability, while some are asymmetrical and have high sink and standard source capability. The
pin driver is strong enough to drive LED displays directly. All port pins have individually select-
able pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection
diodes to both VCC and Ground as indicated in Figure 10-1 on page 59. See “Electrical Charac-
teristics” on page 243 for a complete list of parameters.

Figure 10-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “” on page 75.

Four I/O memory address locations are allocated for each port, one each for the Data Register –
PORTx, Data Direction Register – DDRx, Pull-up Enable Register – PUEx, and the Port Input
Pins – PINx. The Port Input Pins I/O location is read only, while the Data Register, the Data
Direction Register, and the Pull-Up Enable Register are read/write. However, writing a logic one
to a bit in the PINx Register, will result in a toggle in the corresponding bit in the Data Register.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
60. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 64. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
59
8303D–AVR–06/12

10.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 10-2. General Digital I/O(1)

Note: 1. WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, and SLEEP are common to all ports.

10.2.1 Configuring the Pin
Each port pin consists of four register bits: DDxn, PORTxn, PUExn, and PINxn. As shown in
“Register Description” on page 75, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, the PUExn bits at the PUEx I/O address, and the PINxn
bits at the PINx I/O address.

clk

RPx

RRx

RDx

WDx

SYNCHRONIZER

clkI/O: I/O CLOCK

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WEx

REx

RESET

Q

Q D

CLR

PUExn

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

RDx: READ DDRx

WEx: WRITE PUEx
REx: READ PUEx

WPx: WRITE PINx REGISTER
60
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

The pull-up resistor is activated, if the PUExn is written logic one. To switch the pull-up resistor
off, PUExn has to be written logic zero.

Table 10-1 summarizes the control signals for the pin value.

Port pins are tri-stated when a reset condition becomes active, even when no clocks are
running.

10.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

10.2.3 Break-Before-Make Switching
In Break-Before-Make mode, switching the DDRxn bit from input to output introduces an imme-
diate tri-state period lasting one system clock cycle, as indicated in Figure 10-3. For example, if
the system clock is 4MHz and the DDRxn is written to make an output, an immediate tri-state
period of 250 ns is introduced before the value of PORTxn is seen on the port pin.

To avoid glitches it is recommended that the maximum DDRxn toggle frequency is two system
clock cycles. The Break-Before-Make mode applies to the entire port and it is activated by the
BBMx bit. For more details, see “PORTCR – Port Control Register” on page 75.

When switching the DDRxn bit from output to input no immediate tri-state period is introduced.

Table 10-1. Port Pin Configurations

DDxn PORTxn PUExn I/O Pull-up Comment

0 X 0 Input No Tri-state (hi-Z)

0 X 1 Input Yes Sources current if pulled low externally

1 0 0 Output No Output low (sink)

1 0 1 Output Yes

NOT RECOMMENDED.
Output low (sink) and internal pull-up active.
Sources current through the internal pull-up
resistor and consumes power constantly

1 1 0 Output No Output high (source)

1 1 1 Output Yes Output high (source) and internal pull-up active
61
8303D–AVR–06/12

Figure 10-3. Switching Between Input and Output in Break-Before-Make-Mode

10.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 10-2 on page 60, the PINxn Register bit and the preced-
ing latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure 10-4
shows a timing diagram of the synchronization when reading an externally applied pin value.
The maximum and minimum propagation delays are denoted tpd,max and tpd,min respectively.

Figure 10-4. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-5 on page 63. The out instruction sets the “SYNC LATCH” signal at the

out DDRx, r16 nop

0x02 0x01

SYSTEM CLK

INSTRUCTIONS

DDRx

intermediate tri-state cycle

out DDRx, r17

0x55PORTx

0x01

intermediate tri-state cycle

Px0

Px1

tri-state

tri-statetri-state

0x01r17

0x02r16

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min
62
8303D–AVR–06/12

ATtiny1634

ATtiny1634
positive edge of the clock. In this case, the delay tpd through the synchronizer is one system
clock period.

Figure 10-5. Synchronization when Reading a Software Assigned Pin Value

10.2.5 Digital Input Enable and Sleep Modes
As shown in Figure 10-2 on page 60, the digital input signal can be clamped to ground at the
input of the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down and Standby modes to avoid high power consumption if some input
signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 64.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

10.2.6 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pulldown. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

10.2.7 Program Examples
The following code example shows how to set port A pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 5 as input with a pull-up assigned to port pin 4. The resulting pin values

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd
63
8303D–AVR–06/12

are read back again, but as previously discussed, a nop instruction is included to be able to read
back the value recently assigned to some of the pins.

Note: Two temporary registers are used to minimize the time from pull-ups are set on pins 0, 1 and 4,
until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

Note: See “Code Examples” on page 7.

10.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. In Figure 10-6
below is shown how the port pin control signals from the simplified Figure 10-2 on page 60 can
be overridden by alternate functions.

Assembly Code Example

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PA4)|(1<<PA1)|(1<<PA0)

ldi r17,(1<<DDA3)|(1<<DDA2)|(1<<DDA1)|(1<<DDA0)

out PORTA,r16

out DDRA,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINA

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTA = (1<<PA4)|(1<<PA1)|(1<<PA0);

DDRA = (1<<DDA3)|(1<<DDA2)|(1<<DDA1)|(1<<DDA0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINA;

...
64
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 10-6. Alternate Port Functions(1)

Note: 1. WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, and SLEEP are common to all ports. All other signals are unique for each pin.

The illustration in the figure above serves as a generic description applicable to all port pins in
the AVR microcontroller family. Some overriding signals may not be present in all port pins.

clk

RPx

RRx
WRx

RDx

WDx

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx

REx: READ PUEx
WEx: WRITE PUEx

WEx

REx

RESET

Q

Q D

CLR

PUExn
65
8303D–AVR–06/12

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 10-6 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 10-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
PUExn = 0b1.

PUOV Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the PUExn Register
bits.

DDOE Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE Port Toggle
Override Enable If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt-trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO Analog
Input/Output

This is the Analog Input/Output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.
66
8303D–AVR–06/12

ATtiny1634

ATtiny1634
10.3.1 Alternate Functions of Port A
The Port A pins with alternate function are shown in Table 10-3.

• Port A, Bit 0 – AREF/PCINT0
• AREF: External Analog Reference for ADC. Pullup and output driver are disabled on PA0

when the pin is used as an external reference or Internal Voltage Reference with external
capacitor at the AREF pin.

• PCINT0: Pin Change Interrupt source 0. The PA0 pin can serve as an external interrupt
source for pin change interrupt 0.

• Port A, Bit 1 – AIN0/PCINT1
• AIN0: Analog Comparator Positive Input. Configure the port pin as input with the internal pull-

up switched off to avoid the digital port function from interfering with the function of the
Analog Comparator.

• PCINT1: Pin Change Interrupt source 1. The PA1 pin can serve as an external interrupt
source for pin change interrupt 0.

Table 10-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA0
AREF: External Analog Reference
PCINT0: Pin Change Interrupt 0, Source 0

PA1
AIN0: Analog Comparator, Positive Input
PCINT1: Pin Change Interrupt 0, Source 1

PA2
AIN1: Analog Comparator, Negative Input
PCINT2: Pin Change Interrupt 0, Source 2

PA3

ADC0: ADC Input Channel 0
SNS: Sense Line for Capacitive Measurement
T1: Timer/Counter1 Clock Source
PCINT3: Pin Change Interrupt 0, Source 3

PA4
ADC1: ADC Input Channel 1
T0: Timer/Counter0 Clock Source.
PCINT4: Pin Change Interrupt 0, Source 4

PA5
ADC2: ADC Input Channel 2
OC0B: Timer/Counter0 Compare Match B Output
PCINT5: Pin Change Interrupt 0, Source 5

PA6
ADC3: ADC Input Channel 3
OC1B: Timer/Counter1 Compare Match B Output
PCINT6: Pin Change Interrupt 0, Source 6

PA7
ADC4: ADC Input Channel 4
RXD0: UART0 Data Receiver
PCINT7: Pin Change Interrupt 0, Source 7
67
8303D–AVR–06/12

• Port A, Bit 2 – AIN1/PCINT2
• AIN1: Analog Comparator Negative Input. Configure the port pin as input with the internal

pull-up switched off to avoid the digital port function from interfering with the function of the
Analog Comparator.

• PCINT2: Pin Change Interrupt source 2. The PA2 pin can serve as an external interrupt
source for pin change interrupt 0.

• Port A, Bit 3 – ADC0/T1/PCINT3
• ADC0: Analog to Digital Converter, Channel 0.
• SNS: Sense line for capacitive measurement using QTouch technology. Connected to CS.
• T1: Timer/Counter1 counter source.
• PCINT3: Pin Change Interrupt source 3. The PA3 pin can serve as an external interrupt

source for pin change interrupt 0.

• Port A, Bit 4 – ADC1/T0/PCINT4
• ADC1: Analog to Digital Converter, Channel 1.
• T0: Timer/Counter0 counter source.
• PCINT4: Pin Change Interrupt source 4. The PA4 pin can serve as an external interrupt

source for pin change interrupt 0.

• Port A, Bit 5 – ADC2/OC0B/PCINT5
• ADC2: Analog to Digital Converter, Channel 2.
• OC0B: Output Compare Match output: The PA5 pin can serve as an external output for the

Timer/Counter0 Compare Match B. The PA5 pin has to be configured as an output (DDA5 set
(one)) to serve this function. The OC0B pin is also the output pin for the PWM mode timer
function.

• PCINT5: Pin Change Interrupt source 5. The PA5 pin can serve as an external interrupt
source for pin change interrupt 0.

• Port A, Bit 6 – ADC3/OC1B/PCINT6
• ADC3: Analog to Digital Converter, Channel 3.
• OC1B, Output Compare Match output: The PA6 pin can serve as an external output for the

Timer/Counter1 Compare Match B. The pin has to be configured as an output (DDA6 set
(one)) to serve this function. This is also the output pin for the PWM mode timer function.

• PCINT6: Pin Change Interrupt source 6. The PA6 pin can serve as an external interrupt
source for pin change interrupt 0.

• Port A, Bit 7 – ADC4/RXD0/PCINT7
• ADC4: Analog to Digital Converter, Channel 4.
• RXD0: UART0 Data Receiver.
• PCINT7: Pin Change Interrupt source 7. The PA7 pin can serve as an external interrupt

source for pin change interrupt 0.
68
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Table 10-4 and Table 10-6 relate the alternate functions of Port A to the overriding signals
shown in Figure 10-6 on page 65.

Table 10-4. Overriding Signals for Alternate Functions in PA[7:5]

Signal
Name PA7/ADC4/RXD0/PCINT7 PA6/ADC3/OC1B/PCINT6 PA5/ADC2/OC0B/PCINT5

PUOE RXD0_OE 0 0

PUOV PUEA7 0 0

DDOE RXD0_EN 0 0

DDOV 0 0 0

PVOE 0 OC1B Enable OC0B Enable

PVOV 0 OC1B OC0B

PTOE 0 0 0

DIEOE (PCINT7 • PCIE0) + ADC4D (PCINT6 • PCIE0) + ADC3D (PCINT5 • PCIE) + ADC2D

DIEOV PCINT7 • PCIE0 PCINT6 • PCIE0 PCINT5 • PCIE0

DI RXD0/PCINT7 Input PCINT6 Input PCINT5 Input

AIO ADC4 Input ADC3 Input ADC2 Input

Table 10-5. Overriding Signals for Alternate Functions in PA[4:2]

Signal
Name PA4/ADC1/T0/PCINT4 PA3/ADC0/SNS/T1/PCINT3 PA2/AIN1/PCINT2

PUOE 0 0 0

PUOV 0 0 0

DDOE 0 0 0

DDOV 0 0 0

PVOE 0 0 0

PVOV 0 0 0

PTOE 0 0 0

DIEOE (PCINT4 • PCIE0) + ADC1D (PCINT3 • PCIE0) + ADC0D (PCINT2 • PCI0) + AIN1D

DIEOV PCINT4 • PCIE0 PCINT3 • PCIE0 PCINT2 • PCIE0

DI T0/PCINT4 input T1/PCINT3 Input PCINT2 Input

AIO ADC1 Input ADC0 or SNS Input Analog Comparator
Negative Input
69
8303D–AVR–06/12

10.3.2 Alternate Functions of Port B
The Port B pins with alternate function are shown in Table 10-7.

• Port B, Bit 0 – ADC5/TXD0/PCINT8
• ADC5: Analog to Digital Converter, Channel 5.
• TXD0: UART0 Data Transmitter.
• PCINT8: Pin Change Interrupt source 8. The PB0 pin can serve as an external interrupt

source for pin change interrupt 1.

Table 10-6. Overriding Signals for Alternate Functions in PA[1:0]

Signal
Name PA1/AIN0/PCINT1 PA0/AREF/PCINT0

PUOE 0 RESET • (REFS1 • REFS0 + REFS1 • REFS0)

PUOV 0 0

DDOE 0 RESET • (REFS1 • REFS0 + REFS1 • REFS0)

DDOV 0 0

PVOE 0 RESET • (REFS1 • REFS0 + REFS1 • REFS0)

PVOV 0 0

PTOE 0 0

DIEOE (PCINT1 • PCIE0) + AIN0D (PCINT0 • PCIE0) + AREFD

DIEOV PCINT1 • PCIE0 PCINT0 • PCIE0

DI PCINT1 Input PCINT0 Input

AIO Analog Comparator Positive Input Analog Reference

Table 10-7. Port B Pins Alternate Functions

Port Pin Alternate Function

PB0
ADC5: ADC Input Channel 5
TXD0: UART0 Data Transmitter
PCINT8: Pin Change Interrupt 1, Source 8

PB1

ADC6: ADC Input Channel 6
RXD1: UART1 Data Receiver
DI: USI Data Input (Three Wire Mode)
SDA: USI Data Input (Two Wire Mode)
PCINT9: Pin Change Interrupt 1, Source 9

 PB2

ADC7: ADC Input Channel 7
TXD1: UART1 Data Transmitter
DO: USI Data Output (Three Wire Mode)
PCINT10:Pin Change Interrupt 1, Source 10

PB3
ADC8: ADC Input Channel 8
OC1A: Timer/Counter1 Compare Match A output
PCINT11:Pin Change Interrupt 1, Source 11
70
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Port B, Bit 1 – ADC6/RXD1/DI/SDA/PCINT9
• ADC6: Analog to Digital Converter, Channel 6.
• RXD1: UART1 Data Receiver.
• DI: Data Input in USI Three-wire mode. USI Three-wire mode does not override normal port

functions, so pin must be configure as an input for DI function.
• SDA: Two-wire mode Serial Interface Data.
• PCINT9: Pin Change Interrupt source 9. The PB1 pin can serve as an external interrupt

source for pin change interrupt 1.

• Port B, Bit 2 – ADC7/TXD1/DO/PCINT10
• ADC7: Analog to Digital Converter, Channel 7.
• TXD1: UART1 Data Transmitter.
• DO: Data Output in USI Three-wire mode. Data output (DO) overrides PORTB2 value and it

is driven to the port when the data direction bit DDB2 is set (one). However the PORTB2 bit
still controls the pullup, enabling pullup if direction is input and PORTB2 is set (one).

• PCINT10: Pin Change Interrupt source 10. The PB2 pin can serve as an external interrupt
source for pin change interrupt 1.

• Port B, Bit 3 – ADC8/OC1A/PCINT11
• ADC8: Analog to Digital Converter, Channel 8.
• OC1A, Output Compare Match output: The PB3 pin can serve as an external output for the

Timer/Counter1 Compare Match A. The pin has to be configured as an output (DDB3 set
(one)) to serve this function. This is also the output pin for the PWM mode timer function.

• PCINT11: Pin Change Interrupt source 11. The PB3 pin can serve as an external interrupt
source for pin change interrupt 1.

Table 10-8 on page 71 and Table 10-9 on page 72 relate the alternate functions of Port B to the
overriding signals shown in Figure 10-6 on page 65.

Table 10-8. Overriding Signals for Alternate Functions in PB[3:2]

Signal
Name PB3/ADC8/OC1A/PCINT11 PB2/ADC7/TXD1/DO/PCINT10

PUOE 0 TXD1_OE

PUOV 0 0

DDOE 0 TXD1_OE

DDOV 0 0

PVOE OC1A Enable TXD1_OE + USI_THREE_WIRE

PVOV OC1A (TXD1_OE • TXD_PVOV) + (TXD1_OE • DO)

PTOE 0 0

DIEOE PCINT11 • PCIE1 + ADC8D PCINT10 • PCIE1 + ADC7D

DIEOV PCINT11 • PCIE1 PCINT10 • PCIE1 + INT0

DI PCINT11 Input PCINT10 Input

AIO ADC8 Input ADC7 Input
71
8303D–AVR–06/12

10.3.3 Alternate Functions of Port C
The Port C pins with alternate function are shown in Table 10-7.

Table 10-9. Overriding Signals for Alternate Functions in PB[1:0]

Signal
Name PB1/ADC5/RXD1/DI/SDA/PCINT9 PB0/ADC4/TXD0/PCINT8

PUOE RXD1_OE TXD0_OE

PUOV PUEB1 0

DDOE RXD1_EN + USI_TWO_WIRE TXD0_OE

DDOV RXD1_EN) • (SDA + PORTB1) • DDB1

PVOE RXD1_EN) • USI_TWO_WIRE • DDB1 TXD0_OE

PVOV 0 TXD0_PVOV

PTOE 0 0

DIEOE USISIE + (PCINT9 • PCIE1) + ADC6D (PCINT8 • PCIE1) + ADC5D

DIEOV USISIE + (PCINT9 • PCIE1) PCINT8 • PCIE1

DI RXD1/DI/SDA/PCINT9 Input PCINT8 Input

AIO ADC6 Input ADC5 Input

Table 10-10. Port C Pins Alternate Functions

Port Pin Alternate Function

PC0

ADC9: ADC Input Channel 9
XCK0: USART 0 Transfer Clock (Synchronous Mode)
OC0A: Timer/Counter0 Compare Match A Output
PCINT12:Pin Change Interrupt 2, Source 12

PC1

ADC10: ADC Input Channel 10
XCK1: USART 1 Transfer Clock (Synchronous Mode)
USCK: USI Clock (Three-Wire Mode)
SCL: USI Clock (Two-Wire Mode)
ICP1: Timer/Counter1 Input Capture Pin
PCINT13:Pin Change Interrupt 2, Source 13

PC2

ADC11: ADC Input Channel 11
INT0: External Interrupt 0 Input
CLKO: System Clock Output
PCINT14:Pin Change Interrupt 2, Source 14

PC3
RESET: Reset Pin
dW: debugWire I/O
PCINT15:Pin Change Interrupt 2, Source 15

PC4
XTAL2: Crystal Oscillator Output
PCINT16:Pin Change Interrupt 2, Source 16

PC5
XTAL1: Crystal Oscillator Input
CLKI: External Clock Input
PCINT17:Pin Change Interrupt 2, Source 17
72
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Port C, Bit 0 – ADC9/XCK0/OC0A/PCINT12
• ADC9: Analog to Digital Converter, Channel 9.
• XCK0: USART0 Transfer Clock used only by Synchronous Transfer mode.
• OC0A: Output Compare Match output: The PC0 pin can serve as an external output for the

Timer/Counter0 Compare Match A. The PC0 pin has to be configured as an output (DDC0
set (one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer
function.

• PCINT12: Pin Change Interrupt source 12. The PC0 pin can serve as an external interrupt
source for pin change interrupt 1.

• Port C, Bit 1 – ADC10/XCK1/USCK/SCL/ICP1/PCINT13
• ADC10: Analog to Digital Converter, Channel 10.
• XCK1: USART1 Transfer Clock used only by Synchronous Transfer mode.
• USCK: Three-wire mode Universal Serial Interface Clock.
• SCL: Two-wire mode Serial Clock for USI Two-wire mode.
• ICP1: Input Capture Pin. The PC1 pin can act as an Input Capture Pin for Timer/Counter1.
• PCINT13: Pin Change Interrupt source 13. The PC1 pin can serve as an external interrupt

source for pin change interrupt 1.

• Port C, Bit 2 – ADC11/INT0/CLKO/PCINT14
• ADC11: Analog to Digital Converter, Channel 11.
• INT0: External Interrupt Request 0.
• CLKO: System Clock Output. The system clock can be output on the PC2 pin. The system

clock will be output if the CKOUT fuse is programmed, regardless of the PORTC2 and DDC2
settings. It will also be output during reset.

• PCINT14: Pin Change Interrupt source 14. The PC2 pin can serve as an external interrupt
source for pin change interrupt 1.

• Port C, Bit 3 – RESET/dW/PCINT15
• RESET: External Reset input is active low and enabled by unprogramming (“1”) the

RSTDISBL Fuse. Pullup is activated and output driver and digital input are deactivated when
the pin is used as the RESET pin.

• dW: When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are
unprogrammed, the debugWIRE system within the target device is activated. The RESET
port pin is configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled
and becomes the communication gateway between target and emulator.

• PCINT15: Pin Change Interrupt source 15. The PC3 pin can serve as an external interrupt
source for pin change interrupt 1.

• Port C, Bit 4 – XTAL2/PCINT16
• XTAL2: Chip Clock Oscillator pin 2. Used as clock pin for all chip clock sources except

internal calibrated oscillator and external clock. When used as a clock pin, the pin can not be
used as an I/O pin. When using internal calibrated oscillator as a chip clock source, PC4
serves as an ordinary I/O pin.

• PCINT16: Pin Change Interrupt source 16. The PC4 pin can serve as an external interrupt
source for pin change interrupt 1.
73
8303D–AVR–06/12

• Port C, Bit 5 – XTAL1/CLKI/PCINT17
• XTAL1: Chip Clock Oscillator pin 1. Used for all chip clock sources except internal calibrated

oscillator. When used as a clock pin, the pin can not be used as an I/O pin. When using
internal calibrated oscillator as a chip clock source, PC5 serves as an ordinary I/O pin.

• CLKI: Clock Input from an external clock source, see “External Clock” on page 28.
• PCINT17: Pin Change Interrupt source 17. The PC5 pin can serve as an external interrupt

source for pin change interrupt 1.

Table 10-4 and Table 10-6 relate the alternate functions of Port A to the overriding signals
shown in Figure 10-6 on page 65.

Notes: 1. EXT_CLOCK = external clock is selected as system clock.
2. EXT_OSC = crystal oscillator or low frequency crystal oscillator is selected as system clock.
3. RSTDISBL is 1 when the Fuse is “0” (Programmed).
4. DebugWIRE is enabled when DWEN Fuse is programmed and Lock bits are unprogrammed.

Table 10-11. Overriding Signals for Alternate Functions in PC[5:3]

Signal
Name PC5/XTAL1/CLKI/PCINT17 PC4/XTAL2/ PCINT16 PC3/RESET/dW/ PCINT15

PUOE EXT_CLOCK (1) +
EXT_OSC (2) EXT_OSC (2) RSTDISBL(3) +

DEBUGWIRE_ENABLE (4)

PUOV 0 0 1

DDOE EXT_CLOCK (1) +
EXT_OSC (2) EXT_OSC (2) RSTDISBL(3) +

DEBUGWIRE_ENABLE (4)

DDOV 0 0 DEBUGWIRE_ENABLE (4) •
debugWire Transmit

PVOE EXT_CLOCK (1) +
EXT_OSC (2) EXT_OSC (2) RSTDISBL(3) +

DEBUGWIRE_ENABLE (4)

PVOV 0 0 0

PTOE 0 0 0

DIEOE
EXT_CLOCK (1) +
EXT_OSC (2) + (PCINT17 •
PCIE2)

EXT_OSC (2) + PCINT16 •
PCIE2

RSTDISBL(3) +
DEBUGWIRE_ENABLE (4) +
PCINT15 • PCIE2

DIEOV

(EXT_CLOCK(1) •
PWR_DOWN) +
(EXT_CLOCK (1) •
EXT_CLOCK (1) • PCINT17 •
PCIE2)

EXT_OSC (2) • PCINT16 •
PCIE2

DEBUGWIRE_ENABLE (4) +
(RSTDISBL(3) • PCINT15 •
PCIE2)

DI CLOCK/PCINT17 Input PCINT16 Input dW/PCINT15 Input

AIO XTAL1 XTAL2
74
8303D–AVR–06/12

ATtiny1634

ATtiny1634
10.4 Register Description

10.4.1 PORTCR – Port Control Register

• Bits 7:3 – Res: Reserved Bits
These bits are reserved and will always read zero.

• Bit 2 – BBMC: Break-Before-Make Mode Enable
When this bit is set the Break-Before-Make mode is activated for the entire Port C. The interme-
diate tri-state cycle is then inserted when writing DDRCn to make an output. For further
information, see “Break-Before-Make Switching” on page 61.

• Bit 1 – BBMB: Break-Before-Make Mode Enable
When this bit is set the Break-Before-Make mode is activated for the entire Port B. The interme-
diate tri-state cycle is then inserted when writing DDRBn to make an output. For further
information, see “Break-Before-Make Switching” on page 61.

Table 10-12. Overriding Signals for Alternate Functions in PC[2:0]

Signal
Name

PC2/ADC11/INT0/CLKO/
PCINT14

PC1/ADC10/XCK1/USCK/
SCL/ICP1/PCINT13

PC0/ADC9/XCK0/
OC0A/PCINT12

PUOE CKOUT_IO USI_TWO_WIRE 0

PUOV 0 0 0

DDOE CKOUT_IO USI_TWO_WIRE 0

DDOV 1 (USI_SCL_HOLD +
PORTC1) • DDC1 0

PVOE CKOUT_IO XCKO1_PVOE +
USI_TWO_WIRE • DDC1

XCKO0_PVOE + OC0A
Enable

PVOV CKOUT_IO • System Clock XCKO1_PVOV XCKO0_PVOV + OC0A

PTOE 0 USI_PTOE 0

DIEOE INT0 + (PCINT14 • PCIE2) +
ADC11D

XCK1 Input Enable +
USISIE + (PCINT13 •
PCIE2) + ADC10D

XCK0 Input Enable +
(PCINT12 • PCIE2) +
ADC9D

DIEOV INT0 + (PCINT14 • PCIE2) USISIE + (PCINT13 •
PCIE2) PCINT12 • PCIE2

DI INT0/PCINT14 input XCK1/USCK/SCL/ICP1/
PCINT13 Input XCK0/PCINT12 Input

AIO ADC11 Input ADC10 Input ADC9 Input

Bit 7 6 5 4 3 2 1 0

0x13 (0x33) – – – – – BBMC BBMB BBMA PORTCR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
75
8303D–AVR–06/12

• Bit 0 – BBMA: Break-Before-Make Mode Enable
When this bit is set the Break-Before-Make mode is activated for the entire Port A. The interme-
diate tri-state cycle is then inserted when writing DDRAn to make an output. For further
information, see “Break-Before-Make Switching” on page 61.

10.4.2 PUEA – Port A Pull-up Enable Control Register

10.4.3 PORTA – Port A Data Register

10.4.4 DDRA – Port A Data Direction Register

10.4.5 PINA – Port A Input Pins

10.4.6 PUEB – Port B Pull-up Enable Control Register

10.4.7 PORTB – Port B Data Register

10.4.8 DDRB – Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x12 (0x32) PUEA7 PUEA6 PUEA5 PUEA4 PUEA3 PUEA2 PUEA1 PUEA0 PUEA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x11 (0x31) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x10 (0x30) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0F (0x2F) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0E (0x2E) – – – – PUEB3 PUEB2 PUEB1 PUEB0 PUEB
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0D (0x2D) – – – – PORTB3 PORTB2 PORTB1 PORTB0 PORTB
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) – – – – DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
76
8303D–AVR–06/12

ATtiny1634

ATtiny1634
10.4.9 PINB – Port B Input Pins

10.4.10 PUEC – Port C Pull-up Enable Control Register

10.4.11 PORTC – Port C Data Register

10.4.12 DDRC – Port C Data Direction Register

10.4.13 PINC – Port C Input Pins

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) – – – – PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) – – PUEC5 PUEC4 PUEC3 PUEC2 PUEC1 PUEC0 PUEC
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) – – PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – – DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) – – PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 N/A N/A N/A N/A N/A N/A
77
8303D–AVR–06/12

11. 8-bit Timer/Counter0 with PWM

11.1 Features
• Two Independent Output Compare Units
• Double Buffered Output Compare Registers
• Clear Timer on Compare Match (Auto Reload)
• Glitch Free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

11.2 Overview
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 11-1 on page 78. For
the actual placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the “Register Description” on page 89.

Figure 11-1. 8-bit Timer/Counter Block Diagram

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

Detector

(From Prescaler)

clkTn
78
8303D–AVR–06/12

ATtiny1634

ATtiny1634
11.2.1 Registers
The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in Figure 11-1) signals are all visible in the
Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and
OC0B). See “Output Compare Unit” on page 80 for details. The Compare Match event will also
set the Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare
interrupt request.

11.2.2 Definitions
Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 11-1 are also used extensively throughout the document.

11.3 Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS0[2:0]) bits
located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-
caler, see “Timer/Counter Prescaler” on page 124.

11.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
11-2 on page 80 shows a block diagram of the counter and its surroundings.

Table 11-1. Definitions

Constant Description

BOTTOM The counter reaches BOTTOM when it becomes 0x00

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255)

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the
value stored in the OCR0A Register. The assignment depends on the mode of operation
79
8303D–AVR–06/12

Figure 11-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.
direction Select between increment and decrement.
clear Clear TCNT0 (set all bits to zero).
clkTn Timer/Counter clock, referred to as clkT0 in the following.
top Signalize that TCNT0 has reached maximum value.
bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS0[2:0]). When no clock source is selected (CS0[2:0] = 0)
the timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter
Control Register B (TCCR0B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare output OC0A. For more
details about advanced counting sequences and waveform generation, see “Modes of Opera-
tion” on page 83.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM0[1:0] bits. TOV0 can be used for generating a CPU interrupt.

11.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM0[2:0] bits and Compare Output mode (COM0x1:0) bits. The
max and bottom signals are used by the Waveform Generator for handling the special cases of
the extreme values in some modes of operation. See “Modes of Operation” on page 83.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clkTn

bottom

direction

clear
80
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 11-3 on page 81 shows a block diagram of the Output Compare unit.

Figure 11-3. Output Compare Unit, Block Diagram

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare
Registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR0x directly.

11.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (0x) bit. Forcing Compare Match will not set the
OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real Compare
Match had occurred (the COM0x[1:0] bits settings define whether the OC0x pin is set, cleared or
toggled).

11.5.2 Compare Match Blocking by TCNT0 Write
All CPU write operations to the TCNT0 Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

11.5.3 Using the Output Compare Unit
Since writing TCNT0 in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNT0 when using the Output Compare
Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0

OCFn x (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn[1:0]

Waveform Generator

top

FOCn

COMnX[1:0]

bottom
81
8303D–AVR–06/12

equals the OCR0x value, the Compare Match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
down-counting.

The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-
pare (0x) strobe bits in Normal mode. The OC0x Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COM0x[1:0] bits are not double buffered together with the compare value.
Changing the COM0x[1:0] bits will take effect immediately.

11.6 Compare Match Output Unit
The Compare Output mode (COM0x[1:0]) bits have two functions. The Waveform Generator
uses the COM0x[1:0] bits for defining the Output Compare (OC0x) state at the next Compare
Match. Also, the COM0x[1:0] bits control the OC0x pin output source. Figure 11-4 on page 82
shows a simplified schematic of the logic affected by the COM0x[1:0] bit setting. The I/O Regis-
ters, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port
Control Registers (DDR and PORT) that are affected by the COM0x[1:0] bits are shown. When
referring to the OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If
a system reset occur, the OC0x Register is reset to “0”.

Figure 11-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x[1:0] bits are set. However, the OC0x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

PORT

DDR

D Q

D Q

OCn
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
82
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The design of the Output Compare pin logic allows initialization of the OC0x state before the out-
put is enabled. Note that some COM0x[1:0] bit settings are reserved for certain modes of
operation, see “Register Description” on page 89

11.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0x[1:0] bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM0x[1:0] = 0 tells the Waveform Generator that no action
on the OC0x Register is to be performed on the next Compare Match. For compare output
actions in the non-PWM modes refer to Table 11-2 on page 89. For fast PWM mode, refer to
Table 11-3 on page 90, and for phase correct PWM refer to Table 11-4 on page 90.

A change of the COM0x[1:0] bits state will have effect at the first Compare Match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the 0x strobe bits.

11.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM0[2:0]) and Compare Out-
put mode (COM0x[1:0]) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM0x[1:0] bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM0x[1:0] bits control whether the output should be set, cleared, or toggled
at a Compare Match (See “Modes of Operation” on page 83).

For detailed timing information refer to Figure 11-8 on page 88, Figure 11-9 on page 88, Figure
11-10 on page 88 and Figure 11-11 on page 89 in “Timer/Counter Timing Diagrams” on page
87.

11.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM0[2:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV0 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

11.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM0[2:0] = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the Compare Match output frequency. It
also simplifies the operation of counting external events.
83
8303D–AVR–06/12

The timing diagram for the CTC mode is shown in Figure 11-5 on page 84. The counter value
(TCNT0) increases until a Compare Match occurs between TCNT0 and OCR0A, and then coun-
ter (TCNT0) is cleared.

Figure 11-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the Compare Match can
occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COM0A[1:0] = 1). The OC0A value will not be visible on the port pin unless the data direction
for the pin is set to output. The waveform generated will have a maximum frequency of 0 =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

11.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM0[2:0] = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as 0xFF when WGM0[2:0] = 3, and OCR0A when WGM0[2:0] = 7. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match
between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx[1:0] = 1)

fOCnx
fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=
84
8303D–AVR–06/12

ATtiny1634

ATtiny1634
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 11-6 on page 85. The TCNT0 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes repre-
sent Compare Matches between OCR0x and TCNT0.

Figure 11-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.
Setting the COM0x[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM0x[1:0] to three: Setting the COM0A[1:0] bits to one
allowes the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not
available for the OC0B pin (See Table 11-3 on page 90). The actual OC0x value will only be vis-
ible on the port pin if the data direction for the port pin is set as output. The PWM waveform is
generated by setting (or clearing) the OC0x Register at the Compare Match between OCR0x
and TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O
N 256⋅
------------------=
85
8303D–AVR–06/12

in a constantly high or low output (depending on the polarity of the output set by the COM0A[1:0]
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0x to toggle its logical level on each Compare Match (COM0x[1:0] = 1). The waveform
generated will have a maximum frequency of 0 = fclk_I/O/2 when OCR0A is set to zero. This fea-
ture is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

11.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM0[2:0] = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM0[2:0] = 1, and OCR0A when WGM0[2:0] = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match
between TCNT0 and OCR0x while upcounting, and set on the Compare Match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 11-7 on page 86. The TCNT0 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM out-
puts. The small horizontal line marks on the TCNT0 slopes represent Compare Matches
between OCR0x and TCNT0.

Figure 11-7. Phase Correct PWM Mode, Timing Diagram

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)

OCRnx Update
86
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x[1:0] bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x[1:0] to three: Setting the COM0A0 bits to
one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is
not available for the OC0B pin (See Table 11-4 on page 90). The actual OC0x value will only be
visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is
generated by clearing (or setting) the OC0x Register at the Compare Match between OCR0x
and TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at Com-
pare Match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 11-7 on page 86 OCn has a transition from high to low
even though there is no Compare Match. The point of this transition is to guaratee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR0A changes its value from MAX, like in Figure 11-7 on page 86. When the OCR0A value
is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of
an up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR0A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up.

11.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 11-8 on page 88 contains timing data for basic Timer/Counter operation.
The figure shows the count sequence close to the MAX value in all modes other than phase cor-
rect PWM mode.

fOCnxPCPWM
fclk_I/O
N 510⋅
------------------=
87
8303D–AVR–06/12

Figure 11-8. Timer/Counter Timing Diagram, no Prescaling

Figure 11-9 on page 88 shows the same timing data, but with the prescaler enabled.

Figure 11-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 11-10 on page 88 shows the setting of OCF0B in all modes and OCF0A in all modes
except CTC mode and PWM mode, where OCR0A is TOP.

Figure 11-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 11-11 on page 89 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode
and fast PWM mode where OCR0A is TOP.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
88
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 11-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

11.9 Register Description

11.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A[1:0]: Compare Match Output A Mode
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A[1:0]
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A[1:0] bits depends on the
WGM0[2:0] bit setting. Table 11-2 shows the COM0A[1:0] bit functionality when the WGM0[2:0]
bits are set to a normal or CTC mode (non-PWM).

Table 11-3 shows COM0A[1:0] bit functionality when WGM0[1:0] bits are set to fast PWM mode.

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A
Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 11-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match
89
8303D–AVR–06/12

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on
page 84 for more details.

Table 11-4 shows COM0A[1:0] bit functionality when WGM0[2:0] bits are set to phase correct
PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 86 for more details.

• Bits 5:4 – COM0B[1:0]: Compare Match Output B Mode
These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B[1:0]
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin
must be set in order to enable the output driver.

Table 11-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1 WGM02 = 0: Normal Port Operation, OC0A Disconnected
WGM02 = 1: Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match
Set OC0A at BOTTOM (non-inverting mode)

1 1
Set OC0A on Compare Match
Clear OC0A at BOTTOM (inverting mode)

Table 11-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0 Clear OC0A on Compare Match when up-counting. Set OC0A on
Compare Match when down-counting.

1 1 Set OC0A on Compare Match when up-counting. Clear OC0A on
Compare Match when down-counting.
90
8303D–AVR–06/12

ATtiny1634

ATtiny1634
When OC0B is connected to the pin, the function of the COM0B[1:0] bits depends on the
WGM0[2:0] bit setting. Table 11-5 shows the COM0B[1:0] bit functionality when the WGM0[2:0]
bits are set to a normal or CTC mode (non-PWM).

Table 11-6 shows COM0B[1:0] bit functionality when WGM0[2:0] bits are set to fast PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on
page 84 for more details.

Table 11-7 shows the COM0B[1:0] bit functionality when the WGM0[2:0] bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 86 for more details.

• Bits 3:2 – Res: Reserved Bits
These bits are reserved and will always read zero.

Table 11-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 11-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on Compare Match, set OC0B at BOTTOM
(non-inverting mode)

1 1 Set OC0B on Compare Match, clear OC0B at BOTTOM
(inverting mode)

Table 11-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on Compare Match when up-counting. Set OC0B on
Compare Match when down-counting.

1 1 Set OC0B on Compare Match when up-counting. Clear OC0B on
Compare Match when down-counting.
91
8303D–AVR–06/12

• Bits 1:0 – WGM0[1:0]: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 11-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page 83).

Note: 1. MAX = 0xFF
BOTTOM = 0x00

11.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A[1:0] bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A[1:0] bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B
The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

Table 11-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00
Timer/Counter
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, Phase
Correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, Phase
Correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

0x1A (0x3A) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B
Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
92
8303D–AVR–06/12

ATtiny1634

ATtiny1634
However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is
changed according to its COM0B[1:0] bits setting. Note that the FOC0B bit is implemented as a
strobe. Therefore it is the value present in the COM0B[1:0] bits that determines the effect of the
forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits
These bits are reserved bits in the ATtiny1634 and will always read as zero.

• Bit 3 – WGM02: Waveform Generation Mode
See the description in the “TCCR0A – Timer/Counter Control Register A” on page 89.

• Bits 2:0 – CS0[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

11.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

Table 11-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x19 (0x39) TCNT0[7:0] TCNT0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
93
8303D–AVR–06/12

11.9.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

11.9.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0B pin.

11.9.6 TIMSK – Timer/Counter Interrupt Mask Register

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable
When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the Timer/Counter
Interrupt Flag Register – TIFR.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR.

• Bit 0 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter0 Interrupt Flag Register – TIFR.

Bit 7 6 5 4 3 2 1 0

0x18 (0x38) OCR0A[7:0] OCR0A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) OCR0B[7:0] OCR0B
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x3A (0x5A) TOIE1 OCIE1A OCIE1B – ICIE1 OCIE0B TOIE0 OCIE0A TIMSK
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
94
8303D–AVR–06/12

ATtiny1634

ATtiny1634
11.9.7 TIFR – Timer/Counter0 Interrupt Flag Register

• Bit 2 – OCF0B: Output Compare Flag 0 B
The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),
and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM0[2:0] bit setting. See Table 11-8 on page 92
and “Waveform Generation Mode Bit Description” on page 92.

• Bit 0 – OCF0A: Output Compare Flag 0 A
The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),
and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

Bit 7 6 5 4 3 2 1 0

0x39 (0x59) TOV1 OCF1B OCF1A – ICF1 OCF0B TOV0 OCF0A TIFR
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
95
8303D–AVR–06/12

12. 16-bit Timer/Counter1

12.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

12.2 Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 12-1 on page 96. For
actual placement of I/O pins, refer to “Pinout of ATtiny1634” on page 2. CPU accessible I/O Reg-
isters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit
locations are listed in the “Register Description” on page 117.

Figure 12-1. 16-bit Timer/Counter Block Diagram

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
96
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

12.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 114. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually masked with the
Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-
put Compare Units” on page 101. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
“Analog Comparator” on page 193). The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

12.2.2 Definitions
The following definitions are used extensively throughout the section:

Table 12-1. Definitions

Constant Description

BOTTOM The counter reaches BOTTOM when it becomes 0x00

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535)

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned a fixed value or the value stored in a
register. The assignment depends on the mode of operation. See Table 12-5 on page
119
97
8303D–AVR–06/12

12.2.3 Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of 16-bit AVR
Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt
Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.
• Interrupt Vectors.

The following control bits have been renamed, but retained the same functionality and register
locations:

• PWM10 is changed to WGM10.
• PWM11 is changed to WGM11.
• CTC1 is changed to WGM12.

The following bits have been added to the 16-bit Timer/Counter Control Registers:

• 1A and 1B are added to TCCR1A.
• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect backward compatibility in some spe-
cial cases.

12.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS1[2:0]) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter Prescaler” on page 124.

12.4 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn
98
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Description of internal signals used in Figure 12-2:

Count Increment or decrement TCNT1 by 1.
Direction Select between increment and decrement.
Clear Clear TCNT1 (set all bits to zero).
clkT1 Timer/Counter clock.
TOP Signalize that TCNT1 has reached maximum value.
BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS1[2:0]). When no clock source is selected (CS1[2:0] = 0)
the timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM1[3:0]) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 105.

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM1[3:0] bits. TOV1 can be used for generating a CPU interrupt.

12.5 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 12-3 on page 100. The
elements of the block diagram that are not directly a part of the Input Capture unit are gray
shaded. The small “n” in register and bit names indicates the Timer/Counter number.
99
8303D–AVR–06/12

Figure 12-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM1[3:0]) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 114.

12.5.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
100
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSRA). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 13-2 on page 125). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

12.5.2 Noise Canceler
The noise canceler uses a simple digital filtering technique to improve noise immunity. Consecu-
tive samples are monitored in a pipeline four units deep. The signal going to the edge detecter is
allowed to change only when all four samples are equal.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled, the noise canceler introduces an
additional delay of four system clock cycles to a change applied to the input and before ICR1 is
updated.

The noise canceler uses the system clock directly and is therefore not affected by the prescaler.

12.5.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 flag is not required (if an interrupt handler is used).

12.6 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
101
8303D–AVR–06/12

(WGM1[3:0]) bits and Compare Output mode (COM1x[1:0]) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (“Modes of Operation” on page 105).

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 12-4 on page 102 shows a block diagram of the Output Compare unit. The small “n” in
the register and bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x”
indicates Output Compare unit (A/B). The elements of the block diagram that are not directly a
part of the Output Compare unit are gray shaded.

Figure 12-4. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
102
8303D–AVR–06/12

ATtiny1634

ATtiny1634
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 114.

12.6.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (1x) bit. Forcing compare match will not set the
OCF1x flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COM1x[1:0] bits settings define whether the OC1x pin is set, cleared or
toggled).

12.6.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

12.6.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (1x) strobe bits in Normal mode. The OC1x Register keeps its value even when changing
between Waveform Generation modes.

Be aware that the COM1x[1:0] bits are not double buffered together with the compare value.
Changing the COM1x[1:0] bits will take effect immediately.

12.7 Compare Match Output Unit
The Compare Output Mode (COM1x[1:0]) bits have two functions. The Waveform Generator
uses the COM1x[1:0] bits for defining the Output Compare (OC1x) state at the next compare
match. Secondly the COM1x[1:0] bits control the OC1x pin output source. Figure 12-5 on page
104 shows a simplified schematic of the logic affected by the COM1x[1:0] bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O
port control registers (DDR and PORT) that are affected by the COM1x[1:0] bits are shown.
When referring to the OC1x state, the reference is for the internal OC1x Register, not the OC1x
pin. If a system reset occur, the OC1x Register is reset to “0”.
103
8303D–AVR–06/12

Figure 12-5. Compare Match Output Unit, Schematic (non-PWM Mode)

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x[1:0] bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. See Table 12-2 on page 118, Table 12-3 on page 118
and Table 12-4 on page 118 for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x[1:0] bit settings are reserved for certain modes of
operation. See “Register Description” on page 117

The COM1x[1:0] bits have no effect on the Input Capture unit.

12.7.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x[1:0] bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x[1:0] = 0 tells the Waveform Generator that no action
on the OC1x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 12-2 on page 118. For fast PWM mode refer to
Table 12-3 on page 118, and for phase correct and phase and frequency correct PWM refer to
Table 12-4 on page 118.

A change of the COM1x[1:0] bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the 1x strobe bits.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O
104
8303D–AVR–06/12

ATtiny1634

ATtiny1634
12.8 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM1[3:0]) and Compare Out-
put mode (COM1x[1:0]) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM1x[1:0] bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM1x[1:0] bits control whether the output should be set, cleared or toggle at
a compare match (“Compare Match Output Unit” on page 103)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 112.

12.8.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM1[3:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

12.8.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM1[3:0] = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM1[3:0] = 4) or the ICR1
(WGM1[3:0] = 12). The OCR1A or ICR1 define the top value for the counter, hence also its res-
olution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-6 on page 106. The counter value
(TCNT1) increases until a compare match occurs with either OCR1A or ICR1, and then counter
(TCNT1) is cleared.
105
8303D–AVR–06/12

Figure 12-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 flag according to the register used to define the TOP value. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering
feature. If the new value written to OCR1A or ICR1 is lower than the current value of TCNT1, the
counter will miss the compare match. The counter will then have to count to its maximum value
(0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCR1A for defining TOP (WGM1[3:0] = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A[1:0] = 1). The OC1A value will not be visible on the port pin unless the data direction
for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of 1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is defined
by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

12.8.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM1[3:0] = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA[1:0] = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=
106
8303D–AVR–06/12

ATtiny1634

ATtiny1634
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the max-
imum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM1[3:0] = 5, 6, or 7), the value in ICR1
(WGM1[3:0] = 14), or the value in OCR1A (WGM1[3:0] = 15). The counter is then cleared at the
following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 12-7
on page 107. The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP.
The TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The
OC1x interrupt flag will be set when a compare match occurs.

Figure 12-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 flag is set at the same timer clock cycle as TOV1 is set when either OCR1A or
ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low

RFPWM
TOP 1+()log

2()log-----------------------------------=

TCNTn

OCRnx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)
107
8303D–AVR–06/12

value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM1x[1:0] to three (see Table 12-3 on page 118). The
actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Regis-
ter at the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x
Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x[1:0] bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A[1:0] = 1). The waveform
generated will have a maximum frequency of 1A = fclk_I/O/2 when OCR1A is set to zero (0x0000).
This feature is similar to the OC1A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.

12.8.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM1[3:0] = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=
108
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM1[3:0] = 1, 2, or 3), the value in ICR1
(WGM1[3:0] = 10), or the value in OCR1A (WGM1[3:0] = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-8 on page
109. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP.
The TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The
OC1x interrupt flag will be set when a compare match occurs.

Figure 12-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 12-8 on page 109 illustrates,

RPCPWM
TOP 1+()log

2()log-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)
109
8303D–AVR–06/12

changing the TOP actively while the Timer/Counter is running in the phase correct mode can
result in an unsymmetrical output. The reason for this can be found in the time of update of the
OCR1x Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at
TOP. This implies that the length of the falling slope is determined by the previous TOP value,
while the length of the rising slope is determined by the new TOP value. When these two values
differ the two slopes of the period will differ in length. The difference in length gives the unsym-
metrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x[1:0] to three (See Table 12-4 on page
118). The actual OC1x value will only be visible on the port pin if the data direction for the port
pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the
OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

12.8.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM1[3:0] = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 12-
8 on page 109 and Figure 12-9 on page 111).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
110
8303D–AVR–06/12

ATtiny1634

ATtiny1634
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM1[3:0] = 8), or the value in OCR1A (WGM1[3:0] = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 12-9 on page 111. The figure shows phase and fre-
quency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in
the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x interrupt flag will be
set when a compare match occurs.

Figure 12-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 flag set when TCNT1 has reached TOP.
The interrupt flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 12-9 on page 111 shows the output generated is, in contrast to the phase correct
mode, symmetrical in all periods. Since the OCR1x Registers are updated at BOTTOM, the
length of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and is therefore frequency correct.

RPFCPWM
TOP 1+()log

2()log-----------------------------------=

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)
111
8303D–AVR–06/12

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x[1:0] bits to two will produce a non-inverted PWM
and an inverted PWM output can be generated by setting the COM1x[1:0] to three (See Table
12-4 on page 118). The actual OC1x value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or
clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the coun-
ter increments, and clearing (or setting) the OC1x Register at compare match between OCR1x
and TCNT1 when the counter decrements. The PWM frequency for the output when using
phase and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

12.9 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 12-10 shows a timing diagram for the setting of OCF1x.

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 12-11 on page 113 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
112
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 12-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 12-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 flag at BOTTOM.

Figure 12-12. Timer/Counter Timing Diagram, no Prescaling

Figure 12-13 on page 114 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O
113
8303D–AVR–06/12

Figure 12-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

12.10 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
114
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Note: See “Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the
interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Examples

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...

Assembly Code Example

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret
115
8303D–AVR–06/12

Note: See “Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

C Code Example

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

Assembly Code Example

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret
116
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Note: See “Code Examples” on page 7.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNT1.

12.10.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

12.11 Register Description

12.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bits 7:6 – COM1A[1:0]: Compare Output Mode for Channel A

• Bits 5:4 – COM1B[1:0]: Compare Output Mode for Channel B
The COM1A[1:0] and COM1B[1:0] control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A[1:0] bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B[1:0] bit are written to one, the OC1B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x[1:0] bits is depen-
dent of the WGM1[3:0] bits setting.

C Code Example

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}

Bit 7 6 5 4 3 2 1 0

(0x72) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A
Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
117
8303D–AVR–06/12

Table 12-2 shows COM1x[1:0] bit functionality when WGM1[3:0] bits are set to a Normal or a
CTC mode (non-PWM).

Table 12-3 shows COM1x[1:0] bit functionality when WGM1[3:0] bits are set to fast PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See “Fast
PWM Mode” on page 106 for more details.

Table 12-4 shows COM1x[1:0] bit functionality when WGM1[3:0] bits are set to phase correct or
phase and frequency correct PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set.
“Phase Correct PWM Mode” on page 108 for more details.

Table 12-2. Compare Output Mode, non-PWM

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected

0 1 Toggle OC1A/OC1B on Compare Match

1 0 Clear OC1A/OC1B on Compare Match
(Set output to low level)

1 1 Set OC1A/OC1B on Compare Match
(Set output to high level).

Table 12-3. Compare Output Mode, Fast PWM(1)

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected

0 1 WGM13=0: Normal port operation, OC1A/OC1B disconnected
WGM13=1: Toggle OC1A on Compare Match, OC1B reserved

1 0 Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at
BOTTOM (non-inverting mode)

1 1 Set OC1A/OC1B on Compare Match, clear OC1A/OC1B at
BOTTOM (inverting mode)

Table 12-4. Compare Output Mode, Phase Correct and Phase & Frequency Correct PWM(1)

COM1A1
COM1B1

COM1A0
COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected

0 1 WGM13=0: Normal port operation, OC1A/OC1B disconnected
WGM13=1: Toggle OC1A on Compare Match, OC1B reserved

1 0 Clear OC1A/OC1B on Compare Match when up-counting
Set OC1A/OC1B on Compare Match when downcounting

1 1 Set OC1A/OC1B on Compare Match when up-counting
Clear OC1A/OC1B on Compare Match when downcounting
118
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bits 1:0 – WGM1[1:0]: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for maximum (TOP) counter
value, and what type of waveform generation to be used, see Table 12-5 on page 119. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes.
(“Modes of Operation” on page 105).

12.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

Table 12-5. Waveform Generation Modes

Mode
WGM1
[3:0]

Mode of
Operation TOP

Update of
OCR1x at

TOV1 Flag
Set on

0 0000 Normal 0xFFFF Immediate MAX

1 0001 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0010 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0011 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0100 CTC (Clear Timer on Compare) OCR1A Immediate MAX

5 0101 Fast PWM, 8-bit 0x00FF TOP TOP

6 0110 Fast PWM, 9-bit 0x01FF TOP TOP

7 0111 Fast PWM, 10-bit 0x03FF TOP TOP

8 1000 PWM, Phase & Freq. Correct ICR1 BOTTOM BOTTOM

9 1001 PWM, Phase & Freq. Correct OCR1A BOTTOM BOTTOM

10 1010 PWM, Phase Correct ICR1 TOP BOTTOM

11 1011 PWM, Phase Correct OCR1A TOP BOTTOM

12 1100 CTC (Clear Timer on Compare) ICR1 Immediate MAX

13 1101 Reserved – – –

14 1110 Fast PWM ICR1 TOP TOP

15 1111 Fast PWM OCR1A TOP TOP

Bit 7 6 5 4 3 2 1 0

(0x71) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
119
8303D–AVR–06/12

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM1[3:0] bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny1634 and will always read as zero.

• Bits 4:3 – WGM1[3:2]: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for maximum (TOP) counter
value, and what type of waveform generation to be used, see Table 12-5 on page 119. Modes of
operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes.
(“Modes of Operation” on page 105).

• Bits 2:0 – CS1[2:0]: Clock Select Bits
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
12-10 and Figure 12-11.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B
The FOC1A/FOC1B bits are only active when the WGM1[3:0] bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when

Table 12-6. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x70) FOC1A FOC1B – – – – – – TCCR1C
Read/Write W W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
120
8303D–AVR–06/12

ATtiny1634

ATtiny1634
TCCR1B is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1A/OC1B output is changed according to its COM1x[1:0] bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x[1:0] bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

12.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 114.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 114.

Bit 7 6 5 4 3 2 1 0

(0x6F) TCNT1[15:8] TCNT1H
(0x6E) TCNT1[7:0] TCNT1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) OCR1A[15:8] OCR1AH
(0x6C) OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) OCR1B[15:8] OCR1BH
(0x6A) OCR1B[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
121
8303D–AVR–06/12

12.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. “Accessing 16-bit Registers” on page 114.

12.11.8 TIMSK – Timer/Counter Interrupt Mask Register

• Bit 7 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(see “Interrupts” on page 52) is executed when the TOV1 flag, located in TIFR, is set.

• Bit 6 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1A flag, located in TIFR,
is set.

• Bit 5 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1B flag, located in TIFR,
is set.

• Bit 4 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny1634 and will always read as zero.

• Bit 3 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 52) is executed when the ICF1 Flag, located in TIFR, is set.

Bit 7 6 5 4 3 2 1 0

(0x69) ICR1[15:8] ICR1H
(0x68) ICR1[7:0] ICR1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x3A (0x5A) TOIE1 OCIE1A OCIE1B – ICIE1 OCIE0B TOIE0 OCIE0A TIMSK
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
122
8303D–AVR–06/12

ATtiny1634

ATtiny1634
12.11.9 TIFR – Timer/Counter Interrupt Flag Register

• Bit 7 – TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGM1[3:0] bits setting. In Normal and CTC modes,
the TOV1 flag is set when the timer overflows. See Table 12-5 on page 119 for the TOV1 flag
behavior when using another WGM1[3:0] bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

• Bit 6 – OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (1B) strobe will not set the OCF1B flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 5 – OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (1A) strobe will not set the OCF1A flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 4 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny1634 and will always read as zero.

• Bit 3 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM1[3:0] to be used as the TOP value, the ICF1 flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x39 (0x59) TOV1 OCF1B OCF1A – ICF1 OCF0B TOV0 OCF0A TIFR
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
123
8303D–AVR–06/12

13. Timer/Counter Prescaler
Timer/Counter0 and Timer/Counter1 share the same prescaler module, but the timer/counters
can have different prescaler settings. The description below applies to both timer/counters. Tn is
used as a general name, where n = 0, 1.

The fastest timer/counter operation is achieved when the timer/counter is clocked directly by the
system clock. Alternatively, one of four taps from the prescaler can be used as a clock source.
The prescaled clock taps are:

• fCLK_I/O/8
• fCLK_I/O/64
• fCLK_I/O/256
• fCLK_I/O/1024

Figure 13-1 shows a block diagram of the timer/counter prescaler.

Figure 13-1. Prescaler for Timer/Counter0

Note: 1. The synchronization logic on the input pin (Tn) is shown in Figure 13-2 on page 125.

13.1 Prescaler Reset
The prescaler is free running, i.e. it operates independently of the clock select logic of the
timer/counter. Since the prescaler is not affected by the clock selection of timer/counters the
state of the prescaler will have implications where a prescaled clock is used. One example of
prescaling artifacts occurs when the timer/counter is enabled while clocked by the prescaler.
The time between timer/counter enable and the first count can be from 1 to N+1 system clock
cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

PSR10

CLEAR

Tn

clk I/O

CSn0
CSn1
CSn2

clkTn

0

10-BIT PRESCALER

TIMER/COUNTER
CLOCK SOURCE

C
K

/8

C
K

/6
4

C
K

/2
56

C
K

/1
02

4

SYNC
124
8303D–AVR–06/12

ATtiny1634

ATtiny1634
To avoid prescaling artifacts, the Prescaler Reset can be used for synchronizing the timer/coun-
ter to program execution.

13.2 External Clock Source
An external clock source applied to the Tn pin can be used as timer/counter clock (clkTn). The Tn
pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector. Figure 13-2 shows a block
diagram of the Tn synchronization and edge detector logic.

Figure 13-2. Tn Pin Sampling

The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is
transparent in the high period of the internal system clock.

Depending on the Clock Select bits of the timer/counter, the edge detector generates one clkTn
pulse for each positive or negative edge it detects.

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

To ensure correct sampling, each half period of the external clock applied must be longer than
one system clock cycle. Given a 50/50 duty cycle the external clock must be guaranteed to have
less than half the system clock frequency (fExtClk < fclk_I/O/2). Since the edge detector uses sam-
pling, the Nyquist sampling theorem states that the maximum frequency of an external clock it
can detect is half the sampling frequency. However, due to variation of the system clock fre-
quency and duty cycle caused by oscillator source tolerances, it is recommended that maximum
frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clkI/O
125
8303D–AVR–06/12

13.3 Register Description

13.3.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR10 bit is kept, hence keeping the Prescaler Reset signal asserted.

This ensures that the Timer/Counter is halted and can be configured without the risk of advanc-
ing during configuration. When the TSM bit is written to zero, the PSR10 bit is cleared by
hardware, and the Timer/Counter start counting.

• Bit 0 – PSR10: Prescaler 0 Reset Timer/Counter n
When this bit is one, the Timer/Countern prescaler will be Reset. This bit is normally cleared
immediately by hardware, except if the TSM bit is set.

Bit 7 6 5 4 3 2 1 0

(0x67) TSM – – – – – – PSR10 GTCCR
Read/Write R/W R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
126
8303D–AVR–06/12

ATtiny1634

ATtiny1634
14. I2C Compatible, Two-Wire Slave Interface

14.1 Features
• I2C compatible
• SMBus compatible (with reservations)
• 100kHz and 400kHz support at low system clock frequencies
• Slew-Rate Limited Output Drivers
• Input Filter provides noise suppression
• 7-bit, and General Call Address Recognition in Hardware
• Address mask register for address masking or dual address match
• 10-bit addressing supported
• Optional Software Address Recognition Provides Unlimited Number of Slave Addresses
• Operates in all sleep modes, including Power Down
• Slave Arbitration allows support for SMBus Address Resolve Protocol (ARP)

14.2 Overview
The Two-Wire Interface (TWI) is a bi-directional, bus communication interface, which uses only
two wires. The TWI is I2C compatible and, with reservations, SMBus compatible (see “Compati-
bility with SMBus” on page 133).

A device connected to the bus must act as a master or slave.The master initiates a data transac-
tion by addressing a slave on the bus, and telling whether it wants to transmit or receive data.
One bus can have several masters, and an arbitration process handles priority if two or more
masters try to transmit at the same time.

The TWI module in ATtiny1634 implements slave functionality, only. Lost arbitration, errors, col-
lisions and clock holds on the bus are detected in hardware and indicated in separate status
flags.

Both 7-bit and general address call recognition is implemented in hardware. 10-bit addressing is
also supported. A dedicated address mask register can act as a second address match register
or as a mask register for the slave address to match on a range of addresses. The slave logic
continues to operate in all sleep modes, including Power down. This enables the slave to wake
up from sleep on TWI address match. It is possible to disable the address matching and let this
be handled in software instead. This allows the slave to detect and respond to several
addresses. Smart Mode can be enabled to auto trigger operations and reduce software
complexity.

The TWI module includes bus state logic that collects information to detect START and STOP
conditions, bus collision and bus errors. The bus state logic continues to operate in all sleep
modes including Power down.

14.3 General TWI Bus Concepts
The Two-Wire Interface (TWI) provides a simple two-wire bi-directional bus consisting of a serial
clock line (SCL) and a serial data line (SDA). The two lines are open collector lines (wired-AND),
and pull-up resistors (Rp) are the only external components needed to drive the bus. The pull-up
resistors will provide a high level on the lines when none of the connected devices are driving
the bus. A constant current source can be used as an alternative to the pull-up resistors.
127
8303D–AVR–06/12

The TWI bus is a simple and efficient method of interconnecting multiple devices on a serial bus.
A device connected to the bus can be a master or slave, where the master controls the bus and
all communication.

Figure 14-1 illustrates the TWI bus topology.

Figure 14-1. TWI Bus Topology

A unique address is assigned to all slave devices connected to the bus, and the master will use
this to address a slave and initiate a data transaction. 7-bit or 10-bit addressing can be used.

Several masters can be connected to the same bus, and this is called a multi-master environ-
ment. An arbitration mechanism is provided for resolving bus ownership between masters since
only one master device may own the bus at any given time.

A device can contain both master and slave logic, and can emulate multiple slave devices by
responding to more than one address.

Figure 14-2 shows a TWI transaction.

Figure 14-2. Basic TWI Transaction Diagram Topology

A master indicates the start of transaction by issuing a START condition (S) on the bus. An
address packet with a slave address (ADDRESS) and an indication whether the master wishes
128
8303D–AVR–06/12

ATtiny1634

ATtiny1634
to read or write data (R/W), is then sent. After all data packets (DATA) are transferred, the mas-
ter issues a STOP condition (P) on the bus to end the transaction. The receiver must
acknowledge (A) or not-acknowledge (A) each byte received.

The master provides the clock signal for the transaction, but a device connected to the bus is
allowed to stretch the low level period of the clock to decrease the clock speed.

14.3.1 Electrical Characteristics
The TWI follows the electrical specifications and timing of I2C and SMBus. See “Two-Wire Serial
Interface” on page 248 and “Compatibility with SMBus” on page 133.

14.3.2 START and STOP Conditions
Two unique bus conditions are used for marking the beginning (START) and end (STOP) of a
transaction. The master issues a START condition(S) by indicating a high to low transition on the
SDA line while the SCL line is kept high. The master completes the transaction by issuing a
STOP condition (P), indicated by a low to high transition on the SDA line while SCL line is kept
high.

Figure 14-3. START and STOP Conditions

Multiple START conditions can be issued during a single transaction. A START condition not
directly following a STOP condition, are named a Repeated START condition (Sr).

14.3.3 Bit Transfer
As illustrated by Figure 14-4 a bit transferred on the SDA line must be stable for the entire high
period of the SCL line. Consequently the SDA value can only be changed during the low period
of the clock. This is ensured in hardware by the TWI module.

Figure 14-4. Data Validity

Combining bit transfers results in the formation of address and data packets. These packets
consist of 8 data bits (one byte) with the most significant bit transferred first, plus a single bit not-
129
8303D–AVR–06/12

acknowledge (NACK) or acknowledge (ACK) response. The addressed device signals ACK by
pulling the SCL line low, and NACK by leaving the line SCL high during the ninth clock cycle.

14.3.4 Address Packet
After the START condition, a 7-bit address followed by a read/write (R/W) bit is sent. This is
always transmitted by the Master. A slave recognizing its address will ACK the address by pull-
ing the data line low the next SCL cycle, while all other slaves should keep the TWI lines
released, and wait for the next START and address. The 7-bit address, the R/W bit and the
acknowledge bit combined is the address packet. Only one address packet for each START
condition is given, also when 10-bit addressing is used.

The R/W specifies the direction of the transaction. If the R/W bit is low, it indicates a Master
Write transaction, and the master will transmit its data after the slave has acknowledged its
address. Opposite, for a Master Read operation the slave will start to transmit data after
acknowledging its address.

14.3.5 Data Packet
Data packets succeed an address packet or another data packet. All data packets are nine bits
long, consisting of one data byte and an acknowledge bit. The direction bit in the previous
address packet determines the direction in which the data is transferred.

14.3.6 Transaction
A transaction is the complete transfer from a START to a STOP condition, including any
Repeated START conditions in between. The TWI standard defines three fundamental transac-
tion modes: Master Write, Master Read, and combined transaction.

Figure 14-5 illustrates the Master Write transaction. The master initiates the transaction by issu-
ing a START condition (S) followed by an address packet with direction bit set to zero
(ADDRESS+W).

Figure 14-5. Master Write Transaction

Given that the slave acknowledges the address, the master can start transmitting data (DATA)
and the slave will ACK or NACK (A/A) each byte. If no data packets are to be transmitted, the
master terminates the transaction by issuing a STOP condition (P) directly after the address
packet. There are no limitations to the number of data packets that can be transferred. If the
slave signal a NACK to the data, the master must assume that the slave cannot receive any
more data and terminate the transaction.

Figure 14-6 illustrates the Master Read transaction. The master initiates the transaction by issu-
ing a START condition followed by an address packet with direction bit set to one (ADRESS+R).
The addressed slave must acknowledge the address for the master to be allowed to continue
the transaction.
130
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 14-6. Master Read Transaction

Given that the slave acknowledges the address, the master can start receiving data from the
slave. There are no limitations to the number of data packets that can be transferred. The slave
transmits the data while the master signals ACK or NACK after each data byte. The master ter-
minates the transfer with a NACK before issuing a STOP condition.

Figure 14-7 illustrates a combined transaction. A combined transaction consists of several read
and write transactions separated by a Repeated START conditions (Sr).

Figure 14-7. Combined Transaction

14.3.7 Clock and Clock Stretching
All devices connected to the bus are allowed to stretch the low period of the clock to slow down
the overall clock frequency or to insert wait states while processing data. A device that needs to
stretch the clock can do this by holding/forcing the SCL line low after it detects a low level on the
line.

Three types of clock stretching can be defined as shown in Figure 14-8.

Figure 14-8. Clock Stretching

If the device is in a sleep mode and a START condition is detected the clock is stretched during
the wake-up period for the device.

A slave device can slow down the bus frequency by stretching the clock periodically on a bit
level. This allows the slave to run at a lower system clock frequency. However, the overall per-
formance of the bus will be reduced accordingly. Both the master and slave device can
randomly stretch the clock on a byte level basis before and after the ACK/NACK bit. This pro-
vides time to process incoming or prepare outgoing data, or performing other time critical tasks.
131
8303D–AVR–06/12

In the case where the slave is stretching the clock the master will be forced into a wait-state until
the slave is ready and vice versa.

14.3.8 Arbitration
A master can only start a bus transaction if it has detected that the bus is idle. As the TWI bus is
a multi master bus, it is possible that two devices initiate a transaction at the same time. This
results in multiple masters owning the bus simultaneously. This is solved using an arbitration
scheme where the master loses control of the bus if it is not able to transmit a high level on the
SDA line. The masters who lose arbitration must then wait until the bus becomes idle (i.e. wait
for a STOP condition) before attempting to reacquire bus ownership. Slave devices are not
involved in the arbitration procedure.

Figure 14-9. TWI Arbitration

Figure 14-9 shows an example where two TWI masters are contending for bus ownership. Both
devices are able to issue a START condition, but DEVICE1 loses arbitration when attempting to
transmit a high level (bit 5) while DEVICE2 is transmitting a low level.

alternativeArbitration between a repeated START condition and a data bit, a STOP condition
and a data bit, or a repeated START condition and STOP condition are not allowed and will
require special handling by software.

14.3.9 Synchronization
A clock synchronization algorithm is necessary for solving situations where more than one mas-
ter is trying to control the SCL line at the same time. The algorithm is based on the same
principles used for clock stretching previously described. Figure 14-10 shows an example where
two masters are competing for the control over the bus clock. The SCL line is the wired-AND
result of the two masters clock outputs.
132
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 14-10. Clock Synchronization

A high to low transition on the SCL line will force the line low for all masters on the bus and they
start timing their low clock period. The timing length of the low clock period can vary between the
masters. When a master (DEVICE1 in this case) has completed its low period it releases the
SCL line. However, the SCL line will not go high before all masters have released it. Conse-
quently the SCL line will be held low by the device with the longest low period (DEVICE2).
Devices with shorter low periods must insert a wait-state until the clock is released. All masters
start their high period when the SCL line is released by all devices and has become high. The
device which first completes its high period (DEVICE1) forces the clock line low and the proce-
dure are then repeated. The result of this is that the device with the shortest clock period
determines the high period while the low period of the clock is determined by the longest clock
period.

14.3.10 Compatibility with SMBus
As with any other I2C-compliant interface there are known compatibility issues the designer
should be aware of before connecting a TWI device to SMBus devices. For use in SMBus envi-
ronments, the following should be noted:

• All I/O pins of an AVR, including those of the two-wire interface, have protection diodes to
both supply voltage and ground. See Figure 10-1 on page 59. This is in contradiction to the
requirements of the SMBus specifications. As a result, supply voltage mustn’t be removed
from the AVR or the protection diodes will pull the bus lines down. Power down and sleep
modes is not a problem, provided supply voltages remain.

• The data hold time of the TWI is lower than specified for SMBus.
• SMBus has a low speed limit, while I2C hasn’t. As a master in an SMBus environment, the

AVR must make sure bus speed does not drop below specifications, since lower bus speeds
trigger timeouts in SMBus slaves. If the AVR is configured a slave there is a possibility of a
bus lockup, since the TWI module doesn't identify timeouts.

14.4 TWI Slave Operation
The TWI slave is byte-oriented with optional interrupts after each byte. There are separate inter-
rupt flags for Data Interrupt and Address/Stop Interrupt. Interrupt flags can be set to trigger the
TWI interrupt, or be used for polled operation. There are dedicated status flags for indicating
ACK/NACK received, clock hold, collision, bus error and read/write direction.
133
8303D–AVR–06/12

When an interrupt flag is set, the SCL line is forced low. This will give the slave time to respond
or handle any data, and will in most cases require software interaction. Figure 14-11. shows the
TWI slave operation. The diamond shapes symbols (SW) indicate where software interaction is
required.

Figure 14-11. TWI Slave Operation

The number of interrupts generated is kept at a minimum by automatic handling of most condi-
tions. Quick Command can be enabled to auto trigger operations and reduce software
complexity.

Promiscuous Mode can be enabled to allow the slave to respond to all received addresses.

14.4.1 Receiving Address Packets
When the TWI slave is properly configured, it will wait for a START condition to be detected.
When this happens, the successive address byte will be received and checked by the address
match logic, and the slave will ACK the correct address. If the received address is not a match,
the slave will not acknowledge the address and wait for a new START condition.

The slave Address/Stop Interrupt Flag is set when a START condition succeeded by a valid
address packet is detected. A general call address will also set the interrupt flag.

A START condition immediately followed by a STOP condition, is an illegal operation and the
Bus Error flag is set.

The R/W Direction flag reflects the direction bit received with the address. This can be read by
software to determine the type of operation currently in progress.

Depending on the R/W direction bit and bus condition one of four distinct cases (1 to 4) arises
following the address packet. The different cases must be handled in software.

14.4.1.1 Case 1: Address packet accepted - Direction bit set
If the R/W Direction flag is set, this indicates a master read operation. The SCL line is forced
low, stretching the bus clock. If ACK is sent by the slave, the slave hardware will set the Data
Interrupt Flag indicating data is needed for transmit. If NACK is sent by the slave, the slave will
wait for a new START condition and address match.
134
8303D–AVR–06/12

ATtiny1634

ATtiny1634
14.4.1.2 Case 2: Address packet accepted - Direction bit cleared
If the R/W Direction flag is cleared this indicates a master write operation. The SCL line is forced
low, stretching the bus clock. If ACK is sent by the slave, the slave will wait for data to be
received. Data, Repeated START or STOP can be received after this. If NACK is indicated the
slave will wait for a new START condition and address match.

14.4.1.3 Case 3: Collision
If the slave is not able to send a high level or NACK, the Collision flag is set and it will disable the
data and acknowledge output from the slave logic. The clock hold is released. A START or
repeated START condition will be accepted.

14.4.1.4 Case 4: STOP condition received.
Operation is the same as case 1 or 2 above with one exception. When the STOP condition is
received, the Slave Address/Stop flag will be set indicating that a STOP condition and not an
address match occurred.

14.4.2 Receiving Data Packets
The slave will know when an address packet with R/W direction bit cleared has been success-
fully received. After acknowledging this, the slave must be ready to receive data. When a data
packet is received the Data Interrupt Flag is set, and the slave must indicate ACK or NACK.
After indicating a NACK, the slave must expect a STOP or Repeated START condition.

14.4.3 Transmitting Data Packets
The slave will know when an address packet, with R/W direction bit set, has been successfully
received. It can then start sending data by writing to the Slave Data register. When a data packet
transmission is completed, the Data Interrupt Flag is set. If the master indicates NACK, the slave
must stop transmitting data, and expect a STOP or Repeated START condition.

14.5 Register Description

14.5.1 TWSCRA – TWI Slave Control Register A

• Bit 7– TWSHE: TWI SDA Hold Time Enable
When this bit is set each negative transition of SCL triggers an additional internal delay, before
the device is allowed to change the SDA line. The added delay is approximately 50ns in length.
This may be useful in SMBus systems.

• Bit 6 – Res: Reserved Bit
This bit is reserved and will always read as zero.

• Bit 5 – TWDIE: TWI Data Interrupt Enable
When this bit is set and interrupts are enabled, a TWI interrupt will be generated when the data
interrupt flag (TWDIF) in TWSSRA is set.

Bit 7 6 5 4 3 2 1 0

(0x7F) TWSHE – TWDIE TWASIE TWEN TWSIE TWPME TWSME TWSCRA
Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
135
8303D–AVR–06/12

• Bit 4 – TWASIE: TWI Address/Stop Interrupt Enable
When this bit is set and interrupts are enabled, a TWI interrupt will be generated when the
address/stop interrupt flag (TWASIF) in TWSSRA is set.

• Bit 3 – TWEN: Two-Wire Interface Enable
When this bit is set the slave Two-Wire Interface is enabled.

• Bit 2 – TWSIE: TWI Stop Interrupt Enable
Setting the Stop Interrupt Enable (TWSIE) bit will set the TWASIF in the TWSSRA register when
a STOP condition is detected.

• Bit 1 – TWPME: TWI Promiscuous Mode Enable
When this bit is set the address match logic of the slave TWI responds to all received addresses.
When this bit is cleared the address match logic uses the TWSA register to determine which
address to recognize as its own.

• Bit 0 – TWSME: TWI Smart Mode Enable
When this bit is set the TWI slave enters Smart Mode, where the Acknowledge Action is sent
immediately after the TWI data register (TWSD) has been read. Acknowledge Action is defined
by the TWAA bit in TWSCRB.

When this bit is cleared the Acknowledge Action is sent after TWCMDn bits in TWSCRB are
written to 1X.

14.5.2 TWSCRB – TWI Slave Control Register B

• Bits 7:3 – Res: Reserved Bits
These bits are reserved and will always read as zero.

• Bit 2 – TWAA: TWI Acknowledge Action
This bit defines the slave's acknowledge behavior after an address or data byte has been
received from the master. Depending on the TWSME bit in TWSCRA the Acknowledge Action is
executed either when a valid command has been written to TWCMDn bits, or when the data reg-
ister has been read. Acknowledge action is also executed if clearing TWAIF flag after address
match or TWDIF flag during master transmit. See Table 14-1 for details.

Bit 7 6 5 4 3 2 1 0

(0x7E) – – – – – TWAA TWCMD1 TWCMD0 TWSCRB
Read/Write R R R R R R/W W W

Initial Value 0 0 0 0 0 0 0 0

Table 14-1. Acknowledge Action of TWI Slave

TWAA Action TWSME When

0 Send ACK
0 When TWCMDn bits are written to 10 or 11

1 When TWSD is read

1 Send NACK
0 When TWCMDn bits are written to 10 or 11

1 When TWSD is read
136
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bits 1:0 – TWCMD[1:0]: TWI Command
Writing these bits triggers the slave operation as defined by Table 14-2. The type of operation
depends on the TWI slave interrupt flags, TWDIF and TWASIF. The Acknowledge Action is only
executed when the slave receives data bytes or address byte from the master.

Writing the TWCMD bits will automatically release the SCL line and clear the TWCH and slave
interrupt flags.

TWAA and TWCMDn bits can be written at the same time. Acknowledge Action will then be exe-
cuted before the command is triggered.

The TWCMDn bits are strobed and always read zero.

14.5.3 TWSSRA – TWI Slave Status Register A

• Bit 7 – TWDIF: TWI Data Interrupt Flag
This flag is set when a data byte has been successfully received, i.e. no bus errors or collisions
have occurred during the operation. When this flag is set the slave forces the SCL line low,
stretching the TWI clock period. The SCL line is released by clearing the interrupt flags.

Writing a one to this bit will clear the flag. This flag is also automatically cleared when writing a
valid command to the TWCMDn bits in TWSCRB.

• Bit 6 – TWASIF: TWI Address/Stop Interrupt Flag
This flag is set when the slave detects that a valid address has been received, or when a trans-
mit collision has been detected. When this flag is set the slave forces the SCL line low,
stretching the TWI clock period. The SCL line is released by clearing the interrupt flags.

Table 14-2. TWI Slave Command

TWCMD[1:0] TWDIR Operation

00 X No action

01 X Reserved

10

Used to complete transaction

0 Execute Acknowledge Action, then wait for any START (S/Sr) condition

1 Wait for any START (S/Sr) condition

11

Used in response to an Address Byte (TWASIF is set)

0 Execute Acknowledge Action, then receive next byte

1 Execute Acknowledge Action, then set TWDIF

Used in response to a Data Byte (TWDIF is set)

0 Execute Acknowledge Action, then wait for next byte

1 No action

Bit 7 6 5 4 3 2 1 0

(0x7D) TWDIF TWASIF TWCH TWRA TWC TWBE TWDIR TWAS TWSSRA
Read/Write R/W R/W R R R/W R/W R R

Initial Value 0 0 0 0 0 0 0 0
137
8303D–AVR–06/12

If TWASIE in TWSCRA is set, a STOP condition on the bus will also set TWASIF. STOP condi-
tion will set the flag only if system clock is faster than the minimum bus free time between STOP
and START.

Writing a one to this bit will clear the flag. This flag is also automatically cleared when writing a
valid command to the TWCMDn bits in TWSCRB.

• Bit 5 – TWCH: TWI Clock Hold
This bit is set when the slave is holding the SCL line low.

This bit is read-only, and set when TWDIF or TWASIF is set. The bit can be cleared indirectly by
clearing the interrupt flags and releasing the SCL line.

• Bit 4 – TWRA: TWI Receive Acknowledge
This bit contains the most recently received acknowledge bit from the master.

This bit is read-only. When zero, the most recent acknowledge bit from the maser was ACK and,
when one, the most recent acknowledge bit was NACK.

• Bit 3 – TWC: TWI Collision
This bit is set when the slave was not able to transfer a high data bit or a NACK bit. When a col-
lision is detected, the slave will commence its normal operation, and disable data and
acknowledge output. No low values are shifted out onto the SDA line.

This bit is cleared by writing a one to it. The bit is also cleared automatically when a START or
Repeated START condition is detected.

• Bit 2 – TWBE: TWI Bus Error
This bit is set when an illegal bus condition has occured during a transfer. An illegal bus condi-
tion occurs if a Repeated START or STOP condition is detected, and the number of bits from the
previous START condition is not a multiple of nine.

This bit is cleared by writing a one to it.

• Bit 1 – TWDIR: TWI Read/Write Direction
This bit indicates the direction bit from the last address packet received from a master. When
this bit is one, a master read operation is in progress. When the bit is zero a master write opera-
tion is in progress.

• Bit 0 – TWAS: TWI Address or Stop
This bit indicates why the TWASIF bit was last set. If zero, a stop condition caused TWASIF to
be set. If one, address detection caused TWASIF to be set.

14.5.4 TWSA – TWI Slave Address Register

The slave address register contains the TWI slave address used by the slave address match
logic to determine if a master has addressed the slave. When using 7-bit or 10-bit address rec-
ognition mode, the high seven bits of the address register (TWSA[7:1]) represent the slave

Bit 7 6 5 4 3 2 1 0

(0x7C) TWSA[7:0] TWSA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
138
8303D–AVR–06/12

ATtiny1634

ATtiny1634
address. The least significant bit (TWSA0) is used for general call address recognition. Setting
TWSA0 enables general call address recognition logic.

When using 10-bit addressing the address match logic only support hardware address recogni-
tion of the first byte of a 10-bit address. If TWSA[7:1] is set to "0b11110nn", 'nn' will represent
bits 9 and 8 of the slave address. The next byte received is then bits 7 to 0 in the 10-bit address,
but this must be handled by software.

When the address match logic detects that a valid address byte has been received, the TWASIF
is set and the TWDIR flag is updated.

If TWPME in TWSCRA is set, the address match logic responds to all addresses transmitted on
the TWI bus. TWSA is not used in this mode.

14.5.5 TWSD – TWI Slave Data Register

The data register is used when transmitting and received data. During transfer, data is shifted
from/to the TWSD register and to/from the bus. Therefore, the data register cannot be accessed
during byte transfers. This is protected in hardware. The data register can only be accessed
when the SCL line is held low by the slave, i.e. when TWCH is set.

When a master reads data from a slave, the data to be sent must be written to the TWSD regis-
ter. The byte transfer is started when the master starts to clock the data byte from the slave. It is
followed by the slave receiving the acknowledge bit from the master. The TWDIF and the TWCH
bits are then set.

When a master writes data to a slave, the TWDIF and the TWCH flags are set when one byte
has been received in the data register. If Smart Mode is enabled, reading the data register will
trigger the bus operation, as set by the TWAA bit in TWSCRB.

Accessing TWSD will clear the slave interrupt flags and the TWCH bit.

14.5.6 TWSAM – TWI Slave Address Mask Register

• Bits 7:1 – TWSAM[7:1]: TWI Address Mask
These bits can act as a second address match register, or an address mask register, depending
on the TWAE setting.

If TWAE is set to zero, TWSAM can be loaded with a 7-bit slave address mask. Each bit in
TWSAM can mask (disable) the corresponding address bit in the TWSA register. If the mask bit
is one the address match between the incoming address bit and the corresponding bit in TWSA
is ignored. In other words, masked bits will always match.

If TWAE is set to one, TWSAM can be loaded with a second slave address in addition to the
TWSA register. In this mode, the slave will match on 2 unique addresses, one in TWSA and the
other in TWSAM.

Bit 7 6 5 4 3 2 1 0

(0x7A) TWSD[7:0] TWSD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) TWSAM[7:1] TWAE TWSAM
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
139
8303D–AVR–06/12

• Bit 0 – TWAE: TWI Address Enable
By default, this bit is zero and the TWSAM bits acts as an address mask to the TWSA register. If
this bit is set to one, the slave address match logic responds to the two unique addresses in
TWSA and TWSAM.
140
8303D–AVR–06/12

ATtiny1634

ATtiny1634
15. USI – Universal Serial Interface

15.1 Features
• Two-wire Synchronous Data Transfer (Master or Slave)
• Three-wire Synchronous Data Transfer (Master or Slave)
• Data Received Interrupt
• Wakeup from Idle Mode
• In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
• Two-wire Start Condition Detector with Interrupt Capability

15.2 Overview
The Universal Serial Interface (USI) provides basic hardware resources for serial communica-
tion. Combined with a minimum of control software, the USI allows significantly higher transfer
rates and uses less code space than solutions based on software, only. The USI hardware also
includes interrupts to minimize the processor load. A simplified block diagram of the USI is
shown in Figure 15-1.

Figure 15-1. Universal Serial Interface, Block Diagram

Incoming and outgoing data is contained in the 8-bit USI Data Register (USIDR). It is directly
accessible via the data bus but a copy of the contents is also placed in the USI Buffer Register
(USIBR) where it can be retrieved later. If USIDR is read directly, it must be done as quickly as
possible to ensure that no data is lost.

Depending on the mode operation, the most significant bit of USIDR is connected to one of two
output pins. A transparent latch between the output of USIDR and the output pin delays the
change of data output to the opposite clock edge of the data input sampling.

Regardless of the mode of operation, the serial input is always sampled from the Data Input (DI)
pin.

D
A

T
A

 B
U

S

U
S

IP
F

U
S

IT
C

U
S

IC
L
K

U
S

IC
S

0

U
S

IC
S

1

U
S

IO
IF

U
S

IO
IE

U
S

ID
C

U
S

IS
IF

U
S

IW
M

0

U
S

IW
M

1

U
S

IS
IE

B
it7

Two-wire Clock
Control Unit

DO (Output only)

DI/SDA (Input/Open Drain)

USCK/SCL (Input/Open Drain)
4-bit Counter

USIDR

USISR

D Q
LE

USICR

CLOCK
HOLD

TIM0 COMP

B
it0

[1]

3

0
1

2

3

0
1

2

0

1

2

USIBR
141
8303D–AVR–06/12

The 4-bit counter can be read and written via the data bus, and it can generate an overflow inter-
rupt. Both USIDR and the counter are clocked simultaneously by the same clock source. This
allows the counter to count the number of bits received or transmitted and generate an interrupt
when the transfer is complete.

When an external clock source is selected the counter counts both clock edges, meaning it reg-
isters the number of clock edges and not the number of data bits. The clock can be selected
from three different sources:

• The USCK pin
• Timer/Counter0 Compare Match
• Software

The two-wire clock control unit can be configured to generate an interrupt when a start condition
has been detected on the two-wire bus. By holding the clock pin low after a start condition is
detected, or after the counter overflows, the unit can also be used to generate wait states.

The USI connects to I/O pins of the device as listed in Table 15-1, below. For I/O pin placement,
see “Pinout of ATtiny1634” on page 2.

Device-specific I/O Register and bit locations are listed in the “Register Descriptions” on page
149.

15.3 Three-wire Mode
The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0 and 1, but
does not have the slave select (SS) pin functionality. However, this feature can be implemented
in software, if necessary. Pin names used in this mode are DI, DO, and USCK. See Table 15-1.

Figure 15-2 on page 143 shows two USI units operating in three-wire mode, one as master and
one as slave. The two USI Data Registers are interconnected in such a way that after eight
USCK clocks, the data in each register has been interchanged.The same clock also increments
the USI’s 4-bit counter. The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used
to determine when a transfer is completed. The clock is generated by the master device soft-
ware by toggling the USCK pin, or by writing a one to bit USITC bit in USICR.

Table 15-1.

Three-Wire Mode Two-Wire Mode Pin

Data Input (DI) Serial Data (SDA) PB1

Data Output (DO) – PB2

Clock (USCK) Serial Clock (SCL) PC1
142
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 15-2. Three-wire Mode Operation, Simplified Diagram

The three-wire mode timing is shown in Figure 15-3. At the top of the figure is a USCK cycle ref-
erence. One bit is shifted into the USI Data Register (USIDR) for each of these cycles. The
USCK timing is shown for both external clock modes. In external clock mode 0 (USICS0 = 0), DI
is sampled at positive edges, and DO is changed (USIDR is shifted by one) at negative edges.
In external clock mode 1 (USICS0 = 1) the opposite edges are used. In other words, data is
sampled at negative and output is changed at positive edges. The USI clock modes corresponds
to the SPI data mode 0 and 1.

Figure 15-3. Three-wire Mode, Timing Diagram

Referring to the timing diagram in Figure 15-3, a bus transfer involves the following steps:

1. The slave and master devices set up their data outputs and, depending on the protocol
used, enable their output drivers (mark A and B). The output is set up by writing the
data to be transmitted to USIDR. The output is enabled by setting the bit corresponding
to DO in the data direction register (DDRx) of the port. Note that there is not a preferred
order of points A and B in the figure, but both must be at least one half USCK cycle

SLAVE

MASTER

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DO

DI

USCK

PORTxn

MSB

MSB

6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8

6 5 4 3 2 1 LSB

USCK

USCK

DO

DI

DCBA E

CYCLE (Reference)
143
8303D–AVR–06/12

before point C, where the data is sampled. This is in order to ensure that the data setup
requirement is satisfied. The 4-bit counter is reset to zero.

2. The master software generates a clock pulse by toggling the USCK line twice (C and
D). The bit value on the data input pin (DI) is sampled by the USI on the first edge (C),
and the data output is changed on the opposite edge (D). The 4-bit counter counts both
edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.
4. After eight clock pulses (i.e., 16 clock edges) the counter will overflow and indicate that

the transfer has been completed. If USI Buffer Registers are not used the data bytes
that have been transferred must now be processed before a new transfer can be initi-
ated. The overflow interrupt will wake up the processor if it is set to Idle mode.
Depending on the protocol used the slave device can now set its output to high
impedance.

15.4 Two-wire Mode
The USI two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-
iting on outputs and without input noise filtering. Pin names used in this mode are SCL and SDA.
See Table 15-1 on page 142.

Figure 15-4 shows two USI units operating in two-wire mode, one as master and one as slave.
Only the physical layer is shown, since the system operation is highly dependent of the commu-
nication scheme used. The main differences between the master and slave operation at this
level is the serial clock generation which is always done by the master. Only the slave uses the
clock control unit.

Figure 15-4. Two-wire Mode Operation, Simplified Diagram

MASTER

SLAVE

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SDA

SCL

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Two-wire Clock
Control Unit

HOLD
SCL

PORTxn

SDA

SCL

VCC
144
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Clock generation must be implemented in software, but the shift operation is done automatically
in both devices. Note that clocking only on negative edges for shifting data is of practical use in
this mode. The slave can insert wait states at start or end of transfer by forcing the SCL clock
low. This means that the master must always check if the SCL line was actually released after it
has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate that the
transfer is completed. The clock is generated by the master by toggling the USCK pin via the
PORT register.

The data direction is not given by the physical layer. A protocol, like the one used by the TWI-
bus, must be implemented to control the data flow.

Figure 15-5. Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 15-5), a bus transfer involves the following steps:

1. The start condition is generated by the master by forcing the SDA low line while keep-
ing the SCL line high (A). SDA can be forced low either by writing a zero to bit 7 of
USIDR, or by setting the corresponding bit in the PORT register to zero. Note that the
data direction register (DDRx) bit must be set to one for the output to be enabled. The
start detector logic of the slave device (see Figure 15-6 on page 146) detects the start
condition and sets the USISIF Flag. The flag can generate an interrupt, if necessary.

2. The start detector will hold the SCL line low after the master has forced a negative edge
on this line (B). This allows the slave to wake up from sleep or complete other tasks
before setting up USIDR to receive the address. This is done by clearing the start con-
dition flag and resetting the counter.

3. The master sets the first bit to be transferred and releases the SCL line (C). The slave
samples the data and shifts it into USIDR at the positive edge of the SCL clock.

4. After eight bits containing slave address and data direction (read or write) have been
transferred, the slave counter overflows and the SCL line is forced low (D). If the slave
is not the one the master has addressed, it releases the SCL line and waits for a new
start condition.

5. When the slave is addressed, it holds the SDA line low during the acknowledgment
cycle before holding the SCL line low again (i.e., the USI Counter Register must be set
to 14 before releasing SCL at (D)). Depending on the R/W bit the master or slave
enables its output. If the bit is set, a master read operation is in progress (i.e., the slave
drives the SDA line) The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is
given by the master (F), or a new start condition is given.

If the slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the master does a read operation it must terminate the operation by forcing the
acknowledge bit low after the last byte transmitted.

PS ADDRESS

1 - 7 8 9

R/W ACK ACK

1 - 8 9

DATA ACK

1 - 8 9

DATA

SDA

SCL

A B D EC F
145
8303D–AVR–06/12

15.4.1 Start Condition Detector
The start condition detector is shown in Figure 15-6. The SDA line is delayed (in the range of 50
to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is only enabled
in two-wire mode.

Figure 15-6. Start Condition Detector, Logic Diagram

The start condition detector works asynchronously and can therefore wake up the processor
from power-down sleep mode. However, the protocol used might have restrictions on the SCL
hold time. Therefore, when using this feature the oscillator start-up time (set by CKSEL fuses,
see “Clock Sources” on page 28) must also be taken into consideration. Refer to the description
of the USISIF bit on page 193 for further details.

15.4.2 Clock speed considerations
Maximum frequency for SCL and SCK is fCK / 2. This is also the maximum data transmit and
receive rate in both two- and three-wire mode. In two-wire slave mode the Two-wire Clock Con-
trol Unit will hold the SCL low until the slave is ready to receive more data. This may reduce the
actual data rate in two-wire mode.

15.5 Alternative Use
The flexible design of the USI allows it to be used for other tasks when serial communication is
not needed. Below are some examples.

15.5.1 Half-Duplex Asynchronous Data Transfer
Using the USI Data Register in three-wire mode it is possible to implement a more compact and
higher performance UART than by software, only.

15.5.2 4-Bit Counter
The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the
counter is clocked externally, both clock edges will increment the counter value.

15.5.3 12-Bit Timer/Counter
Combining the 4-bit USI counter with one of the 8-bit timer/counters creates a 12-bit counter.

15.5.4 Edge Triggered External Interrupt
By setting the counter to maximum value (F) it can function as an additional external interrupt.
The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature
is selected by the USICS1 bit.

15.5.5 Software Interrupt
The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

SDA

SCL
Write(USISIF)

CLOCK
HOLD

USISIF

D Q

CLR

D Q

CLR
146
8303D–AVR–06/12

ATtiny1634

ATtiny1634
15.6 Program Examples

15.6.1 Example: SPI Master Operation
The following code demonstrates how to use the USI module as a SPI Master:

See “Code Examples” on page 7.

The code is size optimized using only eight instructions (plus return). The code example
assumes that the DO and USCK pins have been enabled as outputs in the data direction regis-
ter (DDRx). The value stored in register r16 prior to the function is called is transferred to the
slave device, and when the transfer is completed the data received from the slave is stored back
into register r16.

The first two instructions clear the USI Counter Overflow Flag and the USI counter value. The
next two instructions set three-wire mode, positive edge clock, count at USITC strobe, and tog-
gle USCK. The transfer loop is then repeated 16 times.

Assembly Code Example

SPITransfer:

out USIDR,r16

ldi r16,(1<<USIOIF)

out USISR,r16

ldi r17,(1<<USIWM0)|(1<<USICS1)|(1<<USICLK)|(1<<USITC)

SPITransfer_loop:

out USICR,r17

in r16, USISR

sbrs r16, USIOIF

rjmp SPITransfer_loop

in r16,USIDR

ret
147
8303D–AVR–06/12

15.6.2 Example: Full-Speed SPI Master
The following code demonstrates how to use the USI as an SPI master with maximum speed
(fSCK = fCK/2).

See “Code Examples” on page 7.

Assembly Code Example

SPITransfer_Fast:

out USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

out USICR,r16 ; MSB

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16

out USICR,r17

out USICR,r16 ; LSB

out USICR,r17

in r16,USIDR

ret
148
8303D–AVR–06/12

ATtiny1634

ATtiny1634
15.6.3 Example: SPI Slave Operation
The following code demonstrates how to use the USI module as a SPI Slave.

See “Code Examples” on page 7.

The code is size optimized using only eight instructions (plus return). The code example
assumes that the DO and USCK pins have been enabled as outputs in the port data direction
register. The value stored in register r16 prior to the function is called is transferred to the master
device, and when the transfer is completed the data received from the master is stored back into
the register r16.

Note that the first two instructions are for initialization, only, and need only be executed once.
These instructions set three-wire mode and positive edge clock. The loop is repeated until the
USI Counter Overflow Flag is set.

15.7 Register Descriptions

15.7.1 USICR – USI Control Register

The USI Control Register includes bits for interrupt enable, setting the wire mode, selecting the
clock and clock strobe.

• Bit 7 – USISIE: Start Condition Interrupt Enable
Setting this bit to one enables the start condition detector interrupt. If there is a pending interrupt
and USISIE and the Global Interrupt Enable Flag are set to one the interrupt will be executed
immediately. Refer to the USISIF bit description on page 152 for further details.

Assembly Code Example

init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

out USICR,r16

...

SlaveSPITransfer:

out USIDR,r16

ldi r16,(1<<USIOIF)

out USISR,r16

SlaveSPITransfer_loop:

in r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

in r16,USIDR

ret

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR
Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0
149
8303D–AVR–06/12

• Bit 6 – USIOIE: Counter Overflow Interrupt Enable
Setting this bit to one enables the counter overflow interrupt. If there is a pending interrupt and
USIOIE and the Global Interrupt Enable Flag are set to one the interrupt will be executed imme-
diately. Refer to the USIOIF bit description on page 152 for further details.

• Bits 5:4 – USIWM[1:0]: Wire Mode
These bits set the type of wire mode to be used, as shown in Table 15-2 on page 150.

Basically, only the function of the outputs are affected by these bits. Data and clock inputs are
not affected by the mode selected and will always have the same function. The counter and USI
Data Register can therefore be clocked externally and data input sampled, even when outputs
are disabled.

Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively
to avoid confusion between the modes of operation.

• Bits 3:2 – USICS[1:0]: Clock Source Select
These bits set the clock source for the USI Data Register and counter. The data output latch
ensures that the output is changed at the opposite edge of the sampling of the data input

Table 15-2. Relationship between USIWM[1:0] and USI Operation

USIWM1 USIWM0 Description

0 0
Outputs, clock hold, and start detector disabled.
Port pins operate as normal.

0 1

Three-wire mode. Uses DO, DI, and USCK pins.
The Data Output (DO) pin overrides the corresponding bit in the PORTA
register. However, the corresponding DDRA bit still controls the data direction.
When the port pin is set as input the pin pull-up is controlled by the PORTA bit.
The Data Input (DI) and Serial Clock (USCK) pins do not affect the normal port
operation. When operating as master, clock pulses are software generated by
toggling the PORTA register, while the data direction is set to output. The
USITC bit in the USICR Register can be used for this purpose.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).
The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and
use open-collector output drives. The output drivers are enabled by setting the
corresponding bit for SDA and SCL in the DDRA register.
When the output driver is enabled for the SDA pin, the output driver will force
the line SDA low if the output of the USI Data Register or the corresponding
bit in the PORTA register is zero. Otherwise, the SDA line will not be driven (i.e.,
it is released). When the SCL pin output driver is enabled the SCL line will be
forced low if the corresponding bit in the PORTA register is zero, or by the start
detector. Otherwise the SCL line will not be driven.
The SCL line is held low when a start detector detects a start condition and the
output is enabled. Clearing the Start Condition Flag (USISIF) releases the line.
The SDA and SCL pin inputs is not affected by enabling this mode. Pull-ups on
the SDA and SCL port pin are disabled in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.
Same operation as in two-wire mode above, except that the SCL line is also
held low when a counter overflow occurs, and until the Counter Overflow Flag
(USIOIF) is cleared.
150
8303D–AVR–06/12

ATtiny1634

ATtiny1634
(DI/SDA) when using external clock source (USCK/SCL). When software strobe or
Timer/Counter0 Compare Match clock option is selected, the output latch is transparent and
therefore the output is changed immediately.

Clearing the USICS[1:0] bits enables software strobe option. When using this option, writing a
one to the USICLK bit clocks both the USI Data Register and the counter. For external clock
source (USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects between external
clocking and software clocking by the USITC strobe bit.

Table 15-3 shows the relationship between the USICS[1:0] and USICLK setting and clock
source used for the USI Data Register and the 4-bit counter.

• Bit 1 – USICLK: Clock Strobe
Writing a one to this bit location strobes the USI Data Register to shift one step and the counter
to increment by one, provided that the software clock strobe option has been selected by writing
USICS[1:0] bits to zero. The output will change immediately when the clock strobe is executed,
i.e., during the same instruction cycle. The value shifted into the USI Data Register is sampled
the previous instruction cycle.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 15-3).

The bit will be read as zero.

• Bit 0 – USITC: Toggle Clock Port Pin
Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the corresponding DDR pin must be set as output (to one). This feature
allows easy clock generation when implementing master devices.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of
when the transfer is done when operating as a master device.

The bit will read as zero.

Table 15-3. Relationship between the USICS1:0 and USICLK Setting

USICS1 USICS0 USICLK Clock Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1 Software clock strobe (USICLK) Software clock strobe (USICLK)

0 1 X Timer/Counter0 Compare Match A Timer/Counter0 Compare Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)
151
8303D–AVR–06/12

15.7.2 USISR – USI Status Register

The Status Register contains interrupt flags, line status flags and the counter value.

• Bit 7 – USISIF: Start Condition Interrupt Flag
When two-wire mode is selected, the USISIF Flag is set (to one) when a start condition has
been detected. When three-wire mode or output disable mode has been selected any edge on
the SCK pin will set the flag.

If USISIE bit in USICR and the Global Interrupt Enable Flag are set, an interrupt will be gener-
ated when this flag is set. The flag will only be cleared by writing a logical one to the USISIF bit.
Clearing this bit will release the start detection hold of USCL in two-wire mode.

A start condition interrupt will wakeup the processor from all sleep modes.

• Bit 6 – USIOIF: Counter Overflow Interrupt Flag
This flag is set (one) when the 4-bit counter overflows (i.e., at the transition from 15 to 0). If the
USIOIE bit in USICR and the Global Interrupt Enable Flag are set an interrupt will also be gener-
ated when the flag is set. The flag will only be cleared if a one is written to the USIOIF bit.
Clearing this bit will release the counter overflow hold of SCL in two-wire mode.

A counter overflow interrupt will wakeup the processor from Idle sleep mode.

• Bit 5 – USIPF: Stop Condition Flag
When two-wire mode is selected, the USIPF Flag is set (one) when a stop condition has been
detected. The flag is cleared by writing a one to this bit. Note that this is not an interrupt flag.
This signal is useful when implementing two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Collision
This bit is logical one when bit 7 in the USI Data Register differs from the physical pin value. The
flag is only valid when two-wire mode is used. This signal is useful when implementing Two-wire
bus master arbitration.

• Bits 3:0 – USICNT[3:0]: Counter Value
These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or
written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge
detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe
bits. The clock source depends on the setting of the USICS[1:0] bits.

For external clock operation a special feature is added that allows the clock to be generated by
writing to the USITC strobe bit. This feature is enabled by choosing an external clock source
(USICS1 = 1) and writing a one to the USICLK bit.

Note that even when no wire mode is selected (USIWM[1:0] = 0) the external clock input
(USCK/SCL) can still be used by the counter.

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
152
8303D–AVR–06/12

ATtiny1634

ATtiny1634
15.7.3 USIDR – USI Data Register

The USI Data Register can be accessed directly but a copy of the data can also be found in the
USI Buffer Register.

Depending on the USICS[1:0] bits of the USI Control Register a (left) shift operation may be per-
formed. The shift operation can be synchronised to an external clock edge, to a Timer/Counter0
Compare Match, or directly to software via the USICLK bit. If a serial clock occurs at the same
cycle the register is written, the register will contain the value written and no shift is performed.

Note that even when no wire mode is selected (USIWM[1:0] = 0) both the external data input
(DI/SDA) and the external clock input (USCK/SCL) can still be used by the USI Data Register.

The output pin (DO or SDA, depending on the wire mode) is connected via the output latch to
the most significant bit (bit 7) of the USI Data Register. The output latch ensures that data input
is sampled and data output is changed on opposite clock edges. The latch is open (transparent)
during the first half of a serial clock cycle when an external clock source is selected (USICS1 =
1) and constantly open when an internal clock source is used (USICS1 = 0). The output will be
changed immediately when a new MSB is written as long as the latch is open.

Note that the Data Direction Register bit corresponding to the output pin must be set to one in
order to enable data output from the USI Data Register.

15.7.4 USIBR – USI Buffer Register

Instead of reading data from the USI Data Register the USI Buffer Register can be used. This
makes controlling the USI less time critical and gives the CPU more time to handle other pro-
gram tasks. USI flags as set similarly as when reading the USIDR register.

The content of the USI Data Register is loaded to the USI Buffer Register when the transfer has
been completed.

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) MSB LSB USIDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) MSB LSB USIBR
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
153
8303D–AVR–06/12

16. USART (USART0 & USART1)

16.1 Features

• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode
• Start Frame Detection

16.2 USART0 and USART1

The ATtiny1634 has two Universal Synchronous and Asynchronous serial Receiver and Trans-
mitters; USART0 and USART1.

The functionality for all USART’s is described below, most register and bit references in this sec-
tion are written in general form. A lower case “n” replaces the USART number.

USART0 and USART1 have different I/O registers as shown in “Register Summary” on page
288.

16.3 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

A simplified block diagram of the USART Transmitter is shown in Figure 16-1 on page 155. CPU
accessible I/O Registers and I/O pins are shown in bold.

The Power Reducion USART0 bit, PRUSART0, in “PRR – Power Reduction Register” on page
41 must be disabled by writing a logical zero to it.

The Power Reducion USART1 bit, PRUSART1, in “PRR – Power Reduction Register” on page
41 must be disabled by writing a logical zero to it.
154
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 16-1. USART Block Diagram()

For USART pin placement, see Figure 1-1 on page 2 and “Alternate Port Functions” on page 64.

The dashed boxes in the block diagram of Figure 16-1 illustrate the three main parts of the
USART, as follows(listed from the top):

• Clock generator
• Transmitter
• Receiver

The clock generation logic consists of synchronization logic (for external clock input in synchro-
nous slave operation), and the baud rate generator. The transfer clock pin (XCKn) is only used
in synchronous transfer mode.

PARITY

GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxDPIN

CONTROL

UDR (Receive)

PIN

CONTROL

XCK

DATA

RECOVERY

CLOCK

RECOVERY

PIN

CONTROL

TX

CONTROL

RX

CONTROL

PARITY

CHECKER

UCSRD

D
A

T
A

 B
U

S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver
155
8303D–AVR–06/12

The transmitter consists of a single write buffer, a serial shift register, a parity generator and con-
trol logic for handling different serial frame formats. The write buffer allows a continuous transfer
of data without delay between frames.

The receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the receiver includes a parity checker, control logic, a ahift register and a two level receive
buffer (UDRn). The receiver supports the same frame formats as the transmitter, and can detect
the following errors:

• Frame Error
• Data Overrun Error
• Parity Errors.

In order for the USART to be operative the USARTn power reducion bit must be disabled. See
“PRR – Power Reduction Register” on page 41.

16.4 Clock Generation

The clock generation logic creates the base clock for the transmitter and receiver. A block dia-
gram of the clock generation logic is shown in Figure 16-2.

Figure 16-2. Clock Generation Logic, Block Diagram

Signal description for Figure 16-2:

txclk Transmitter clock (Internal Signal)
rxclk Receiver base clock (Internal Signal)
xcki Input from XCKn pin (internal Signal). Used for synchronous slave operation
xcko Clock output to XCKn (Internal Signal). Used for synchronous master operation
fOSC XTAL pin frequency (System Clock)

Prescaling
Down-Counter /2

UBRR

/4 /2

fosc

UBRR+1

Sync
Register

OSC

XCK
Pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0
Edge

Detector

UCPOL
156
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The USART supports four modes of clock operation, as follows:

• Normal asynchronous mode
• Double speed asynchronous mode
• Master synchronous mode
• Slave synchronous mode

The UMSELn bit selects between asynchronous and synchronous operation. In asynchronous
mode, the speed is controlled by the U2X bit.

In synchronous mode, the direction bit of the XCKn pin (DDR_XCKn) in the Data Direction Reg-
ister where the XCKn pin is located (DDRx) controls whether the clock source is internal (master
mode), or external (slave mode). The XCKn pin is active in synchronous mode, only.

16.4.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 16-2 on page 156.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler, or baud rate generator. The down-counter, running at system clock
(fosc) is loaded with the UBRRn value each time the counter has counted down to zero, or when
UBRRnL is written.

A clock is generated each time the counter reaches zero. This is the baud rate generator clock
output and has a frequency of fosc/(UBRRn+1). Depending on the mode of operation the trans-
mitter divides the baud rate generator clock output by 2, 8 or 16. The baud rate generator output
is used directly by the receiver’s clock and data recovery units. However, the recovery units use
a state machine that uses 2, 8 or 16 states, depending on mode set by UMSELn, U2Xn and
DDR_XCKn bits.

Table 16-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. Baud rate is defined as the transfer rate in bits per second (bps)

Signal description for Table 16-1:

BAUD Baud rate (in bits per second, bps)
fOSC System oscillator clock frequency
UBRR Contents of the UBRRHn and UBRRLn registers, (0-4095)

Table 16-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Baud Rate(1) UBRR Value

Asynchronous Normal
mode (U2Xn = 0)

Asynchronous Double
Speed mode (U2Xn = 1)

Synchronous Master
mode

BAUD
fOSC

16 UBRRn 1+()
--= UBRRn

fOSC
16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------= UBRRn

fOSC
8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC
2BAUD
-------------------- 1–=
157
8303D–AVR–06/12

Some examples of UBRRn values for selected system clock frequencies are shown in “Exam-
ples of Baud Rate Setting” on page 173.

16.4.2 Double Speed Operation

The transfer rate can be doubled by setting the U2Xn bit. Setting this bit only has effect in asyn-
chronous mode of operation. In synchronous mode of operation this bit should be cleared.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note, however, that in this case the receiver
will use half the number of samples, only. In double speed mode, the number of data and clock
recovery sampels are reduced from 16 to 8, and therefore a more accurate baud rate setting and
system clock are required.

There are no downsides for the transmitter.

16.4.3 External Clock

External clocking is used in synchronous slave modes of operation. To minimize the chance of
meta-stability, the external clock input from the XCK pin is sampled by a synchronization regis-
ter. The output from the synchronization register then passes through an edge detector before it
is used by the transmitter and receiver. This process introduces a delay of two CPU clocks, and
therefore the maximum external clock frequency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible data loss due to frequency variations.

16.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 16-3. Synchronous Mode XCKn Timing.

fXCKn
fOSC

4-----------<

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
158
8303D–AVR–06/12

ATtiny1634

ATtiny1634
The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 16-3 on page 158 shows, when UCPOLn is zero the data will
be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data
will be changed at falling XCKn edge and sampled at rising XCKn edge.

16.5 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• Start bit: 1
• Data bits: 5, 6, 7, 8, or 9
• Parity bit: no, even, or odd parity
• Stop bits: 1, or 2

A frame begins with the start bit followed by the least significant data bit. Then follows the other
data bits, the last one being the most significant bit. If enabled, the parity bit is inserted after the
data bits, before the stop bits. When a complete frame has been transmitted it can be directly
followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 16-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 16-4. Frame Formats

Signal description for Figure 16-4:

St Start bit (always low)
(n) Data bits (0 to 4/5/6/7/8)
P Parity bit, if enabled (odd or even)
Sp Stop bit (always high)
IDLE No transfers on the communication line (RxDn or TxDn). (high)

The frame format used by the USART is set by the UCSZn, UPMn and USBSn bits, as follows:

• The USART Character SiZe bits (UCSZn) select the number of data bits in the frame
• The USART Parity Mode bits (UPMn) choose the type of parity bit
• The selection between one or two stop bits is done by the USART Stop Bit Select bit

(USBSn). The receiver ignores the second stop bit. An FE (Frame Error) will therefore only
be detected in the cases where the first stop bit is zero.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
159
8303D–AVR–06/12

The receiver and transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the receiver and transmitter.

16.5.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows:

... where:

PEVEN Parity bit using even parity
PODD Parity bit using odd parity
dn Data bit n of the character

If used, the parity bit is located between the last data bit and the first stop bit of a serial frame.

16.6 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and, depending on the
method of use, enabling the transmitter or the receiver. For interrupt driven USART operation,
the global interrupt flag should be cleared and the USART interrupts should be disabled.

Before re-initializating baud rate or frame format, it should be checked that there are no ongoing
transmissions during the period the registers are changed. The TXCn flag can be used to check
that the transmitter has completed all transfers, and the RXCn flag can be used to check that
there are no unread data in the receive buffer. Note that, if used, the TXCn flag must be cleared
before each transmission (before UDRn is written).

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.

PEVEN dn 1– … d3 d2 d1 d0 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕=

PODD dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕=
160
8303D–AVR–06/12

ATtiny1634

ATtiny1634
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Note: 1. See “Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

16.7 Data Transmission – The USART Transmitter

The USART transmitter is enabled by setting the Transmit Enable bit (TXENn). When the trans-
mitter is enabled, the normal port operation of the TxDn pin is overridden by the USART and
given the function as the transmitter’s serial output. The baud rate, mode of operation and frame
format must be set up once before doing any transmissions. If synchronous operation is used,
the clock on the XCKn pin will be overridden and used as transmission clock.

16.7.1 Sending Frames with 5 to 8 Data Bits

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn register. The buffered data in the trans-
mit buffer will be moved to the shift register when the it is ready to send a new frame. The shift
register is loaded with new data if it is in idle state (no ongoing transmission), or immediately

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRnH, r17

out UBRRnL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

/* Set baud rate */

UBRRnH = (unsigned char)(baud>>8);

UBRRnL = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBSn)|(3<<UCSZn0);

}

161
8303D–AVR–06/12

after the last stop bit of the previous frame is transmitted. When the shift register is loaded with
new data, it will transfer one complete frame at the rate given by the Baud Rate Register, the
U2Xn bit or by XCKn, depending on the mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty flag (UDREn). When using frames with less than eight bits, the most signif-
icant bits written to UDRn are ignored. The USART has to be initialized before the function can
be used. For the assembly code, the data to be sent is assumed to be stored in register R16

Note: 1. See “Code Examples” on page 7.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

16.7.2 Sending Frames with 9 Data Bit

If 9-bit characters are used, the ninth bit must be written to the TXB8 bit in UCSRnB before the
low byte of the character is written to UDRn. The following code examples show a transmit func-

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)))

;

/* Put data into buffer, sends the data */

UDRn = data;

}

162
8303D–AVR–06/12

ATtiny1634

ATtiny1634
tion that handles 9-bit characters. For the assembly code, the data to be sent is assumed to be
stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See “Code Examples” on page 7.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

16.7.3 Transmitter Flags and Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty flag (UDREn) indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the shift register. For compati-
bility with future devices, always write this bit to zero.

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRnB,TXB8

sbrc r17,0

sbi UCSRnB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn))))

;

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRnB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDRn = data;

}

163
8303D–AVR–06/12

When the Data Register Empty Interrupt Enable bit (UDRIEn) is set, the USART Data Register
Empty Interrupt will be executed as long as UDREn is set (and provided that global interrupts
are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data transmission is
used, the Data Register Empty interrupt routine must either write new data to UDRn in order to
clear UDREn or disable the Data Register Empty interrupt, otherwise a new interrupt will occur
once the interrupt routine terminates.

The Transmit Complete flag (TXCn) is set when the entire frame in the transmit shift register has
been shifted out and there are no new data currently present in the transmit buffer. The TXCn
flag is automatically cleared when a transmit complete interrupt is executed, or it can be cleared
by writing a one to its location. The TXCn flag is useful in half-duplex communication interfaces
(like the RS-485 standard), where a transmitting application must enter receive mode and free
the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable bit (TXCIEn) is set, the USART Transmit Com-
plete Interrupt will be executed when the TXCn flag becomes set (and provided that global
interrupts are enabled). When the transmit complete interrupt is used, the interrupt handling rou-
tine does not have to clear the TXCn flag, since this is done automatically when the interrupt is
executed.

16.7.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

16.7.5 Disabling the Transmitter

Clearing TXENn will disable the transmitter but the change will not become effective before any
ongoing and pending transmissions are completed, i.e. not before the transmit shift register and
transmit buffer register are cleared of data to be transmitted. When disabled, the transmitter will
no longer override the TxDn pin.

16.8 Data Reception – The USART Receiver

The USART receiver is enabled by writing the Receive Enable bit (RXENn). When the receiver
is enabled, the normal operation of the RxDn pin is overridden by the USART and given the
function as the receiver’s serial input. The baud rate, mode of operation and frame format must
be set up once before any serial reception can be done. If synchronous operation is used, the
clock on the XCKn pin will be used as transfer clock.

16.8.1 Receiving Frames with 5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate, or XCKn clock, and then shifted into the receive shift register
until the first stop bit of a frame is received. A second stop bit will be ignored by the receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the receive shift reg-
ister, the contents of it will be moved into the receive buffer. The receive buffer can then be read
by reading UDRn.

The following code example shows a simple USART receive function based on polling of the
Receive Complete flag (RXCn). When using frames with less than eight bits the most significant
164
8303D–AVR–06/12

ATtiny1634

ATtiny1634
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See “Code Examples” on page 7.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

16.8.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used the ninth bit must be read from the RXB8n bit before reading the low
bits from UDRn. This rule applies to the FEn, DORn and UPEn status flags, as well. Status bits
must be read before data from UDRn, since reading UDRn will change the state of the receive
buffer FIFO and, consequently, state of TXB8n, FE, DORn and UPEn bits.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get and return received data from buffer */

return UDRn;

}

165
8303D–AVR–06/12

Note: 1. See “Code Examples” on page 7.

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRnA

in r17, UCSRnB

in r16, UDRn

; If error, return -1

andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

166
8303D–AVR–06/12

ATtiny1634

ATtiny1634
16.8.3 Receive Compete Flag and Interrupt

The USART receiver has one flag that indicates the receiver state.

The Receive Complete flag (RXCn) indicates if there are unread data present in the receive buf-
fer. This flag is set when unread data exist in the receive buffer, and cleared when the receive
buffer is empty (i.e., it does not contain any unread data). If the receiver is disabled (RXENn =
0), the receive buffer will be flushed and, consequently, the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) is set, the USART Receive Complete
interrupt will be executed as long as the RXCn flag is set (and provided that global interrupts are
enabled). When interrupt-driven data reception is used, the receive complete routine must read
the received data from UDRn in order to clear the RXCn flag, otherwise a new interrupt will occur
once the interrupt routine terminates.

16.8.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 160 and “Parity Checker” on page 167.

16.8.5 Parity Checker

The parity checker is active when the high USART Parity Mode bit (UPMn1) is set. The type of
parity check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the
parity checker calculates the parity of the data bits in incoming frames and compares the result
with the parity bit from the serial frame. The result of the check is stored in the receive buffer
167
8303D–AVR–06/12

together with the received data and stop bits. The Parity Error flag (UPEn) can then be read by
software to check if the frame had a parity error.

If parity checking is enabled, the UPEn bit is set if the next character that can be read from the
receive buffer had a parity error when received. This bit is valid until the receive buffer (UDRn) is
read.

16.8.6 Disabling the Receiver

Unlike the transmitter, the receiver is disabled immediately and any data from ongoing recep-
tions will be lost. When disabled (RXENn = 0), the receiver will no longer override the normal
function of the RxDn port pin and the FIFO buffer is flushed, with any remaining data in the buf-
fer lost.

16.8.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. To flush the buffer during normal operation, due
to for instance an error condition, read the UDRn until the RXCn flag is cleared.

The following code example shows how to flush the receive buffer.

Note: 1. See “Code Examples” on page 7.

16.9 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the receiver.
The asynchronous reception operational range depends on the accuracy of the internal baud
rate clock, the rate of the incoming frames, and the frame size in number of bits.

16.9.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes the internal clock to the incoming serial frames. Figure
16-5 illustrates the sampling process of the start bit of an incoming frame. In normal mode the
sample rate is 16 times the baud rate, in double speed mode eight times. The horizontal arrows

Assembly Code Example(1)

USART_Flush:

sbis UCSRnA, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

168
8303D–AVR–06/12

ATtiny1634

ATtiny1634
illustrate the synchronization variation due to the sampling process. Note the larger time varia-
tion when using the double speed mode of operation (U2Xn = 1). Samples denoted zero are
samples done when the RxDn line is idle (i.e., no communication activity).

Figure 16-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. In Figure 16-5, samples are indicated with numbers
inside boxes and sample number 1 denotes the first zero-sample. The clock recovery logic then
uses samples 8, 9, and 10 (in normal mode), or samples 4, 5, and 6 (in double speed mode), to
decide if a valid start bit is received. If two or more of these three samples have logical high lev-
els (the majority wins), the start bit is rejected as a noise spike and the receiver starts looking for
the next high to low-transition. If, however, a valid start bit is detected, the clock recovery logic is
synchronized and the data recovery can begin. The synchronization process is repeated for
each start bit.

16.9.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in normal mode and eight
states for each bit in double speed mode. Figure 16-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 16-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. In the figure, the center samples are
emphasized by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic
one. If two, or all three samples have low levels, the received bit is registered to be a logic zero.
This majority voting process acts as a low pass filter for the incoming signal on the RxDn pin.
The recovery process is then repeated until a complete frame is received. Including the first stop
bit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
169
8303D–AVR–06/12

Note that the receiver only uses the first stop bit of a frame.

Figure 16-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 16-7. Stop Bit Sampling and Next Start Bit Sampling

The stop bit is subject to the same majority voting as the other bits in the frame. If the stop bit is
registered to have a logic low value, the Frame Error flag (FEn) will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. In normal speed mode, the first low level sample can be at point
marked (A) in Figure 16-7. In double speed mode the first low level must be delayed to (B). Point
(C) marks the full length of a stop bit.

The early start bit detection influences the operational range of the receiver.

16.9.3 Asynchronous Operational Range

The operational range of the receiver depends on the mismatch between the received bit rate
and the internally generated baud rate. If the transmitter is sending frames at too fast or too slow
bit rates, or the internally generated baud rate of the receiver does not have a similar base fre-
quency (see Table 16-2 on page 171), the receiver will not be able to synchronize the frames to
the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

... where:

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit, 16 for normal speed mode, or 8 for double speed mode.

SF First sample number used for majority voting, 8 (normal speed), or 4 (double)

SM Middle sample number for majority voting, 9 (normal speed), or 5 (double speed)

Rslow The ratio of the slowest incoming data rate that can be accepted with respect to
the receiver baud rate.

Rfast The ratio of the fastest incoming data rate that can be accepted with respect to
the receiver baud rate.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---= Rfast

D 2+()S
D 1+()S SM+

-----------------------------------=
170
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Table 16-2 on page 171 and Table 16-3 on page 171 list the maximum receiver baud rate error
that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations.

The recommendations of the maximum receiver baud rate error are made under the assumption
that the receiver and transmitter divide the maximum total error equally.

There are two possible sources for the receivers baud rate error:

• The system clock of the receiver will always have some minor instability over the supply
voltage range and the temperature range

• The second source for error is more controllable. The baud rate generator can not always do
an exact division of the system frequency to get the baud rate wanted. In this case an UBRR
value that gives an acceptable low error should be used, if possible

16.9.4 Start Frame Detection
The USART start frame detector can wake up the MCU from Power-down, Standby or ADC
Noise Reduction sleep mode when it detects a start bit.

When a high-to-low transition is detected on RxDn, the internal 8 MHz oscillator is powered up
and the USART clock is enabled. After start-up the rest of the data frame can be received, pro-
vided that the baud rate is slow enough in relation to the internal 8 MHz oscillator start-up time.
Start-up time of the internal 8 MHz oscillator varies with supply voltage and temperature.

The USART start frame detection works both in asynchronous and synchronous modes. It is
enabled by writning the Start Frame Detection Enable bit (SFDEn). If the USART Start Interrupt

Table 16-2. Recommended Maximum Receiver Baud Rate Error in Normal Speed Mode.

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 16-3. Recommended Maximum Receiver Baud Rate Error in Double Speed Mode.

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
171
8303D–AVR–06/12

Enable (RXSIE) bit is set, the USART Receive Start Interrupt is generated immediately when
start is detected.

When using the feature without start interrupt, the start detection logic activates the internal 8
MHz oscillator and the USART clock while the frame is being received, only. Other clocks
remain stopped until the Receive Complete Interrupt wakes up the MCU.

The maximum baud rate in synchronous mode depends on the sleep mode the device is woken
up from, as follows:

• Idle or ADC Noise Reduction sleep mode: system clock frequency divided by four.
• Standby or Power-down: 500 kbps.

The maximum baud rate in asynchronous mode depends on the sleep mode the device is
woken up from, as follows:

• Idle sleep mode: the same as in active mode.
• Other sleep modes: see Table 16-4 and Table 16-5.

16.10 Multi-processor Communication Mode

Setting the Multi-processor Communication Mode bit (MPCMn) enables a filtering function of
incoming frames received by the USART receiver. Frames that do not contain address informa-

Table 16-4. Maximum Total Baudrate Error in Normal Speed Mode

Baudrate

Frame Size

5 6 7 8 9 10

0 – 28.8 kbps +6.67
-5.88

+5.79
-5.08

+5.11
-4.48

+4.58
-4.00

+4.14
-3.61

+3.78
-3.30

38.4 kbps +6.63
-5.88

+5.75
-5.08

+5.08
-4.48

+4.55
-4.00

+4.12
-3.61

+3.76
-3.30

57.6 kbps +6.10
-5.88

+5.30
-5.08

+4.69
-4.48

+4.20
-4.00

+3.80
-3.61

+3.47
-3.30

76.8 kbps +5.59
-5.88

+4.85
-5.08

+4.29
-4.48

+3.85
-4.00

+3.48
-3.61

+3.18
-3.30

115.2 kbps +4.57
-5.88

+3.97
-5.08

+3.51
-4.48

+3.15
-4.00

+2.86
-3.61

+2.61
-3.30

Table 16-5. Maximum Total Baudrate Error in Double Speed Mode

Baudrate

Frame Size

5 6 7 8 9 10

0 – 57.6 kbps +5.66
-4.00

+4.92
-3.45

+4.35
-3.03

+3.90
-2.70

+3.53
-2.44

+3.23
-2.22

76.8 kbps +5.59
-4.00

+4.85
-3.45

+4.29
-3.03

+3.85
-2.70

+3.48
-2.44

+3.18
-2.22

115.2 kbps +4.57
-4.00

+3.97
-3.45

+3.51
-3.03

+3.15
-2.70

+2.86
-2.44

+2.61
-2.22
172
8303D–AVR–06/12

ATtiny1634

ATtiny1634
tion will be ignored and not put into the receive buffer. In a system with multiple MCUs that
communicate via the same serial bus this effectively reduces the number of incoming frames
that has to be handled by the CPU. The transmitter is unaffected by the MPCMn bit, but has to
be used differently when it is a part of a system utilizing the multi-processor communication
mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The multi-processor communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format. The ninth bit
(TXB8) must be set when an address frame is transmitted, and cleared when a data frame is
transmitted. In this case, the slave MCUs must be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in multi-processor communication
mode:

1. All slave MCUs are set to multi-processor communication mode (MPCMn = 1)
2. The master MCU sends an address frame, and all slaves receive and read this frame. In

the slave MCUs, the RXCn flag is set as normal
3. Each slave MCU reads UDRn and determines if it has been selected. If so, it clears the

MPCMn bit. Else, it waits for the next address byte and keeps the MPCMn setting
4. The addressed MCU will receive all data frames until a new address frame is received.

The other slave MCUs, which still have the MPCMn bit set, will ignore the data frames
5. When the last data frame is received by the addressed MCU it sets the MPCMn bit and

waits for a new address frame from master. The process then repeats from step 2

It is possible but impractical to use any of the 5- to 8-bit character frame formats, since the
receiver must change between using n and n+1 character frame formats. This makes full-duplex
operation difficult since the transmitter and receiver use the same character size setting. If 5- to
8-bit character frames are used, the transmitter must be set to use two stop bits, since the first
stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn flag and this might accidentally be cleared
when using SBI or CBI instructions.

16.11 Examples of Baud Rate Setting
Commonly used baud rates for asynchronous operation can be generated by using the UBRR
settings in “Examples of Baud Rate Setting” on page 173. UBRR values which yield an actual
baud rate differing less than 0.5% from the target baud rate, are shown in bold. Higher error rat-
ings are acceptable, but the receiver will have less noise resistance when the error ratings are
173
8303D–AVR–06/12

high, especially for large serial frames (see “Asynchronous Operational Range” on page 170).
The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate-- 1–⎝ ⎠
⎛ ⎞ 100%•=

Table 16-6. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
174
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Table 16-7. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%
175
8303D–AVR–06/12

Table 16-8. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%
176
8303D–AVR–06/12

ATtiny1634

ATtiny1634
16.12 Register Description

16.12.1 UDRn – USART I/O Data Register

The USART transmit data buffer and USART receive data buffer registers share the same I/O
address, referred to as USART Data Register, or UDRn. Data written to UDRn goes to the
Transmit Data Buffer register (TXB). Reading UDR returns the contents of the Receive Data
Buffer register (RXB).

For 5-, 6-, or 7-bit characters the upper, unused bits will be ignored by the transmitter and set to
zero by the receiver.

Table 16-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 16.0000MHz fosc = 18.4320MHz fosc = 20.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) RXB[7:0] UDR0 (Read)
0x20 (0x40) TXB[7:0] UDR0 (Write)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x73) RXB[7:0] UDR1 (Read)
(0x73) TXB[7:0] UDR1 (Write)
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
177
8303D–AVR–06/12

The transmit buffer can only be written when the UDREn flag is set. Data written to UDRn when
the UDREn flag is not set will be ignored. When the transmitter is enabled and data is written to
the transmit buffer, the transmitter will load the data into the transmit shift register when it is
empty. The data is then serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, Read-Modify-Write instruc-
tions (SBI and CBI) should not be used to access this location. Care should also be taken when
using bit test instructions (SBIC and SBIS), since these also change the state of the FIFO.

16.12.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete
This flag is set when there is unread data in the receive buffer, and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the receiver is disabled, the receive
buffer will be flushed and consequently the RXCn flag will become zero. The flag can be used to
generate a Receive Complete interrupt (see RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag is set when the entire frame in the transmit shift register has been shifted out and there
is no new data currently present in the transmit buffer (UDRn). The TXCn flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to
its bit location. The flag can generate a Transmit Complete interrupt (see TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
This flag indicates the transmit buffer (UDRn) is ready to receive new data. If UDREn is one, the
buffer is empty, and therefore ready to be written. The UDREn flag can generate a Data Register
Empty interrupt (see UDRIEn bit).

The UDREn flag is set after a reset to indicate that the transmitter is ready.

• Bit 4 – FEn: Frame Error
This flag is set if the next character in the receive buffer had a frame error when received (i.e.
when the first stop bit of the next character in the receive buffer is zero). This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.

Always set this bit to zero when writing the register.

• Bit 3 – DORn: Data OverRun
This bit is set if a Data OverRun condition is detected. A data overrun occurs when the receive
buffer is full (two characters), there is a new character waiting in the receive shift register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) RXC0 TXC0n UDRE0n FE0 DOR0 UPE0 U2X0 MPCM0 UCSR0A
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x79) RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 UCSR1A
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
178
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Always set this bit to zero when writing the register.

• Bit 2 – UPEn: USART Parity Error
This bit is set if the next character in the receive buffer had a parity error when received and the
parity checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRn) is read.

Always set this bit to zero when writing the register.

• Bit 1 – U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode
This bit enables the Multi-processor Communication Mode. When the bit is written to one, all the
incoming frames received by the USART receiver that do not contain address information will be
ignored. The transmitter is unaffected by the MPCMn bit. For more detailed information, see
“Multi-processor Communication Mode” on page 172.

16.12.3 UCSRnB – USART Control and Status Register B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn flag.

A USART Receive Complete interrupt will be generated only if the RXCIEn bit, the Global Inter-
rupt Flag, and the RXCn bits are set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn flag.

A USART Transmit Complete interrupt will be generated only if the TXCIEn bit, the Global Inter-
rupt Flag, and the TXCn bit are set.

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn flag.

A Data Register Empty interrupt will be generated only if the UDRIEn bit is written to one, the
Global Interrupt Flag in SREG is written to one and the UDREn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 UCSR0B
Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x78) RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B
Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
179
8303D–AVR–06/12

• Bit 4 – RXENn: Receiver Enable
Writing this bit to one enables the USART Receiver. When enabled, the receiver will override
normal port operation for the RxDn pin.

Writing this bit to zero disables the receiver. Disabling the receiver will flush the receive buffer,
invalidating FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable
Writing this bit to one enables the USART Transmitter. When enabled, the transmitter will over-
ride normal port operation for the TxDn pin.

Writing this bit to zero disables the transmitter. Disabling the transmitter will become effective
after ongoing and pending transmissions are completed, i.e., when the transmit shift register and
transmit buffer register do not contain data to be transmitted. When disabled, the transmitter will
no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size
The UCSZn2 bit combined with the UCSZn[1:0] bits set the number of data bits (Character SiZe)
in the frame the receiver and transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. It must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. It must be written before writing the low bits to UDRn.

16.12.4 UCSRnC – USART Control and Status Register C

• Bits 7:6 – UMSELn[1:0]: USART Mode Select
These bits select the mode of operation of the USART, as shown in Table 16-10.

Note: 1. For full description of the Master SPI Mode (MSPIM) Operation, see “USART in SPI Mode”
on page 184.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

(0x77) UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 UCSR1C
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 16-10. UMSELn Bit Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 Reserved

1 1 Master SPI (MSPIM)(1)
180
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bits 5:4 – UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
receiver will generate a parity value for the incoming data and compare it to the UPMn setting. If
a mismatch is detected, the UPEn flag is set.

• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bits 2:1 – UCSZn[1:0]: Character Size
The UCSZn[1:0] bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character Size) in a frame the Receiver and Transmitter use. See Table 16-13.

Table 16-11. Parity Mode Selection

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 16-12. USBSn Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 16-13. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit
181
8303D–AVR–06/12

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

16.12.5 UCSRnD – USART Control and Status Register D

• Bit 7 – RXSIEn: USART RX Start Interrupt Enable
Writing this bit to one enables the interrupt on the RXSn flag. In sleep modes this bit enables
start frame detector that can wake up the MCU when a start condition is detected on the RxDn
line.

The USART RX Start Interrupt is generated only, if the RXSIEn bit, the Global Interrupt Enable
flag, and RXSn are set.

• Bit 6 – RXSn: USART RX Start
This flag is set when a start condition is detected on the RxDn line. If the RXSIEn bit and the
Global Interrupt Enable flag are set, an RX Start Interrupt will be generated when this flag is set.
The flag can only be cleared by writing a logical one to the RXSn bit location.

If the start frame detector is enabled and the Global Interrupt Enable Flag is set, the RX Start
Interrupt will wake up the MCU from all sleep modes.

• Bit 5 – SFDEn: Start Frame Detection Enable
Writing this bit to one enables the USART Start Frame Detection mode. The start frame detector
is able to wake up the MCU from sleep mode when a start condition, i.e. a high (IDLE) to low
(START) transition, is detected on the RxDn line.

Table 16-14. Clock Polarity Settings

UCPOLn
Transmitted Data Changed
(Output of TxDn Pin)

Received Data Sampled
(Input on RxDn Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) RXSIE0 RXS0 SFDE0 – – – – – UCSR0D
Read/Write R/W R/W R R R R R R

Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x76) RXSIE1 RXS1 SFDE1 – – – – – UCSR1D
Read/Write R/W R/W R R R R R R

Initial Value 0 0 1 0 0 0 0 0

Table 16-15. USART Start Frame Detection modes

SFDEn RXSIEn RXCIEn Description

0 X X Start frame detector disabled

1 0 0 Reserved
182
8303D–AVR–06/12

ATtiny1634

ATtiny1634
For more information, see “Start Frame Detection” on page 171.

• Bits 4:0 – Res: Reserved Bits
These bits are reserved bits in the ATtiny1634 and will always read as zero.

16.12.6 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bits 15:12 – Res: Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnH is written.

• Bits 11:0 – UBRR[11:0]: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. UBRRnH contains the four most
significant bits, and UBRRnL contains the eight least significant bits of the USART baud rate.

Writing UBRRnL will trigger an immediate update of the baud rate prescaler. Ongoing transmis-
sions by the transmitter and receiver will be corrupted when the baud rate is changed.

1 0 1 Start frame detector enabled. RXCn flag
wakes up MCU from all sleep modes

1 1 0 Start frame detector enabled. RXSn flag
wakes up MCU from all sleep modes

1 1 1
Start frame detector enabled. Both
RXCn and RXSn wake up the MCU from
all sleep modes

Table 16-15. USART Start Frame Detection modes (Continued)

SFDEn RXSIEn RXCIEn Description

Initial Value 0 0 0 0 0 0 0 0

Read/Write R R R R R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – UBRR0[11:8] UBRR0H
0x21 (0x41) UBRR0[7:0] UBRR0L
Bit 7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Initial Value 0 0 0 0 0 0 0 0

Read/Write R R R R R/W R/W R/W R/W

Bit 15 14 13 12 11 10 9 8

(0x75) – – – – UBRR1[11:8] UBRR1H
(0x74) UBRR1[7:0] UBRR1L
Bit 7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
183
8303D–AVR–06/12

17. USART in SPI Mode

17.1 Features

• Full Duplex, Three-wire Synchronous Data Transfer
• Master Operation
• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
• LSB First or MSB First Data Transfer (Configurable Data Order)
• Queued Operation (Double Buffered)
• High Resolution Baud Rate Generator
• High Speed Operation (fXCKmax = fCK/2)
• Flexible Interrupt Generation

17.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation.

Setting both UMSELn[1:0] bits to one enables the USART in MSPIM logic. In this mode of oper-
ation the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

17.3 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. For USART
MSPIM mode of operation only internal clock generation (i.e. master operation) is supported.
Therefore, for the USART in MSPIM to operate correctly, the Data Direction Register (DDRx)
where the XCK pin is located must be configured to set the pin as output (DDR_XCKn = 1) .
Preferably the DDR_XCKn should be set up before the USART in MSPIM is enabled (i.e. before
TXENn and RXENn bits are set).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRR setting can therefore be calculated using the same equations,
see Table 17-1:

Note: 1. The baud rate is defined as the transfer rate in bits per second (bps)

BAUD Baud rate (in bits per second, bps)
fOSC System oscillator clock frequency
UBRRn Contents of UBRRnH and UBRRnL, (0-4095)

Table 17-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Calculating Baud Rate(1) Calculating UBRR Value

Synchronous Master
mode BAUD

fOSC
2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC
2BAUD
-------------------- 1–=
184
8303D–AVR–06/12

ATtiny1634

ATtiny1634
17.4 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are
shown in Figure 17-1. Data bits are shifted out and latched in on opposite edges of the XCKn
signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-
ality is summarized in Table 17-2. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the Receiver and Transmitter.

Figure 17-1. UCPHAn and UCPOLn data transfer timing diagrams.

17.5 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM
mode has two valid frame formats:

• 8-bit data with MSB first
• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then follows the next data bits, up to a
total of eight, ending with the most or least significant bit, accordingly. When a complete frame is
transmitted, a new frame can directly follow it, or the communication line can be set to an idle
(high) state.

The UDORDn bit sets the frame format used by the USART in MSPIM mode. The receiver and
transmitter use the same setting. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the receiver and transmitter.

Table 17-2. UCPOLn and UCPHAn Functionality

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
185
8303D–AVR–06/12

16-bit data transfer can be achieved by writing two data bytes to UDRn. A USART Transmit
Complete interrupt will then signal that the 16-bit value has been shifted out.

17.5.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of opera-
tion, setting frame format and enabling the transmitter and the receiver. Only the transmitter can
operate independently. For interrupt driven USART operation, the Global Interrupt Flag should
be cleared (and thus interrupts globally disabled) when doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRn must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that
there is no ongoing transmissions during the period the registers are changed. The TXCn flag
can be used to check that the transmitter has completed all transfers, and the RXCn flag can be
used to check that there are no unread data in the receive buffer. Note that the TXCn flag must
be cleared before each transmission (before UDRn is written), if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume polling (no interrupts enabled). The
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in registers R17:R16.

Assembly Code Example(1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!

out UBRRnH, r17

out UBRRnL, r18

ret
186
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Note: 1. See “Code Examples” on page 7.

17.6 Data Transfer

Using the USART in MSPI mode requires the transmitter to be enabled, i.e. the TXENn bit to be
set. When the transmitter is enabled, the normal port operation of the TxDn pin is overridden and
given the function as the transmitter's serial output. Enabling the receiver is optional and is done
by setting the RXENn bit. When the receiver is enabled, the normal pin operation of the RxDn
pin is overridden and given the function as the receiver's serial input. The XCKn will in both
cases be used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to UDRn. This is the case for both sending and receiving data since the transmitter controls
the transfer clock. The data written to UDRn is moved from the transmit buffer to the shift regis-
ter when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, UDRn must be read
once for each byte transmitted. The input buffer operation is identical to normal USART mode, i.e.
if an overflow occurs the character last received will be lost, not the first data in the buffer. This
means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn is not
read before all transfers are completed, then byte 3 to be received will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty flag (UDREn) and the Receive Complete flag (RXCn). The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in register R16 and the data received will be available in the
same register (R16) after the function returns.

C Code Example(1)

void USART_Init(unsigned int baud)

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled
*/

UBRRn = baud;

}

187
8303D–AVR–06/12

The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before
loading it with new data to be transmitted. The function then waits for data to be present in the
receive buffer by checking the RXCn flag, before reading the buffer and returning the value..

Note: 1. See “Code Examples” on page 7.

17.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status flags
(FEn, DORn, and PEn) are not in use and always read zero.

17.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

Assembly Code Example(1)

USART_MSPIM_Transfer:

; Wait for empty transmit buffer

sbis UCSRnA, UDREn

rjmp USART_MSPIM_Transfer

; Put data (r16) into buffer, sends the data

out UDRn,r16

; Wait for data to be received

USART_MSPIM_Wait_RXCn:

sbis UCSRnA, RXCn

rjmp USART_MSPIM_Wait_RXCn

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)));

/* Put data into buffer, sends the data */

UDRn = data;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)));

/* Get and return received data from buffer */

return UDRn;

}

188
8303D–AVR–06/12

ATtiny1634

ATtiny1634
17.7 Compatibility with AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram
• The UCPOLn bit functionality is identical to the SPI CPOL bit
• The UCPHAn bit functionality is identical to the SPI CPHA bit
• The UDORDn bit functionality is identical to the SPI DORD bit

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no
buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.
• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.
• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is

achieved by setting UBRRn accordingly.
• Interrupt timing is not compatible.
• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 17-3.

Table 17-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment

TxDn MOSI Master out, only

RxDn MISO Master in, only

XCKn SCK Functionally identical

(N/A) SS Not supported by USART in MSPIM
189
8303D–AVR–06/12

17.8 Register Description

The following section describes the registers used for SPI operation using the USART.

17.8.1 UDRn – USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to
normal USART operation. See “UDRn – USART I/O Data Register” on page 177.

17.8.2 UCSRnA – USART MSPIM Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete
This flag is set when there is unread data in the receive buffer. The flag is cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the receiver is disabled, the
receive buffer will be flushed and consequently the flag will become zero.

This flag can be used to generate a Receive Complete interrupt (see RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag is set when the entire frame in the transmit shift register has been shifted out and there
is no new data in the transmit buffer (UDRn). The flag is automatically cleared when a transmit
complete interrupt is executed, or it can be cleared by writing a one to its bit location.

This flag can generate a Transmit Complete interrupt (see TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
This flag indicates the transmit buffer (UDRn) is ready to receive new data. If the flag is one, the
buffer is empty, and ready to be written. The flag is set after a reset to indicate that the transmit-
ter is ready.

The flag can generate a Data Register Empty interrupt (see UDRIEn bit).

• Bits 4:0 – Reserved Bits in MSPI mode
In MSPI mode these bits are reserved for future use. For compatibility with future devices, these
bits must be written zero.

17.8.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit is set.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn – – – – – UCSRnA
Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn – – – UCSRnB
Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
190
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bit 6 – TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit is set.

• Bit 4 – RXENn: Receiver Enable
Writing this bit to one enables the USART Receiver in MSPIM mode. When enabled, the
receiver overrides normal port operation for the RxDn pin.

Disabling the receiver will flush the receive buffer.

Enabling the receiver, only, and leaving the transmitter disabled has no meaning in MSPI mode
since only master mode is supported and it is the transmitter that controls the transfer clock.

• Bit 3 – TXENn: Transmitter Enable
Writing this bit to one enables the USART Transmitter. When enabled, the transmitter overrides
normal port operation for the TxDn pin.

Disabling the transmitter will not become effective until ongoing and pending transmissions are
completed, i.e., when the transmit shift register and transmit buffer register do not contain data
to be transmitted. When disabled, the transmitter will no longer override the TxDn pin.

• Bits 2:0 – Reserved Bits in MSPI mode
In MSPI mode these bits are reserved for future use. For compatibility with future devices, these
bits must be written zero.

17.8.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bits 7:6 – UMSELn[1:0]: USART Mode Select
These bits select the mode of operation of the USART as shown in Table 17-4. The MSPIM is
enabled when both UMSEL bits are set to one.

See “UCSRnC – USART Control and Status Register C” on page 180 for full description of the
normal USART operation.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 – – – UDORDn UCPHAn UCPOLn UCSRnC
Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-4. UMSELn Bit Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)
191
8303D–AVR–06/12

Bits UDORDn, UCPHAn, and UCPOLn may be set in the same write operation where the
MSPIM is enabled.

• Bits 5:3 – Reserved Bits in MSPI mode
In MSPI mode these bits are reserved for future use. For compatibility with future devices, these
bits must be written zero.

• Bit 2 – UDORDn: Data Order
When set, the LSB of the data word is transmitted first.

When cleared, the MSB of the data word is transmitted first.

See “Frame Formats” on page 185 for details.

• Bit 1 – UCPHAn: Clock Phase
This bit determines if data is sampled on the leading (first), or tailing (last) edge of XCKn.

See “SPI Data Modes and Timing” on page 185 for details.

• Bit 0 – UCPOLn: Clock Polarity
This bit sets the polarity of the XCKn clock. The combination of UCPOLn and UCPHAn bits
determine the timing of the data transfer.

See Table 17-2 on page 185 for details.

17.8.5 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers

The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See “UBRRnL and UBRRnH – USART Baud Rate Registers” on page 183.
192
8303D–AVR–06/12

ATtiny1634

ATtiny1634
18. Analog Comparator
The analog comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator Output, ACO, is set. The comparator can trigger a separate inter-
rupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on comparator
output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is shown
in Figure 18-1.

Figure 18-1. Analog Comparator Block Diagram

Notes: 1. See Table 18-1 on page 194.

For pin placements, see Figure 1-1 on page 2.

The ADC Power Reduction bit, PRADC, must be disabled in order to use the ADC input multi-
plexer. This is done by clearing the PRADC bit in the Power Reduction Register, PRR. See
“PRR – Power Reduction Register” on page 41 for more details.

18.1 Analog Comparator Multiplexed Input
When the Analog to Digital Converter (ADC) is configurated as single ended input channel, it is
possible to select any of the ADC[11:0] pins to replace the negative input to the Analog Compar-
ator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX[3:0] in ADMUX
select the input pin to replace the negative input to the analog comparator, as shown in Table

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

ACIC

To T/C1 Capture
Trigger MUX
193
8303D–AVR–06/12

18-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the analog
comparator.

18.2 Register Description

18.2.1 ACSRA – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSRA. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed, internal bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog
Comparator.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select

Table 18-1. Analog Comparator Multiplexed Input

ACME ADEN Analog Comparator Negative Input

0 X AIN1

1 0 ADC multiplexer. See Table 19-4 on page 209

1 1 AIN1

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSRA
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
194
8303D–AVR–06/12

ATtiny1634

ATtiny1634
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture inter-rupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

• Bits 1:0 – ACIS[1:0]: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 18-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSRA Register. Otherwise an interrupt can occur when
the bits are changed.

18.2.2 ACSRB – Analog Comparator Control and Status Register B

• Bit 7 – HSEL: Hysteresis Select
When this bit is written logic one, the hysteresis of the analog comparator is enabled. The level
of hysteresis is selected by the HLEV bit.

• Bit 6 – HLEV: Hysteresis Level
When enabled via the HSEL bit, the level of hysteresis can be set using the HLEV bit, as shown
in Table 18-3.

• Bit 5 – ACLP
This bit is reserved for QTouch, always write as zero.

• Bit 4 – Reserved
This bit is reserved and will always read zero.

• Bit 3 – ACCE
This bit is reserved for QTouch, always write as zero.

Table 18-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) HSEL HLEV ACLP – ACCE ACME ACIRS1 ACIRS0 ACSRB
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-3. Selecting Level of Analog Comparator Hysteresis

HSEL HLEV Hysteresis of Analog Comparator

0 X Not enabled

1
0 20 mV

1 50 mV
195
8303D–AVR–06/12

• Bit 2 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 193.

• Bit 1 – ACIRS1
This bit is reserved for QTouch, always write as zero.

• Bit 0 – ACIRS0
This bit is reserved for QTouch, always write as zero.

18.2.3 DIDR0 – Digital Input Disable Register

• Bits 2:1 – AIN1D, AIN0D: AIN1 and AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When used as an analog
input but not required as a digital input the power consumption in the digital input buffer can be
reduced by writing this bit to logic one.

Bit 7 6 5 4 3 2 1 0

(0x60) ADC4D ADC3D ADC2D ADC1D ADC0D AIN1D AIN0D AREFD DIDR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
196
8303D–AVR–06/12

ATtiny1634

ATtiny1634
19. Analog to Digital Converter

19.1 Features
• 10-bit Resolution
• 1 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 13 µs Conversion Time
• 15 kSPS at Maximum Resolution
• 12 Multiplexed Single Ended Input Channels
• Temperature Sensor Input Channel
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

19.2 Overview
ATtiny1634 features a 10-bit, successive approximation Analog-to-Digital Converter (ADC). The
ADC is wired to a 13 channel analog multiplexer, which allows the ADC to measure the voltage
at 12 single-ended input pins, or from one internal, single-ended voltage channel coming from
the internal temperature sensor. Single-ended voltage inputs are referred to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 19-1
on page 198.

Internal reference voltage of nominally 1.1V is provided on-chip. Alternatively, VCC can be used
as reference voltage for single ended channels. There is also an option to use an external volt-
age reference and turn-off the internal voltage reference.
197
8303D–AVR–06/12

Figure 19-1. Analog to Digital Converter Block Schematic

19.3 Operation
In order to be able to use the ADC the Power Reduction bit, PRADC, in the Power Reduction
Register must be disabled. This is done by clearing the PRADC bit. See “PRR – Power Reduc-
tion Register” on page 41 for more details.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC converts an analog input voltage to a 10-bit digital value using successive approxima-
tion. The minimum value represents GND and the maximum value represents the reference

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS A
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

A
D

IE

A
D

AT
E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
[4

:0
]

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

CONVERSION LOGIC

10-BIT DAC

+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL
REFERENCE

1.1V

MUX DECODER

VCC
R

E
F

S
[1

:0
]

A
D

LA
R

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

ADC MULTIPLEXER
OUTPUT

PRESCALER

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START

TEMPERATURE
SENSOR

ADC12

BIN

POS.

INPUT

MUX

ADC CTRL. & STATUS B
REGISTER (ADCSRB)

AREF

INPUT

MUX

ADC3ADC3

ADC2ADC2

ADC1ADC1

ADC0ADC0

AGND

ADC7ADC7

ADC6ADC6

ADC5ADC5

ADC4ADC4

ADC9ADC9

 ADC11 ADC11

ADC8ADC8

ADC10ADC10
198
8303D–AVR–06/12

ATtiny1634

ATtiny1634
voltage. The ADC voltage reference is selected by writing the REFS[1:0] bits in the ADMUX reg-
ister. Alternatives are the VCC supply pin, the AREF pin and the internal 1.1V voltage reference.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins can be selected as single ended inputs to the ADC.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADCSRB.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH, only. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the
data registers belongs to the same conversion. Once ADCL is read, ADC access to data regis-
ters is blocked. This means that if ADCL has been read, and a conversion completes before
ADCH is read, neither register is updated and the result from the conversion is lost. When ADCH
is read, ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the data registers is prohibited between reading of ADCH and ADCL, the interrupt will
trigger even if the result is lost.

19.4 Starting a Conversion
Make sure the ADC is powered by clearing the ADC Power Reduction bit, PRADC, in the Power
Reduction Register, PRR (see “PRR – Power Reduction Register” on page 41).

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (see description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.
199
8303D–AVR–06/12

Figure 19-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

19.5 Prescaling and Conversion Timing
By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate. It is not
recommended to use a higher input clock frequency than 1MHz.

Figure 19-3. ADC Prescaler

The ADC module contains a prescaler, as illustrated in Figure 19-3 on page 200, which gener-
ates an acceptable ADC clock frequency from any CPU frequency above 100kHz. The

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
200
8303D–AVR–06/12

ATtiny1634

ATtiny1634
prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting from the moment
the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for as
long as the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles, as summarised in Table 19-1 on page 203. The
first conversion after the ADC is switched on (ADEN in ADCSRA is set) takes 25 ADC clock
cycles in order to initialize the analog circuitry, as shown in Figure 19-4 below.

Figure 19-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of a first conversion. See Figure 19-5. When a
conversion is complete, the result is written to the ADC Data Registers, and ADIF is set. In Sin-
gle Conversion mode, ADSC is cleared simultaneously. The software may then set ADSC again,
and a new conversion will be initiated on the first rising ADC clock edge.

Figure 19-5. ADC Timing Diagram, Single Conversion

When Auto Triggering is used, the prescaler is reset when the trigger event occurs, as shown in
Figure 19-6 below. This assures a fixed delay from the trigger event to the start of conversion. In

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update
201
8303D–AVR–06/12

this mode, the sample-and-hold takes place two ADC clock cycles after the rising edge on the
trigger source signal. Three additional CPU clock cycles are used for synchronization logic.

Figure 19-6. ADC Timing Diagram, Auto Triggered Conversion

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. See Figure 19-7.

Figure 19-7. ADC Timing Diagram, Free Running Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

12 13 14

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
202
8303D–AVR–06/12

ATtiny1634

ATtiny1634
For a summary of conversion times, see Table 19-1.

19.6 Changing Channel or Reference Selection
The MUX[3:0] and REFS[1:0] bits in the ADMUX Register are single buffered through a tempo-
rary register to which the CPU has random access. This ensures that the channels and
reference selection only takes place at a safe point during the conversion. The channel and ref-
erence selection is continuously updated until a conversion is started. Once the conversion
starts, the channel and reference selection is locked to ensure a sufficient sampling time for the
ADC. Continuous updating resumes in the last ADC clock cycle before the conversion com-
pletes (ADIF in ADCSRA is set). Note that the conversion starts on the following rising ADC
clock edge after ADSC is written. The user is thus advised not to write new channel or reference
selection values to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

• When ADATE or ADEN is cleared.
• During conversion, minimum one ADC clock cycle after the trigger event.
• After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

19.6.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

• In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

• In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the

Table 19-1. ADC Conversion Time

Condition
Sample & Hold (Cycles from
Start of Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions 1.5 13

Auto Triggered conversions 2 13.5

Free Running conversion 2.5 14
203
8303D–AVR–06/12

channel selection. Since the next conversion has already started automatically, the next
result will reflect the previous channel selection. Subsequent conversions will reflect the new
channel selection.

19.6.2 ADC Voltage Reference
The ADC reference voltage (VREF) indicates the conversion range for the ADC. Single ended
channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as either
VCC, or internal 1.1V reference, or external AREF pin. The internal 1.1V reference is generated
from the internal bandgap reference (VBG) through an internal amplifier.

The first ADC conversion result after switching reference voltage source may be inaccurate, and
the user is advised to discard this result.

19.7 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode. This reduces
noise induced from the CPU core and other I/O peripherals. The noise canceler can be used
with ADC Noise Reduction and Idle mode. To make use of this feature, the following procedure
should be used:

• Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must
be selected and the ADC conversion complete interrupt must be enabled.

• Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the
CPU has been halted.

• If no other interrupts occur before the ADC conversion completes, the ADC interrupt will
wake up the CPU and execute the ADC Conversion Complete interrupt routine. If another
interrupt wakes up the CPU before the ADC conversion is complete, that interrupt will be
executed, and an ADC Conversion Complete interrupt request will be generated when the
ADC conversion completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not automatically be turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

19.8 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 19-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, which can vary widely. The user is recommended to only use low impedance
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
204
8303D–AVR–06/12

ATtiny1634

ATtiny1634
In order to avoid distortion from unpredictable signal convolution, signal components higher than
the Nyquist frequency (fADC/2) should not be present. The user is advised to remove high fre-
quency components with a low-pass filter before applying the signals as inputs to the ADC.

Figure 19-8. Analog Input Circuitry

Note: The capacitor in the figure depicts the total capacitance, including the sample/hold capacitor and
any stray or parasitic capacitance inside the device. The value given is worst case.

19.9 Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. When conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

• Keep analog signal paths as short as possible.
• Make sure analog tracks run over the analog ground plane.
• Keep analog tracks well away from high-speed switching digital tracks.
• If any port pin is used as a digital output, it mustn’t switch while a conversion is in progress.
• Place bypass capacitors as close to VCC and GND pins as possible.

Where high ADC accuracy is required it is recommended to use ADC Noise Reduction Mode, as
described in Section 19.7 on page 204. This is especially the case when system clock frequency
is above 1MHz, or when the ADC is used for reading the internal temperature sensor, as
described in Section 19.12 on page 207. A good system design with properly placed, external
bypass capacitors does reduce the need for using ADC Noise Reduction Mode

19.10 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior, as follows:

ADCn

IIH

1..100 kohm
CS/H = 14 pF

VCC/2

IIL
205
8303D–AVR–06/12

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 19-9. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 19-10. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

Figure 19-11. Integral Non-linearity (INL)

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

206
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 19-12. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always ± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: ± 0.5 LSB.

19.11 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Data Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 19-3 on page 208 and Table 19-4 on page 209). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB. The result is presented in one-
sided form, from 0x3FF to 0x000.

19.12 Temperature Measurement
Temperature measurement is based on an on-chip sensor, coupled to a single-ended ADC-
channel. The temperature sensor is enabled when channel ADC12 is selected from the ADMUX
register. When measuring temperature, the internal voltage reference must be selected as ADC
reference source. When enabled, the ADC converter can be used in single conversion mode to
measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to temperature as shown in Table 19-2 The sen-
sitivity is approximately 1 LSB/°C and the accuracy depends on the method of user calibration.
The temperature sensor should be calibrated by firmware in order to reach reasonable accuracy.
Typically, the measurement accuracy after a single temperature calibration is ±10°C, assuming

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

ADC
VIN 1024⋅

VREF
--------------------------=
207
8303D–AVR–06/12

calibration at room temperature. Better accuracies are achieved by using two temperature points
for calibration.

The values described in Table 19-2 are typical values, however, due to process variation the
output voltage of the temperature sensor varies from one chip to another. To achieve more
accurate results, temperature measurements can be calibrated in the application software. The
sofware calibration can be done using the equation:

T = k * [(ADCH << 8) | ADCL] + TOS

where ADCH and ADCL are the ADC data registers, k is the fixed slope coefficient and TOS is
the temperature sensor offset. Typically, k is very close to 1.0 and in single-point calibration the
coefficient may be omitted.

Factory calibration values can be used for calibration of temperature sensor data. The gain coef-
ficient, k, is stored as an unsigned, fixed point, two’s complement number and offset, TOS,as a
signed, two’s complement integer. See “Device Signature Imprint Table” on page 224.

19.13 Register Description

19.13.1 ADMUX – ADC Multiplexer Selection Register

• Bits 7:6 – REFS[1:0]: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 19-3.

If these bits are changed during a conversion, the change will not go in effect until this
conversion is complete (ADIF in ADCSR is set). Also note, that when these bits are changed,
the next conversion will take 25 ADC clock cycles.

It is recommended to force the ADC to perform a long conversion when changing multiplexer or
voltage reference settings. This can be done by first turning off the ADC, then changing refer-
ence settings and then turn on the ADC. Alternatively, the first conversion results after changing
reference settings should be discarded.

Table 19-2. Temperature vs. Sensor Output Voltage (Typical)

Temperature -40°C +25°C +85°C

ADC 235 LSB 300 LSB 360 LSB

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) REFS1 REFS0 REFEN ADC0EN MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 19-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 VCC used as analog reference, disconnected from PA0 (AREF)

0 1 External voltage reference at PA0 (AREF) pin

1 0 Internal 1.1V voltage reference

1 1 Reserved
208
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Internal voltage reference options may not be used if an external voltage is being applied to the
AREF pin.

• Bit 5 – REFEN
This bit is reserved for QTouch, always write as zero.

• Bit 4 – ADC0EN
This bit is reserved for QTouch, always write as zero.

• Bits 3:0 – MUX[3:0]: Analog Channel and Gain Selection Bits
The value of these bits selects which combination of analog inputs are connected to the ADC, as
shown in Table 19-4 on page 209. Selecting the channel ADC12 enables the temperature mea-
surement. See Table 19-4 on page 209 for details.

Notes: 1. After switching to internal voltage reference the ADC requires a settling time of 1ms before
measurements are stable. Conversions starting before this may not be reliable. The ADC must
be enabled during the settling time.

2. See “Temperature Measurement” on page 207.

If these bits are changed during a conversion, the change will not go into effect until the
conversion is complete (ADIF in ADCSRA is set).

Table 19-4. Single-Ended Input channel Selections.

MUX[3:0] Single Ended Input Pin

0000 ADC0 PA3

0001 ADC1 PA4

0010 ADC2 PA5

0011 ADC3 PA6

0100 ADC4 PA7

0101 ADC5 PB0

0110 ADC6 PB1

0111 ADC7 PB2

1000 ADC8 PB3

1001 ADC9 PC0

1010 ADC10 PC1

1011 ADC11 PC2

1100 Ground GND

1101 Internal 1.1V reference (1) (internal)

1110 Temperature sensor (2) (internal)

1111 Reserved Not connected
209
8303D–AVR–06/12

19.13.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI instruction is used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS[2:0]: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input clock
to the ADC.

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 19-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16
210
8303D–AVR–06/12

ATtiny1634

ATtiny1634
19.13.3 ADCL and ADCH – ADC Data Register

19.13.3.1 ADLAR = 0

19.13.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADCSRB, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

• ADC[9:0]: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 207.

1 0 1 32

1 1 0 64

1 1 1 128

Table 19-5. ADC Prescaler Selections (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

0x01 (0x21) – – – – – – ADC9 ADC8 ADCH
0x00 (0x20) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

0x01 (0x21) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
0x00 (0x20) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
211
8303D–AVR–06/12

19.13.4 ADCSRB – ADC Control and Status Register B

• Bit 7 – VDEN
This bit is reserved for QTouch, always write as zero.

• Bit 6 – VDPD
This bit is reserved for QTouch, always write as zero.

• Bits 5:4 – Res: Reserved Bits
These are reserved bits in ATtiny1634. For compatibility with future devices always write these
bits to zero.

• Bit 3 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a comple the description of this bit, see “ADCL and ADCH – ADC Data Register” on
page 211.

• Bits 2:0 – ADTS[2:0]: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conver-
sion will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a
trigger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) VDEN VDPD – – ADLAR ADTS2 ADTS1 ADTS0 ADCSRB
Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 19-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event
212
8303D–AVR–06/12

ATtiny1634

ATtiny1634
19.13.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:3 – ADC4D:ADC0D: ADC[4:0] Digital Input Disable
When a bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled.
The corresponding PIN register bit will always read as zero when this bit is set. When an analog
signal is applied to the ADC[7:0] pin and the digital input from this pin is not needed, this bit
should be written logic one to reduce power consumption in the digital input buffer.

19.13.6 DIDR1 – Digital Input Disable Register 1

• Bits 3:0 – ADC8D:ADC5D: ADC[8:5] Digital Input Disable
When a bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled.
The corresponding PIN register bit will always read as zero when this bit is set. When an analog
signal is applied to the ADC[8:5] pin and the digital input from this pin is not needed, this bit
should be written logic one to reduce power consumption in the digital input buffer.

19.13.7 DIDR2 – Digital Input Disable Register 2

• Bits 2:0 – ADC11D:ADC9D: ADC[11:9] Digital Input Disable
When a bit is written logic one, the digital input buffer on the corresponding ADC pin is disabled.
The corresponding PIN register bit will always read as zero when this bit is set. When an analog
signal is applied to the ADC[11:9] pin and the digital input from this pin is not needed, this bit
should be written logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

(0x60) ADC4D ADC3D ADC2D ADC1D ADC0D AIN1D AIN0D AREFD DIDR0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x61) – – – – ADC8D ADC7D ADC6D ADC5D DIDR1
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x62) – – – – – ADC11D ADC10D ADC9D DIDR2
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
213
8303D–AVR–06/12

20. debugWIRE On-chip Debug System

20.1 Features
• Complete Program Flow Control
• Emulates All On-chip Functions, Both Digital and Analog , except RESET Pin
• Real-time Operation
• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)
• Unlimited Number of Program Break Points (Using Software Break Points)
• Non-intrusive Operation
• Electrical Characteristics Identical to Real Device
• Automatic Configuration System
• High-Speed Operation
• Programming of Non-volatile Memories

20.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories.

20.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,
the debugWIRE system within the target device is activated. The RESET port pin is configured
as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the commu-
nication gateway between target and emulator.

Figure 20-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator
connector. The system clock is not affected by debugWIRE and will always be the clock source
selected by the CKSEL Fuses.

Figure 20-1. The debugWIRE Setup

dW

GND

dW(RESET)

VCC

1.8 - 5.5V
214
8303D–AVR–06/12

ATtiny1634

ATtiny1634
When designing a system where debugWIRE will be used, the following must be observed:

• Pull-Up resistor on the dW/(RESET) line must be in the range of 10k to 20 kΩ. However, the
pull-up resistor is optional.

• Connecting the RESET pin directly to VCC will not work.
• Capacitors inserted on the RESET pin must be disconnected when using debugWire.
• All external reset sources must be disconnected.

20.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Falsh Data retention. Devices used for debugging purposes should not be shipped to
end customers.

20.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio). See the debugWIRE docu-
mentation for detailed description of the limitations.

The debugWIRE interface is asynchronous, which means that the debugger needs to synchro-
nize to the system clock. If the system clock is changed by software (e.g. by writing CLKPS bits)
communication via debugWIRE may fail. Also, clock frequencies below 100kHz may cause com-
munication problems.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

20.6 Register Description
The following section describes the registers used with the debugWire.

20.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) DWDR[7:0] DWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
215
8303D–AVR–06/12

21. Self-Programming

21.1 Features
• Self-Programming Enables MCU to Erase, Write and Reprogram Application Memory
• Efficient Read-Modify-Write Support
• Lock Bits Allow Application Memory to Be Securely Closed for Further Access

21.2 Overview
The device provides a self-programming mechanism for downloading and uploading program
code by the MCU itself. Self-Programming can use any available data interface and associated
protocol to read code and write (program) that code into program memory.

21.3 Lock Bits
Program memory can be protected from internal or external access. See “Lock Bits” on page
222.

21.4 Self-Programming the Flash
Program memory is updated in a page by page fashion. Before programming a page with the
data stored in the temporary page buffer, the page must be erased. The temporary page buffer
is filled one word at a time using SPM and the buffer can be filled either before the 4-Page Erase
command or between a 4-Page Erase and a Page Write operation:

1. Either, fill the buffer before a 4-Page Erase:
a. Fill temporary page buffer
b. Perform a 4-Page Erase
c. Perform a Page Write

2. Or, fill the buffer after 4-Page Erase:
a. Perform a 4-Page Erase
b. Fill temporary page buffer
c. Perform a Page Write

The 4-Page Erase command erases four program memory pages at the same time. If only part
of this section needs to be changed, the rest must be stored before the erase, and then be re-
written.

The temporary page buffer can be accessed in a random sequence.

The SPM instruction is disabled by default but it can be enabled by programming the SELFPR-
GEN fuse (to “0”).
216
8303D–AVR–06/12

ATtiny1634

ATtiny1634
21.4.1 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 23-1 on page 228), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 21-1, below.

Figure 21-1. Addressing the Flash During SPM Load & Write Operations

The 4-Page Erase command addresses several program memory pages simultaneously, as
shown in Figure 21-2, below.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8
ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
217
8303D–AVR–06/12

Figure 21-2. Addressing the Flash During SPM 4-Page Erase

Variables used in above figures are explained in Table 21-1, below.

Note that 4-Page Erase and Page Write operations address memory independently. Therefore
the software must make sure the Page Write command addresses a page previously erased by
the 4-Page Erase command.

Although the least significant bit of the Z-register (Z0) should be zero for SPM, it should be noted
that the LPM instruction addresses the Flash byte-by-byte and uses Z0 as a byte select bit.

Table 21-1. Variables Used in Flash Addressing

Variable Description

PCPAGE

Program Counter page address. Selects program memory page for Page Load
& Page Write commands. Selects a block of program pages for the 4-Page
Erase operation.
See Table 23-1 on page 228

PCMSB
The most significant bit of the Program Counter.
See Table 23-1 on page 228

ZPCMSB The bit in the Z register that is mapped to PCMSB. Because Z[0] is not used,
ZPCMSB = PCMSB + 1. Z register bits above ZPCMSB are ignored

PCWORD
Program Counter word address. Selects the word within a page. This is used
for filling the temporary buffer and must be zero during page write operations.
See Table 23-1 on page 228

PAGEMSB The most significant bit used to address the word within one page

ZPAGEMSB The bit in the Z register that is mapped to PAGEMSB. Because Z[0] is not used,
ZPAGEMSB = PAGEMSB + 1

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
218
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Once a programming operation is initiated, the address is latched and the Z-pointer can be used
for other operations.

21.4.2 4-Page Erase
This command erases four pages of program memory. To execute 4-Page Erase:

• Set up the address in the Z-pointer
• Write “00000011” to SPMCSR
• Execute an SPM instruction within four clock cycles after writing SPMCSR

The data in R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-regis-
ter. PCPAGE[1:0] are ignored, as are other bits in the Z-pointer.

If an interrupt occurs during the timed sequence above the four cycle access cannot be guaran-
teed. In order to ensure atomic operation interrupts should be disabled before writing to
SPMCSR.

The CPU is halted during the 4-Page Erase operation.

21.4.3 Page Load
To write an instruction word:

• Set up the address in the Z-pointer
• Set up the data in R1:R0
• Write “00000001” to SPMCSR
• Execute an SPM instruction within four clock cycles after writing SPMCSR

The content of PCWORD in the Z-register is used to address the data in the temporary buffer.
The temporary buffer will auto-erase after a Page Write operation, or by writing the CTPB bit in
SPMCSR. It is also erased after a system reset.

Note that it is not possible to write more than one time to each address without erasing the tem-
porary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

21.4.4 Page Write
To execute Page Write:

• Set up the address in the Z-pointer
• Write “00000101” to SPMCSR
• Execute an SPM instruction within four clock cycles after writing SPMCSR

The data in R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in
the Z-pointer must be written to zero during this operation.

The CPU is halted during the Page Write operation.
219
8303D–AVR–06/12

21.4.5 SPMCSR Can Not Be Written When EEPROM is Programmed
Note that an EEPROM write operation will block all software programming to Flash. Reading
fuses and lock bits from software will also be prevented during the EEPROM write operation. It is
recommended that the user checks the status bit (EEPE) in EECR and verifies that it is cleared
before writing to SPMCSR.

21.5 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low VCC reset protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

21.6 Programming Time for Flash when Using SPM
Flash access is timed using the internal, calibrated 8MHz oscillator. Typical Flash programming
times for the CPU are shown in Table 21-2.

Note: 1. Min and max programming times are per individual operation.

21.7 Register Description

21.7.1 SPMCSR – Store Program Memory Control and Status Register
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Program memory operations.

• Bits 7:6 – Res: Reserved Bits
These bits are reserved and always read as zero.

Table 21-2. SPM Programming Time

Operation Min (1) Max (1)

SPM: Flash 4-Page Erase, Flash Page Write, and lock bit write 3.7 ms 4.5 ms

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) – – RSIG CTPB RFLB PGWRT PGERS SPMEN SPMCSR
Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
220
8303D–AVR–06/12

ATtiny1634

ATtiny1634
• Bit 5 – RSIG: Read Device Signature Imprint Table
Issuing an LPM instruction within three cycles after RSIG and SPMEN bits have been set will
return the selected data (depending on Z-pointer value) from the device signature imprint table
into the destination register. See “Device Signature Imprint Table” on page 224.

• Bit 4 – CTPB: Clear Temporary Page Buffer
If the CTPB bit is written while filling the temporary page buffer, the temporary page buffer will be
cleared and the data will be lost.

• Bit 3 – RFLB: Read Fuse and Lock Bits
An LPM instruction within three cycles after RFLB and SPMEN are set in the SPMCSR Register,
will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the destina-
tion register. See “SPMCSR Can Not Be Written When EEPROM is Programmed” on page 220
for details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page Erase
An SPM instruction within four clock cycles of PGERS and SPMEN have been set starts 4-Page
Erase. The page address is taken from the high part of the Z-pointer. Data in R1 and R0 is
ignored. This bit will auto-clear upon completion of a 4-Page Erase, or if no SPM instruction is
executed within four clock cycles. The CPU is halted during the entire 4-Page Erase operation.

• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If set to one together with
RSIG, CTPB, RFLB, PGWRT or PGERS, the following LPM/SPM instruction will have a special
meaning, as described elsewhere.

If only SPMEN is written, the following SPM instruction will store the value in R1:R0 in the tem-
porary page buffer addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN
bit will auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed
within four clock cycles. During 4-Page Erase and Page Write, the SPMEN bit remains high until
the operation is completed.
221
8303D–AVR–06/12

22. Lock Bits, Fuse Bits and Device Signature

22.1 Lock Bits
ATtiny1634 provides the program and data memory lock bits listed in Table 22-1.

Notes: 1. “1” means unprogrammed, “0” means programmed.

Lock bits can be left unprogrammed (“1”) or can be programmed (“0”) to obtain the additional
features listed in Table 22-2.

Notes: 1. “1” means unprogrammed, “0” means programmed.
2. Program fuse bits before programming LB1 and LB2.

When programming the lock bits, the mode of protection can be increased, only. Writing the
same, or lower, mode of protection automatically results in maximum protection.

Lock bits can be erased to “1” with the Chip Erase command, only.

The ATtiny1634 has no separate boot loader section. The SPM instruction is enabled for the
whole Flash if the SELFPRGEN fuse is programmed (“0”), otherwise it is disabled.

Table 22-1. Lock Bit Byte

Lock Bit Byte Bit No Description See Default Value ()

– 7 – 1 (unprogrammed)

– 6 – 1 (unprogrammed)

– 5 – 1 (unprogrammed)

– 4 – 1 (unprogrammed)

– 3 – 1 (unprogrammed)

– 2 – 1 (unprogrammed)

LB2 1
Lock bit Below

1 (unprogrammed)

LB1 0 1 (unprogrammed)

Table 22-2. Lock Bit Protection Modes.

Lock Bits (1)

Mode of ProtectionLB2 LB1

1 1 No memory lock features enabled

1 0
Further programming of Flash and EEPROM is disabled in parallel and serial
programming mode. Fuse bits are locked in both serial and parallel
programming mode (2)

0 1 Reserved

0 0
Further reading and programming of Flash and EEPROM is disabled in
parallel and serial programming mode. Fuse bits are locked in both serial and
parallel programming mode (2)
222
8303D–AVR–06/12

ATtiny1634

ATtiny1634
22.2 Fuse Bits
Fuse bits are described in Table 22-3, Table 22-4, and Table 22-5. Note that programmed fuses
read as zero.

Notes: 1. Programming this fuse bit will change the functionality of the RESET pin and render further
programming via the serial interface impossible. The fuse bit can be unprogrammed using the
parallel programming algorithm (see page 228).

2. This fuse bit is not accessible in serial programming mode.
3. This setting enables SPI programming.
4. This setting does not preserve EEPROM.

Table 22-3. Extended Fuse Byte

Bit # Bit Name Use See Default Value

7 – – 1 (unprogrammed)

6 – – 1 (unprogrammed)

5 – – 1 (unprogrammed)

4 BODPD1 Sets BOD mode of operation when
device is in sleep modes other than
idle

Page 47
1 (unprogrammed)

3 BODPD0 1 (unprogrammed)

2 BODACT1 Sets BOD mode of operation when
device is active or idle Page 46

1 (unprogrammed)

1 BODACT0 1 (unprogrammed)

0 SELFPRGEN Enables SPM instruction Page 216 1 (unprogrammed)

Table 22-4. High Fuse Byte

Bit # Bit Name Use See Default Value

7 RSTDISBL Disables external reset (1) Page 44 1 (unprogrammed)

6 DWEN Enables debugWIRE (1) Page 214 1 (unprogrammed)

5 SPIEN Enables serial programming and
downloading of data to device (2) 0 (programmed) (3)

4 WDTON Sets watchdog timer permanently on Page 50 1 (unprogrammed)

3 EESAVE Preserves EEPROM memory during
Chip Erase operation Page 231 1 (unprogrammed) (4)

2 BODLEVEL2

Sets BOD trigger level Page 247

1 (unprogrammed)

1 BODLEVEL1 1 (unprogrammed)

0 BODLEVEL0 1 (unprogrammed)
223
8303D–AVR–06/12

Note: 1. Unprogramming this fuse at low voltages may result in overclocking. See Section 24.3 on
page 245 for device speed versus supply voltage.

2. This setting results in maximum start-up time for the default clock source.
3. This setting selects Calibrated Internal 8MHz Oscillator.

Fuse bits are locked when Lock Bit 1 (LB1) is programmed. Hence, fuse bits must be pro-
grammed before lock bits.

Fuse bits are not affected by a Chip Erase.

22.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE fuse, which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

22.3 Device Signature Imprint Table
The device signature imprint table is a dedicated memory area used for storing miscellaneous
device information, such as the device signature and oscillator calibaration data. Most of this
memory segment is reserved for internal use, as outlined in Table 22-6.

Byte addresses are used when the device itself reads the data with the LPM command. External
programming devices must use word addresses.

Table 22-5. Low Fuse Byte

Bit # Bit Name Use See Default Value

7 CKDIV8 Divides clock by 8 (1) Page 31 0 (programmed)

6 CKOUT Outputs system clock on port pin Page 31 1 (unprogrammed)

5 – – 1 (unprogrammed)

4 SUT Sets system start-up time Page 32 0 (programmed) (2)

3 CKSEL3

Selects clock source Page 33

0 (programmed) (3)

2 CKSEL2 0 (programmed) (3)

1 CKSEL1 1 (unprogrammed) (3)

0 CKSEL0 0 (programmed) (3)

Table 22-6. Contents of Device Signature Imprint Table.

Word Address
(External)

Byte Address
(Internal) Description

0x00
0x00 Signature byte 0 (1)

0x01 Calibration data for internal 8MHz oscillator (OSCCAL0) (2)

0x01
0x02 Signature byte 1 (1)

0x03 Oscillator temperature calibration data (OSCTCAL0A)

0x02
0x04 Signature byte 2 (1)

0x05 Oscillator temperature calibration data (OSCTCAL0B)
224
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Notes: 1. For more information, see section “Signature Bytes” below.
2. For more information, see section “Calibration Bytes” below.
3. See “Temperature Measurement” on page 207.
4. Unsigned, fixed point, two’s complement: [0:(255/128)].
5. Signed integer, two’s complement: [-127:+128].

22.3.1 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked.

Signature bytes can also be read by the device firmware. See section “Reading Lock, Fuse and
Signature Data from Software” on page 225.

The three signature bytes reside in a separate address space called the device signature imprint
table. The signature data for ATtiny1634 is given in Table 22-7.

22.3.2 Calibration Bytes
The device signature imprint table of ATtiny1634 contains calibration data for the internal oscilla-
tors, as shown in Table 22-6 on page 224. During reset, calibration data is automatically copied
to the calibration registers (OSCCAL0, OSCCAL1) to ensure correct frequency of the calibrated
oscillators. See “OSCCAL0 – Oscillator Calibration Register” on page 35, and “OSCCAL1 –
Oscillator Calibration Register” on page 36.

Calibration bytes can also be read by the device firmware. See section “Reading Lock, Fuse and
Signature Data from Software” on page 225.

22.4 Reading Lock, Fuse and Signature Data from Software
Fuse and lock bits can be read by device firmware. Programmed fuse and lock bits read zero.
unprogrammed as one. See “Lock Bits” on page 222 and “Fuse Bits” on page 223.

0x03
0x06 Reserved

0x07 Calibration data for internal 32kHz oscillator (OSCCAL1) (2)

0x04 ...0x15
... Reserved

... Reserved

0x16
0x2C Calibration data for temperature sensor (gain) (3)(4)

0x2D Calibration data for temperature sensor (offset) (3)(5)

0x17...0x3F
... Reserved

... Reserved

Table 22-6. Contents of Device Signature Imprint Table. (Continued)

Word Address
(External)

Byte Address
(Internal) Description

Table 22-7. Device Signature Bytes

Part Signature Byte 0 Signature Byte 1 Signature Byte 0

ATtiny1634 0x1E 0x94 0x12
225
8303D–AVR–06/12

In addition, firmware can also read data from the device signature imprint table. See “Device
Signature Imprint Table” on page 224.

22.4.1 Lock Bit Read
Lock bit values are returned in the destination register after an LPM instruction has been issued
within three CPU cycles after RFLB and SPMEN bits have been set in SPMCSR (see page 220).
The RFLB and SPMEN bits automatically clear upon completion of reading the lock bits, or if no
LPM instruction is executed within three CPU cycles, or if no SPM instruction is executed within
four CPU cycles. When RFLB and SPMEN are cleared LPM functions normally.

To read the lock bits, follow the below procedure:

1. Load the Z-pointer with 0x0001.
2. Set RFLB and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read the lock bits from the LPM destination register.

If successful, the contents of the destination register are as follows.

See section “Lock Bits” on page 222 for more information.

22.4.2 Fuse Bit Read
The algorithm for reading fuse bytes is similar to the one described above for reading lock bits,
only the addresses are different.

To read the Fuse Low Byte (FLB), follow the below procedure:

1. Load the Z-pointer with 0x0000.
2. Set RFLB and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read the FLB from the LPM destination register.

If successful, the contents of the destination register are as follows.

For a detailed description and mapping of the Fuse Low Byte, see Table 22-5 on page 224.

To read the Fuse High Byte (FHB), replace the address in the Z-pointer with 0x0003 and repeat
the procedure above. If successful, the contents of the destination register are as follows.

For a detailed description and mapping of the Fuse High Byte, see Table 22-4 on page 223.

Bit 7 6 5 4 3 2 1 0
Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0
Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0
Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
226
8303D–AVR–06/12

ATtiny1634

ATtiny1634
To read the Fuse Extended Byte (FEB), replace the address in the Z-pointer with 0x0002 and
repeat the previous procedure. If successful, the contents of the destination register are as
follows.

For a detailed description and mapping of the Fuse Extended Byte, see Table 22-3 on page 223.

22.4.3 Device Signature Imprint Table Read
To read the contents of the device signature imprint table, follow the below procedure:

1. Load the Z-pointer with the table index.
2. Set RSIG and SPMEN bits in SPMCSR.
3. Issue an LPM instruction within three clock cycles.
4. Read table data from the LPM destination register.

If successful, the contents of the destination register are as described in section “Device Signa-
ture Imprint Table” on page 224.

See program example below.

Note: See “Code Examples” on page 7.

Bit 7 6 5 4 3 2 1 0
Rd FEB7 FEB6 FEB5 FEB4 FEB3 FEB2 FEB1 FEB0

Assembly Code Example

DSIT_read:

; Uses Z-pointer as table index

ldi ZH, 0

ldi ZL, 1

; Preload SPMCSR bits into R16, then write to SPMCSR

ldi r16, (1<<RSIG)|(1<<SPMEN)

out SPMCSR, r16

; Issue LPM. Table data will be returned into r17

lpm r17, Z

ret
227
8303D–AVR–06/12

23. External Programming
This section describes how to program and verify Flash memory, EEPROM, lock bits, and fuse
bits in ATtiny1634.

23.1 Memory Parametrics
Flash memory parametrics are summarised in Table 23-1, below.

Note: 1. See Table 21-1 on page 218.

EEPROM parametrics are summarised in Table 23-2, below.

Note: 1. See Table 21-1 on page 218.

23.2 Parallel Programming
Parallel programming signals and connections are illustrated in Figure 23-1, below.

Figure 23-1. Parallel Programming Signals

Table 23-1. Flash Parametrics

Device Flash Size Page Size PCWORD (1) Pages PCPAGE (1) PCMSB (1)

ATtiny1634 8K words
(16K bytes) 16 words PC[3:0] 512 PC[12:4] 12

Table 23-2. EEPROM Parametrics

Device EEPROM Size Page Size PCWORD (1) Pages PCPAGE (1) EEAMSB

ATtiny1634 256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

VCC

+5V

GND

CLKI

PC2

PC1

PC0

PB3

PB2

PB1

 PA[7:0] DATA I/O

RESET+12 V

BS1/PAGEL

XA0

XA1/BS2

OE

RDY/BSY

WR
228
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Signals are described in Table 23-3, below. Pins not listed in the table are referenced by pin
names.

Pulses are assumed to be at least 250 ns, unless otherwise noted.

Pins XA1 and XA0 determine the action when CLKI is given a positive pulse, as shown in Table
23-5.

Table 23-3. Pin and Signal Names Used in Programming Mode

Signal Name Pin(s) I/O Function

RDY/BSY PC2 O 0: Device is busy programming,
1: Device is ready for new command

OE PC1 I Output enable (active low)

WR PC0 I Write pulse (active low)

BS1/PAGEL PB3 I Byte select 1 (0: low byte, 1: high byte) /
Program memory and EEPROM data page load

XA0 PB2 I XTAL action bit 0

XA1/BS2 PB1 I XTAL action bit 1 /
Byte Select 2 (0: low byte, 1: 2nd high byte)

DATA I/O PA[7:0] I/O Bi-directional data bus. Output when OE is low

Table 23-4. Pin Values Used to Enter Programming Mode

Pin Symbol Value

WR Prog_enable[3] 0

BS1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

XA1 Prog_enable[0] 0

Table 23-5. XA1 and XA0 Coding

XA1 XA0 Action when CLKI is Pulsed

0 0 Load Flash or EEPROM address (high or low address byte, determined by BS1)

0 1 Load data (high or low data byte for Flash, determined by BS1)

1 0 Load command

1 1 No action, idle
229
8303D–AVR–06/12

When pulsing WR or OE, the command loaded determines the action executed. The different
command options are shown in Table 23-6.

23.2.1 Enter Programming Mode
The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins (see Table 23-4 on page 229) to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 – 5.5V between VCC and GND. Ensure that VCC reaches at least 1.8V within
the next 20 µs.

3. Wait 20 – 60 µs, and apply 11.5 – 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least 10µs after the high voltage has been

applied to ensure Prog_enable signature has been latched.
5. Wait at least 300 µs before giving any parallel programming commands.
6. Exit programming mode by powering the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alterna-
tive algorithm can be used:

1. Set Prog_enable pins (Table 23-4 on page 229) to “0000”, RESET pin to 0V and VCC to
0V.

2. Apply 4.5 – 5.5V between VCC and GND.
3. Monitor VCC, and as soon as VCC reaches 0.9 – 1.1V, apply 11.5 – 12.5V to RESET.
4. Keep the Prog_enable pins unchanged for at least 10µs after the high voltage has been

applied to ensure Prog_enable signature has been latched.
5. Wait until VCC actually reaches 4.5 – 5.5V before giving any parallel programming

commands.
6. Exit programming mode by powering the device down or by bringing RESET pin to 0V.

Table 23-6. Command Byte Bit Coding

Command Byte Command

1000 0000 Chip Erase

0100 0000 Write fuse bits

0010 0000 Write lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read signature bytes and calibration byte

0000 0100 Read fuse and lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM
230
8303D–AVR–06/12

ATtiny1634

ATtiny1634
23.2.2 Considerations for Efficient Programming
Loaded commands and addresses are retained in the device during programming. For efficient
programming, the following should be considered.

• When writing or reading multiple memory locations, the command needs only be loaded once
• Do not write the data value 0xFF, since this already is the contents of the entire Flash and

EEPROM (unless the EESAVE Fuse is programmed) after a Chip Erase
• Address high byte needs only be loaded before programming or reading a new 256 word

window in Flash or 256 byte EEPROM. This also applies to reading signature bytes

23.2.3 Chip Erase
A Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed. The
Chip Erase command will erase all Flash and EEPROM plus lock bits. If the EESAVE fuse is
programmed, the EEPROM is not erased.

Lock bits are not reset until the program memory has been completely erased. Fuse bits are not
changed.

The Chip Erase command is loaded as follows:

1. Set XA1, XA0 to “10”. This enables command loading
2. Set BS1 to “0”
3. Set DATA to “1000 0000”. This is the command for Chip Erase
4. Give CLKI a positive pulse. This loads the command
5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low
6. Wait until RDY/BSY goes high before loading a new command

23.2.4 Programming the Flash
Flash is organized in pages, as shown in Table 23-1 on page 228. When programming the
Flash, the program data is first latched into a page buffer. This allows one page of program data
to be programmed simultaneously. The following procedure describes how to program the entire
Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.
2. Set BS1 to “0”.
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give CLKI a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the address low byte.
231
8303D–AVR–06/12

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 – 0xFF).
3. Give CLKI a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 23-3 for signal

waveforms)
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 23-2 on page 233. Note
that if less than eight bits are required to address words in the page (pagesize < 256), the
most significant bit(s) in the address low byte are used to address the page when performing
a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 23-3 for signal waveforms).
I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.
3. Give CLKI a positive pulse. This loads the command, and the internal write signals are

reset.

Flash page addressing is illustrated in Figure 23-2, below. Symbols used are described in Table
21-1 on page 218.
232
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 23-2. Addressing the Flash Which is Organized in Pages

Flash programming waveforms are illustrated in Figure 23-3, where XX means “don’t care” and
letters refer to the programming steps described earlier.

Figure 23-3. Flash Programming Waveforms

23.2.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 23-2 on page 228. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (see “Programming the Flash” on page 231 for details on loading command, address and
data):

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

233
8303D–AVR–06/12

• A: Load command “0001 0001”
• G: Load address high byte (0x00 – 0xFF)
• B: Load address low byte (0x00 – 0xFF)
• C: Load data (0x00 – 0xFF)
• E: Latch data (give PAGEL a positive pulse)
• K: Repeat steps B, C, and E until the entire buffer is filled
• L: Program EEPROM page:

– Set BS1 to “0”
– Give WR a negative pulse. This starts programming of the EEPROM page.

RDY/BSY goes low
– Wait until to RDY/BSY goes high before programming the next page (See Figure 23-

4 for signal waveforms)

EEPROM programming waveforms are illustrated in Figure 23-4, where XX means “don’t care”
and letters refer to the programming steps described above.

Figure 23-4. EEPROM Programming Waveforms

23.2.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (see “Programming the Flash” on page
231 for details on command and address loading):

• A: Load command “0000 0010”
• G: Load address high byte (0x00 – 0xFF)
• B: Load address low byte (0x00 – 0xFF)
• Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA
• Set BS1 to “1”. The Flash word high byte can now be read at DATA
• Set OE to “1”

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

234
8303D–AVR–06/12

ATtiny1634

ATtiny1634
23.2.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (see “Programming the Flash” on
page 231 for details on command and address loading):

• A: Load command “0000 0011”
• G: Load address high byte (0x00 – 0xFF)
• B: Load address low byte (0x00 – 0xFF)
• Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA
• Set OE to “1”

23.2.8 Programming Low Fuse Bits
The algorithm for programming the low fuse bits is as follows (see “Programming the Flash” on
page 231 for details on command and data loading):

• A: Load command “0100 0000”
• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit
• Give WR a negative pulse and wait for RDY/BSY to go high

23.2.9 Programming High Fuse Bits
The algorithm for programming the high fuse bits is as follows (see “Programming the Flash” on
page 231 for details on command and data loading):

• A: Load command “0100 0000”
• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit
• Set BS1 to “1” and BS2 to “0”. This selects high data byte
• Give WR a negative pulse and wait for RDY/BSY to go high
• Set BS1 to “0”. This selects low data byte

23.2.10 Programming Extended Fuse Bits
The algorithm for programming the extended fuse bits is as follows (see “Programming the
Flash” on page 231 for details on command and data loading):

• A: Load command “0100 0000”
• C: Load data low byte. Bit n = “0” programs and bit n = “1” erases the fuse bit
• Set BS1 to “0” and BS2 to “1”. This selects extended data byte
• Give WR a negative pulse and wait for RDY/BSY to go high
• Set BS2 to “0”. This selects low data byte

Fuse programming waveforms are illustrated in Figure 23-5, where XX means “don’t care” and
letters refer to the programming steps described above.
235
8303D–AVR–06/12

Figure 23-5. Fuses Programming Waveforms

23.2.11 Programming the Lock Bits
The algorithm for programming the lock bits is as follows (see “Programming the Flash” on page
231 for details on command and data loading):

• A: Load command “0010 0000”
• C: Load data low byte. Bit n = “0” programs the Lock bit. If LB1 and LB2 have been

programmed, it is not possible to program the Lock Bits by any External Programming mode
• Give WR a negative pulse and wait for RDY/BSY to go high

Lock bits can only be cleared by executing Chip Erase.

23.2.12 Reading Fuse and Lock Bits
The algorithm for reading fuse and lock bits is as follows (see “Programming the Flash” on page
231 for details on command loading):

• A: Load command “0000 0100”
• Set OE to “0”, BS2 to “0” and BS1 to “0”. Low fuse bits can now be read at DATA (“0” means

programmed)
• Set OE to “0”, BS2 to “1” and BS1 to “1”. High fuse bits can now be read at DATA (“0” means

programmed)
• Set OE to “0”, BS2 to “1”, and BS1 to “0”. Extended fuse bits can now be read at DATA (“0”

means programmed)
• Set OE to “0”, BS2 to “0” and BS1 to “1”. Lock bits can now be read at DATA (“0” means

programmed)
• Set OE to “1”

Fuse and lock bit mapping is illustrated in Figure 23-6, below.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
236
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 23-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

23.2.13 Reading Signature Bytes
The algorithm for reading the signature bytes is as follows (see “Programming the Flash” on
page 231 for details on command and address loading):

1. A: Load command “0000 1000”
2. B: Load address low byte (0x00 – 0x02)
3. Set OE to “0”, and BS1 to “0”. The selected signature byte can now be read at DATA.
4. Set OE to “1”.

23.2.14 Reading the Calibration Byte
The algorithm for reading the calibration byte is as follows (see “Programming the Flash” on
page 231 for details on command and address loading):

1. A: Load command “0000 1000”.
2. B: Load address low byte, 0x00.
3. Set OE to “0”, and BS1 to “1”. The calibration byte can now be read at DATA.
4. Set OE to “1”.

23.3 Serial Programming
Flash and EEPROM memory arrays can both be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed before
program/erase operations can be executed.

Serial programming signals and connections are illustrated in Figure 23-7, below. The pin map-
ping is listed in Table 23-7 on page 238.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
237
8303D–AVR–06/12

Figure 23-7. Serial Programming Signals

Note: If the device is clocked by the internal oscillator there is no need to connect a clock source to the
CLKI pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation and there is no need to first execute the Chip Erase instruction. This applies for serial
programming mode, only.

The Chip Erase operation turns the content of every memory location in Flash and EEPROM
arrays into 0xFF.

Depending on CKSEL fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

• Minimum low period of serial clock:
– 2 CPU clock cycles

• Minimum high period of serial clock:
– 2 CPU clock cycles

23.3.1 Pin Mapping
The pin mapping is listed in Table 23-7. Note that not all parts use the SPI pins dedicated for the
internal SPI interface.

VCC

GND

CLKI

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

Table 23-7. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB1 I Serial Data in

MISO PB2 O Serial Data out

SCK PC1 I Serial Clock
238
8303D–AVR–06/12

ATtiny1634

ATtiny1634
23.3.2 Programming Algorithm
When writing serial data to the ATtiny1634, data is clocked on the rising edge of SCK. When
reading data from the ATtiny1634, data is clocked on the falling edge of SCK. See Figure 24-7
on page 252 and Figure 24-8 on page 253 for timing details.

To program and verify the ATtiny1634 in the serial programming mode, the following sequence
is recommended (See Table 23-8, “Serial Programming Instruction Set,” on page 240):

1. Power-up sequence: apply power between VCC and GND while RESET and SCK are
set to “0”
– In some systems, the programmer can not guarantee that SCK is held low during

power-up. In this case, RESET must be given a positive pulse after SCK has been
set to '0'. The duration of the pulse must be at least tRST plus two CPU clock cycles.
See Table 24-5 on page 247 for definition of minimum pulse width on RESET pin,
tRST

2. Wait for at least 20 ms and then enable serial programming by sending the Program-
ming Enable serial instruction to the MOSI pin

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync, the second byte (0x53) will echo back when issuing the
third byte of the Programming Enable instruction
– Regardless if the echo is correct or not, all four bytes of the instruction must be

transmitted
– If the 0x53 did not echo back, give RESET a positive pulse and issue a new

Programming Enable command
4. The Flash is programmed one page at a time. The memory page is loaded one byte at

a time by supplying the 6 LSB of the address and data together with the Load Program
Memory Page instruction.
– To ensure correct loading of the page, data low byte must be loaded before data

high byte for a given address is applied
– The Program Memory Page is stored by loading the Write Program Memory Page

instruction with the 7 MSB of the address
– If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing

the next page (See Table 23-9). Accessing the serial programming interface before
the Flash write operation completes can result in incorrect programming.

5. The EEPROM can be programmed one byte or one page at a time.
– A: Byte programming. The EEPROM array is programmed one byte at a time by

supplying the address and data together with the Write instruction. EEPROM
memory locations are automatically erased before new data is written. If polling
(RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the
next byte (See Table 23-9). In a chip erased device, no 0xFFs in the data file(s)
need to be programmed

– B: Page programming (the EEPROM array is programmed one page at a time). The
memory page is loaded one byte at a time by supplying the 6 LSB of the address
and data together with the Load EEPROM Memory Page instruction. The EEPROM
memory page is stored by loading the Write EEPROM Memory Page Instruction with
the 7 MSB of the address. When using EEPROM page access only byte locations
loaded with the Load EEPROM Memory Page instruction are altered and the
remaining locations remain unchanged. If polling (RDY/BSY) is not used, the user
239
8303D–AVR–06/12

must wait at least tWD_EEPROM before issuing the next byte (See Table 23-9). In a chip
erased device, no 0xFF in the data file(s) need to be programmed

6. Any memory location can be verified by using the Read instruction, which returns the
content at the selected address at the serial output pin (MISO)

7. At the end of the programming session, RESET can be set high to commence normal
operation

8. Power-off sequence (if required): set RESET to “1”, and turn VCC power off

23.3.3 Programming Instruction Set
The instruction set for serial programming is described in Table 23-8 and Figure 23-8 on page
241.

Table 23-8. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte (1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa (2) data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa (2) aaaa aaaa (2) data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa (2) data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Fuse Extended Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions (3)

Write Program Memory Page $4C adr MSB (4) adr LSB (4) $00

Write EEPROM Memory $C0 0000 00aa (2) aaaa aaaa (2) data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa (2) aaaa aa00 (2) $00

Write Lock bits (5) $AC $E0 $00 data byte in
240
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Notes: 1. Not all instructions are applicable for all parts.
2. a = address.
3. Instructions accessing program memory use a word address. This address may be random within the page range.
4. Word addressing.
5. To ensure future compatibility, unused fuses and lock bits should be unprogrammed (‘1’) .

If the LSB of RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 23-8 on page
241.

Figure 23-8. Serial Programming Instruction example

Write Fuse bits (5) $AC $A0 $00 data byte in

Write Fuse High bits (5) $AC $A8 $00 data byte in

Write Fuse Extended Bits (5) $AC $A4 $00 data byte in

Table 23-8. Serial Programming Instruction Set (Continued)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Byte 1 Byte 2 Byte 3 Byte 4

Adr MSB Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB Adr LSB

Page Offset

Page Number

Adrdr Mr MSSBA AAdrdr LS LSBSB
241
8303D–AVR–06/12

23.4 Programming Time for Flash and EEPROM
Flash and EEPROM wait times are listed in Table 23-9.
Table 23-9. Typical Wait Delays Before Next Flash or EEPROM Location Can Be Written

Operation Minimum Wait Delay

tWD_FLASH 4.5 ms

tWD_EEPROM 3.6 ms

tWD_ERASE 9.0 ms
242
8303D–AVR–06/12

ATtiny1634

ATtiny1634
24. Electrical Characteristics

24.1 Absolute Maximum Ratings*

24.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins 200.0 mA

Table 24-1. DC Characteristics. TA = -40°C to +85°C

Symbol Parameter Condition Min Typ (1) Max Units

VIL

Input Low Voltage
VCC = 1.8 - 2.4V -0.5 0.2VCC (2) V

VCC = 2.4 - 5.5V -0.5 0.3VCC (2) V

Input Low Voltage,
RESET Pin as Reset (4) VCC = 1.8 - 5.5V -0.5 0.2VCC (2)

VIH

Input High-voltage
Except RESET pin

VCC = 1.8 - 2.4V 0.7VCC
(3) VCC +0.5 V

VCC = 2.4 - 5.5V 0.6VCC
(3) VCC +0.5 V

Input High-voltage
RESET pin as Reset (4) VCC = 1.8 - 5.5V 0.9VCC

(3) VCC +0.5 V

VOL
Output Low Voltage(5)

Except RESET pin(7)

Standard I/O: IOL = 10 mA, VCC = 5V
0.6 V

High-sink I/O: IOL = 20 mA, VCC = 5V

Standard I/O: IOL = 5 mA, VCC = 3V
0.5 V

High-sink I/O: IOL = 10 mA, VCC = 3V

VOH
Output High-voltage(6)

Except RESET pin(7)
IOH = -10 mA, VCC = 5V 4.3 V

IOH = -5 mA, VCC = 3V 2.5 V

ILIL
Input Leakage Current
I/O Pin Vcc = 5.5V, pin low (absolute value) < 0.05 1 (8) µA

ILIH
Input Leakage Current
I/O Pin Vcc = 5.5V, pin high (absolute value) < 0.05 1 (8) µA

RPU

Pull-up Resistor, I/O Pin VCC = 5.5V, input low 20 50 kΩ

Pull-up Resistor, Reset Pin VCC = 5.5V, input low 30 60 kΩ
243
8303D–AVR–06/12

Notes: 1. Typical values at +25°C.
2. “Max” means the highest value where the pin is guaranteed to be read as low.
3. “Min” means the lowest value where the pin is guaranteed to be read as high.
4. Not tested in production.
5. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state

conditions (non-transient), the sum of all IOL (for all ports) should not exceed 100 mA. If IOL exceeds the test conditions, VOL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

6. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOH (for all ports) should not exceed 100 mA. If IOH exceeds the test condition, VOH
may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins. See “Output Driver Strength” on page 271.

8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower.
9. Values are with external clock using methods described in “Minimizing Power Consumption” on page 39. Power Reduction

is enabled (PRR = 0xFF) and there is no I/O drive.
10. Bod Disabled.

ICC

Supply Current,
Active Mode (9)

f = 1MHz, VCC = 2V 0.23 0.4 mA

f = 4MHz, VCC = 3V 1.3 1.7 mA

f = 8MHz, VCC = 5V 4.3 6 mA

Supply Current,
Idle Mode (9)

f = 1MHz, VCC = 2V 0.04 0.1 mA

f = 4MHz, VCC = 3V 0.26 0.4 mA

f = 8MHz, VCC = 5V 1.1 1.7 mA

Supply Current,
Power-Down Mode(10)

WDT enabled, VCC = 3V 1.7 4 µA

WDT disabled, VCC = 3V 0.1 2 µA

Table 24-1. DC Characteristics. TA = -40°C to +85°C (Continued)

Symbol Parameter Condition Min Typ (1) Max Units
244
8303D–AVR–06/12

ATtiny1634

ATtiny1634
24.3 Speed
The maximum operating frequency of the device is dependent on supply voltage, VCC . The rela-
tionship between supply voltage and maximum operating frequency is piecewise linear, as
shown in Figure 24-1.

Figure 24-1. Maximum Frequency vs. VCC

24.4 Clock

24.4.1 Accuracy of Calibrated 8MHz Oscillator
It is possible to manually calibrate the internal 8MHz oscillator to be more accurate than default
factory calibration. Note that the oscillator frequency depends on temperature and voltage. Volt-
age and temperature characteristics can be found in “Calibrated Oscillator Frequency (Nominal
= 1MHz) vs. VCC” on page 286 and “Calibrated Oscillator Frequency (Nominal = 1MHz) vs.
Temperature” on page 286.

Notes: 1. See device ordering codes on page 292 for alternatives.
2. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

2 MHz

1.8V 5.5V4.5V

12 MHz

2.7V

8 MHz

Table 24-2. Calibration Accuracy of Internal 8MHz Oscillator

Calibration
Method

Target
Frequency VCC Temperature Accuracy

Factory
Calibration

8.0MHz 2.7 – 4V
0°C to +85°C ±2% (1)

25°C to +85°C ±10% (1)

User
Calibration

Within:
7.3 – 8.1MHz

Within:
1.8 – 5.5V

Within:
-40°C to +85°C ±1% (2)
245
8303D–AVR–06/12

24.4.2 Accuracy of Calibrated 32kHz Oscillator
It is possible to manually calibrate the internal 32kHz oscillator to be more accurate than default
factory calibration. Note that the oscillator frequency depends on temperature and voltage. Volt-
age and temperature characteristics can be found in “ULP Oscillator Frequency (Nominal =
32kHz) vs. VCC” on page 287, and “ULP Oscillator Frequency (Nominal = 32kHz) vs. Tempera-
ture” on page 287.

24.4.3 External Clock Drive

Figure 24-2. External Clock Drive Waveform

Table 24-3. Calibration Accuracy of Internal 32kHz Oscillator

Calibration
Method

Target
Frequency VCC Temperature Accuracy

Factory
Calibration 32kHz 1.8 – 5.5V -40°C to +85°C ±30%

Table 24-4. External Clock Drive Characteristics

Symbol Parameter

VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL Clock Frequency 0 2 0 8 0 12 MHz

tCLCL Clock Period 500 125 83 ns

tCHCX High Time 200 40 20 ns

tCLCX Low Time 200 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 μs

tCHCL Fall Time 2.0 1.6 0.5 μs

ΔtCLCL
Change in period from
one clock cycle to next 2 2 2 %

VIL1

VIH1
246
8303D–AVR–06/12

ATtiny1634

ATtiny1634
24.5 System and Reset

24.5.1 Power-On Reset

Note: 1. Values are guidelines only.
2. Threshold where device is released from reset when voltage is rising.
3. The Power-on Reset will not work unless the supply voltage has been below VPOA.

24.5.2 Brown-Out Detection

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed.

Table 24-5. Reset, Brown-out, and Internal Voltage Characteristics

Symbol Parameter Condition Min Typ Max Units

VRST RESET pin threshold voltage 0.2VCC 0.9VCC V

tRST
Minimum pulse width on
RESET pin

VCC = 1.8V
VCC = 3V
VCC = 5V

2000
700
400

ns

VHYST Brown-out Detector hysteresis 50 mV

tBOD
Minimum pulse width on
Brown-out Reset 2 µs

VBG
Internal bandgap reference
voltage

VCC = 2.7V
TA = 25°C 1.0 1.1 1.2 V

tBG
Internal bandgap reference
start-up time

VCC = 2.7V
TA = 25°C 40 70 µs

IBG
Internal bandgap reference
current consumption

VCC = 2.7V
TA = 25°C 15 µA

Table 24-6. Characteristics of Enhanced Power-On Reset. TA = -40 to +85°C

Symbol Parameter Min(1) Typ(1) Max(1) Units

VPOR Release threshold of power-on reset (2) 1.1 1.4 1.6 V

VPOA Activation threshold of power-on reset (3) 0.6 1.3 1.6 V

SRON Power-On Slope Rate 0.01 V/ms

Table 24-7. VBOT vs. BODLEVEL Fuse Coding

BODLEVEL[2:0] Fuses Min(1) Typ(1) Max(1) Units

11X 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

0XX Reserved
247
8303D–AVR–06/12

24.6 Two-Wire Serial Interface
The following data is based on simulations and characterisations. Parameters listed in Table 24-8 are not tested in produc-
tion. Symbols refer to Figure 24-3.

Notes: 1. fCK = CPU clock frequency.

Figure 24-3. Two-Wire Serial Bus Timing

Table 24-8. Two-Wire Serial Interface Characteristics

Symbol Parameter Condition Min Max Unit

VIL Input Low voltage -0.5 0.3 VCC V

VIH Input High voltage 0.7 VCC VCC + 0.5 V

VHYS Hysteresis of Schmitt-trigger inputs
VCC ≥ 2.7V 0.05 VCC

–
V

VCC < 2.7V 0

VOL Output Low voltage 3mA sink current 0 0.4 V

tSP Spikes suppressed by input filter 0 50 ns

fSCL SCL clock frequency (1) fCK > max(16fSCL, 250kHz) 0 400 kHz

tHD:STA Hold time (repeated) START Condition 0.6 – µs

tLOW Low period of SCL clock 1.3 – µs

tHIGH High period of SCL clock 0.6 – µs

tSU:STA Set-up time for repeated START condition 0.6 – µs

tHD:DAT Data hold time 0 0.9 µs

tSU:DAT Data setup time 100 – ns

tSU:STO Setup time for STOP condition 0.6 – µs

tBUF Bus free time between STOP and START condition 1.3 – µs

tSU:STA

tLOW

tHIGH

tLOW

tOF

tHD:STA tHD:DAT tSU:DAT
tSU:STO

tBUF

SCL

SDA

tR
248
8303D–AVR–06/12

ATtiny1634

ATtiny1634
24.7 Analog to Digital Converter

Table 24-9. ADC Characteristics, Single Ended Channels. T = -40°C to +85°C

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)

VREF = 4V, VCC = 4V,
ADC clock = 200kHz 2.0 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1MHz 2.5 LSB

VREF = 4V, VCC = 4V,
ADC clock = 200kHz
Noise Reduction Mode

1.5 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1MHz
Noise Reduction Mode

2.0 LSB

Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)

VREF = 4V, VCC = 4V,
ADC clock = 200kHz 1.0 LSB

Differential Non-linearity
(DNL)

VREF = 4V, VCC = 4V,
ADC clock = 200kHz 0.5 LSB

Gain Error VREF = 4V, VCC = 4V,
ADC clock = 200kHz 2.0 LSB

Offset Error (Absolute) VREF = 4V, VCC = 4V,
ADC clock = 200kHz 1.5 LSB

Conversion Time Free Running Conversion 14 280 µs

Clock Frequency 50 1000 kHz

VIN Input Voltage GND VREF V

Input Bandwidth 38.5 kHz

AREF External Voltage Reference 2.0 VCC V

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output 0 1023 LSB
249
8303D–AVR–06/12

24.8 Analog Comparator

24.9 Temperature Sensor

Note: 1. Firmware calculates temperature based on factory calibration value.
2. Min and max values are not guaranteed. Contact your local Atmel sales office if higher accu-

racy is required.

24.10 Parallel Programming

Figure 24-4. Parallel Programming Timing, Including some General Timing Requirements

Table 24-10. Analog Comparator Characteristics, TA = -40°C to +85°C

Symbol Parameter Condition Min Typ Max Units

VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 < 10 40 mV

ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 -50 50 nA

tAPD

Analog Propagation Delay
(from saturation to slight overdrive)

VCC = 2.7V 750

ns
VCC = 4.0V 500

Analog Propagation Delay
(large step change)

VCC = 2.7V 100

VCC = 4.0V 75

tDPD Digital Propagation Delay VCC = 1.8 - 5.5V 1 2 CLK

Table 24-11. Accuracy of Temperature Sensor at Factory Calibration

Symbol Parameter Condition Min Typ Max Units

ATS Accuracy VCC = 4.0, TA = 25°C – 85°C 10 °C

Data & Contol
(DATA, XA0/1, BS1, BS2)

CLKI
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL
250
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 24-5. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 24-4 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Figure 24-6. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 24-4 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Table 24-12. Parallel Programming Characteristics, TA = 25°C, VCC = 5V

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before CLKI High 67 ns

CLKI

PAGEL

tPLXHXLXHt tXLPH

z
ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

CLKI

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
251
8303D–AVR–06/12

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

24.11 Serial Programming

Figure 24-7. Serial Programming Timing

tXLXH CLKI Low to CLKI High 200 ns

tXHXL CLKI Pulse Width High 150 ns

tXLDX Data and Control Hold after CLKI Low 67 ns

tXLWL CLKI Low to WR Low 0 ns

tXLPH CLKI Low to PAGEL high 0 ns

tPLXH PAGEL low to CLKI high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 3.7 9 ms

tXLOL CLKI Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 24-12. Parallel Programming Characteristics, TA = 25°C, VCC = 5V (Continued)

Symbol Parameter Min Typ Max Units

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX
252
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 24-8. Serial Programming Waveform

Table 24-13. Serial Programming Characteristics, TA = -40°C to +85°C

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency @ VCC = 1.8V - 5.5V 0 1 MHz

tCLCL Oscillator Period @ VCC = 1.8V - 5.5V 1000 ns

1/tCLCL Oscillator Frequency @ VCC = 4.5V - 5.5V 0 6 MHz

tCLCL Oscillator Period @ VCC = 4.5V - 5.5V 167 ns

tSHSL SCK Pulse Width High 2 tCLCL ns

tSLSH SCK Pulse Width Low 2 tCLCL ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
253
8303D–AVR–06/12

25. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.

All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.

A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consump-
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.

The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:

where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of
I/O pin.

25.1 Current Consumption in Active Mode

Figure 25-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

ICP VCC CL f×× SW≈

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency [MHz]

I C
C
 [
m

A
]

254
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-2. Active Supply Current vs. Frequency (1 - 12 MHz)

Figure 25-3. Active Supply Current vs. VCC (Internal Oscillator, 8 MHz)

0

1

2

3

4

5

6

7

8

210186420

Frequency [MHz]

I C
C
 [

m
A

]

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

85
25

-40

0

1

2

3

4

5

6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [
m

A
]

255
8303D–AVR–06/12

Figure 25-4. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)

Figure 25-5. Active Supply Current vs. VCC (Internal Oscillator, 32kHz)

85
25

-40

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

m
A

]

85
25

-40

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

m
A

]

256
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.2 Current Consumption in Idle Mode

Figure 25-6. Idle Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

Figure 25-7. Idle Supply Current vs. Frequency (1 - 12 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency [MHz]

I C
C
 [

m
A

]

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 2 4 6 8 10 12

Frequency [MHz]

I C
C
 [

m
A

]

257
8303D–AVR–06/12

Figure 25-8. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)

Figure 25-9. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz)

85
25

-40

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [
m

A
]

85

25
-40

0

0,1

0,2

0,3

0,4

0,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

m
A

]

258
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-10. Idle Supply Current vs. VCC (Internal Oscillator, 32kHz)

25.3 Current Consumption in Standby Mode

Figure 25-11. Standby Supply Current vs. VCC (Watchdog Timer Enabled)

85
25

-40

0

0,01

0,02

0,03

0,04

0,05

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC

I C
C

8MHz

32kHz

0

0,05

0,1

0,15

0,2

0,25

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [
m

A
]

259
8303D–AVR–06/12

25.4 Current Consumption in Power-down Mode

Figure 25-12. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 25-13. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

85

25

-40

0

0,2

0,4

0,6

0,8

1

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

u
A

]

85

25

-40

0

1

2

3

4

5

6

7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

u
A

]

260
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.5 Current Consumption in Reset

Figure 25-14. Reset Current vs. Frequency (0.1 – 1MHz, Excluding Pull-Up Current)

Figure 25-15. Reset Current vs. Frequency (1 – 12MHz, Excluding Pull-Up Current)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Frequency [MHz]

I C
C
 [

m
A

]

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

2

4

6

8

10

210186420

Frequency [MHz]

I C
C
 [
m

A
]

261
8303D–AVR–06/12

Figure 25-16. Reset Current vs. VCC (No Clock, excluding Reset Pull-Up Current)

25.6 Current Consumption of Peripheral Units

Figure 25-17. Current Consumption of Peripherals at 1MHz

85
25

-40

0

0,5

1

1,5

2

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

m
A

]

T/C1
T/C0

ADC

AC

0

100

200

300

400

500

600

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

u
A

]

262
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-18. Watchdog Timer Current vs. VCC

Figure 25-19. Brownout Detector Current vs. VCC

85

25

-40

0

0,001

0,002

0,003

0,004

0,005

0,006

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC

Ic
c
 [

m
A

]

85

25

-40

0

5

10

15

20

25

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

u
A

]

263
8303D–AVR–06/12

Figure 25-20. Sampled Brownout Detector Current vs. VCC

Figure 25-21. AREF External Reference Pin Current (VCC = 5V)

85

25

-40

0

1

2

3

4

5

6

7

8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

I C
C
 [

u
A

]

85

25
-40

0

20

40

60

80

100

120

140

160

1,5 2 2,5 3 3,5 4 4,5 5 5,5

AREF [V]

A
R

E
F

 p
in

 c
u

rr
e

n
t
[u

A
]

264
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.7 Pull-up Resistors

Figure 25-22. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

Figure 25-23. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V)

0

10

20

30

40

50

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VOP [V]

I O
P
 [

u
A

]

25

-40
85

0

20

40

60

80

0 0,5 1 1,5 2 2,5 3

VOP [V]

I O
P
 [

u
A

]

25

-40
85
265
8303D–AVR–06/12

Figure 25-24. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

Figure 25-25. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

-0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

VOP [V]

I O
P
 [

u
A

]

25

-40
85

25

-400

10

20

30

40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VRESET [V]

I R
E

S
E

T
 [

u
A

]

85
266
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-26. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

Figure 25-27. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

0

10

20

30

40

50

60

0 0,5 1 1,5 2 2,5 3

VRESET [V]

I R
E

S
E

T
 [

u
A

]

25

-40
85

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET [V]

I R
E

S
E

T
 [

u
A

]

25

-40
85
267
8303D–AVR–06/12

25.8 Input Thresholds

Figure 25-28. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)

Figure 25-29. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)

85
25

-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h
re

s
h
o
ld

 [
V

]

85
25

-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h

re
s
h

o
ld

 [
V

]

268
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-30. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)

Figure 25-31. VIH: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘1’)

85
25

-40

0

0,1

0,2

0,3

0,4

0,5

0,6

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC

H
y
s
te

ri
s
 [
V

]

[V]

85
25

-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h
re

s
h
o
ld

 [
V

]

269
8303D–AVR–06/12

Figure 25-32. VIL: Input Threshold Voltage vs. VCC (Reset Pin as I/O, Read as ‘0’)

Figure 25-33. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin as I/O)

85

25
-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h

re
s
h

o
ld

 [
V

]

85
25

-40

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC

H
y
s
te

re
s
is

 [
V

]

[V]
270
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.9 Output Driver Strength

Figure 25-34. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)

Figure 25-35. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)

85

25

-40

0

0,5

1

1,5

2

543210

IOH [mA]

V
O

H
 [

V
]

85
25

-40

0

0,5

1

1,5

2

2,5

3

0186420

IOH [mA]

V
O

H
 [

V
]

271
8303D–AVR–06/12

Figure 25-36. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)

Figure 25-37. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)

85
25

-40

0

1

2

3

4

5

02510150

IOH [mA]

V
O

H
 [

V
]

85

25

-40

0

0,2

0,4

0,6

0,8

1

543210

IOL [mA]

V
O

L
 [
V

]

272
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-38. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)

Figure 25-39. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)

85

25

-40

0

0,2

0,4

0,6

0,8

1

0186420

IOL [mA]

V
O

L
 [

V
]

85

25

-40

0

0,2

0,4

0,6

0,8

1

02510150

IOL [mA]

V
O

L
 [

V
]

273
8303D–AVR–06/12

Figure 25-40. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V

Figure 25-41. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V

85
25

-40

0

0,5

1

1,5

2

18,06,04,02,00

IOH [mA]

V
O

H
 [

V
]

85
25

-40

0

0,5

1

1,5

2

2,5

3

18,06,04,02,00

IOH [mA]

V
O

H
 [

V
]

274
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-42. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V

Figure 25-43. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V)

85
25

-40

0

1

2

3

4

5

18,06,04,02,00

IOH [mA]

V
O

H
 [

V
]

25

-40

0

0,2

0,4

0,6

0,8

1

18,06,04,02,00

IOL [mA]

V
O

L
 [

V
]

85
275
8303D–AVR–06/12

Figure 25-44. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)

Figure 25-45. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)

85

25

-40

0

0,2

0,4

0,6

0,8

1

25,115,00

IOL [mA]

V
O

L
 [

V
]

85

25

-40

0

0,2

0,4

0,6

0,8

1

0 0,5 1 1,5 2 2,5 3 3,5 4

IOL [mA]

V
O

L
 [

V
]

276
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.10 BOD

Figure 25-46. BOD Threshold vs Temperature (BODLEVEL = 4.3V)

Figure 25-47. BOD Threshold vs Temperature (BODLEVEL = 2.7V)

VCC RISING

VCC FALLING

4,16

4,18

4,2

4,22

4,24

4,26

4,28

4,3

4,32

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h

re
s
h

o
ld

 [
V

]

VCC RISING

VCC FALLING

2,62

2,64

2,66

2,68

2,7

2,72

2,74

2,76

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h
re

s
h
o
ld

 [
V

]

277
8303D–AVR–06/12

Figure 25-48. BOD Threshold vs Temperature (BODLEVEL = 1.8V)

Figure 25-49. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V)

VCC RISING

VCC FALLING

1,75

1,76

1,77

1,78

1,79

1,8

1,81

1,82

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h

re
s
h

o
ld

 [
V

]

VCC RISING

VCC FALLING

4,25

4,26

4,27

4,28

4,29

4,3

4,31

4,32

4,33

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h
re

s
h
o
ld

 [
V

]

278
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-50. Sampled BOD Threshold vs Temperature (BODLEVEL = 2.7V)

Figure 25-51. Sampled BOD Threshold vs Temperature (BODLEVEL = 1.8V)

VCC RISING

VCC FALLING

2,7

2,71

2,72

2,73

2,74

2,75

2,76

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h

re
s
h

o
ld

 [
V

]

VCC RISING

VCC FALLING

1,77

1,775

1,78

1,785

1,79

1,795

1,8

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

T
h

re
s
h

o
ld

 [
V

]

279
8303D–AVR–06/12

25.11 Bandgap Voltage

Figure 25-52. Bandgap Voltage vs. Supply Voltage

Figure 25-53. Bandgap Voltage vs. Temperature (VCC = 3.3V)

85

25

-40

1,04

1,045

1,05

1,055

1,06

1,065

1,07

1,075

1,08

1,5 2 2,5 3 3,5 4 4,5 5 5,5

Vcc [V]

B
a

n
d

g
a

p
 [
V

]

1,04

1,045

1,05

1,055

1,06

1,065

1,07

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [C]

B
a

n
d

g
a

p
 V

o
lt
a

g
e

 [
V

]

280
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.12 Reset

Figure 25-54. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)

Figure 25-55. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)

85
25

-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h
re

s
h
o
ld

 [
V

]

85

25
-40

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

T
h

re
s
h

o
ld

 [
V

]

281
8303D–AVR–06/12

Figure 25-56. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin)

Figure 25-57. Minimum Reset Pulse Width vs. VCC

85
25

-40

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

H
y
s
te

re
s
is

 [
V

]

85
25

-40

0

500

1000

1500

2000

2500

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

P
u

ls
e

w
id

th
 [

n
s
]

282
8303D–AVR–06/12

ATtiny1634

ATtiny1634
25.13 Analog Comparator Offset

Figure 25-58. Analog Comparator Offset vs. VIN (VCC = 5V)

Figure 25-59. Analog Comparator Offset vs. VCC (VIN = 1.1V)

85

25

-40

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Vin [V]

O
ff
s
e
t
[m

V
]

0

1

2

3

4

5

6

7

8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

Vcc [V]

O
ff

s
e
t

[m
V

]

85

25
-40
283
8303D–AVR–06/12

Figure 25-60. Analog Comparator Hysteresis vs. VIN (VCC = 5.0V)

25.14 Internal Oscillator Speed

Figure 25-61. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. VCC

85

25

-40

0

5

10

15

20

25

30

35

40

45

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Vin [V]

H
y
s
te

re
s
is

 [
m

V
]

85
25

-40

7,9

8

8,1

8,2

8,3

8,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

F
R

C
 [
M

H
z
]

284
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-62. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. Temperature

Figure 25-63. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. OSCCAL Value

5.0 V

3.0 V

7,9

7,95

8

8,05

8,1

8,15

8,2

-40 -20 0 20 40 60 80 100

Temperature [°]

F
R

C
 [
M

H
z
]

0

2

4

6

8

10

12

14

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL [X1]

F
R

C
 [

M
H

z
]

285
8303D–AVR–06/12

Figure 25-64. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. VCC

Figure 25-65. Calibrated Oscillator Frequency (Nominal = 1MHz) vs. Temperature

85
25

-40

0,97

0,98

0,99

1

1,01

1,02

1,03

1,04

1,05

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

F
R

C
 [

M
H

z
]

5.0 V

3.0 V

1.8 V

0,97

0,98

0,99

1

1,01

1,02

1,03

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature [°]

F
R

C
 [
M

H
z
]

286
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Figure 25-66. ULP Oscillator Frequency (Nominal = 32kHz) vs. VCC

Figure 25-67. ULP Oscillator Frequency (Nominal = 32kHz) vs. Temperature

85

25

-40

28000

29000

30000

31000

32000

33000

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC [V]

F
R

C
 [

H
z
]

28000

29000

30000

31000

32000

33000

34000

-40 -20 0 20 40 60 80 100

Temperature [°]

F
R

C
 [

H
z
]

287
8303D–AVR–06/12

26. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page(s)

(0xFF) Reserved – – – – – – – –
(0xFE) Reserved – – – – – – – –
(0xFD) Reserved – – – – – – – –
(0xFC) Reserved – – – – – – – –
(0xFB) Reserved – – – – – – – –
(0xFA) Reserved – – – – – – – –
(0xF9) Reserved – – – – – – – –

...
(0x85) Reserved – – – – – – – –
(0x84) Reserved – – – – – – – –
(0x83) Reserved – – – – – – – –
(0x82) Reserved – – – – – – – –
(0x81) Reserved – – – – – – – –
(0x80) Reserved – – – – – – – –
(0x7F) TWSCRA TWSHE – TWDIE TWASIE TWEN TWSIE TWPME TWSME 135
(0x7E) TWSCRB TWAA TWCMD[1:0] 136
(0x7D) TWSSRA TWDIF TWASIF TWCH TWRA TWC TWBE TWDIR TWAS 137
(0x7C) TWSA TWI Slave Address Register 138
(0x7B) TWSAM TWI Slave Address Mask Register 139
(0x7A) TWSD TWI Slave Data Register 139
(0x79) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 178
(0x78) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 179
(0x77) UCSR1C UMSEL11 UMSEL10 UPM11 UPM01 USBS1 USBSZ11 UCSZ10 UCPOL1 180
(0x76) UCSR1D RXSIE1 RXS1 SFDE1 182
(0x75) UBRR1H USART1 Baud Rate Register High Byte 183
(0x74) UBRR1L USART1 Baud Rate Register Low Byte 183
(0x73) UDR1 USART1 I/O Data Register 177
(0x72) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 117
(0x71) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 119
(0x70) TCCR1C FOC1A FOC1B – – – – – – 120
(0x6F) TCNT1H Timer/Counter1 – Counter Register High Byte 121
(0x6E) TCNT1L Timer/Counter1 – Counter Register Low Byte 121
(0x6D) OCR1AH Timer/Counter1 – Compare Register A High Byte 121
(0x6C) OCR1AL Timer/Counter1 – Compare Register A Low Byte 121
(0x6B) OCR1BH Timer/Counter1 – Compare Register B High Byte 121
(0x6A) OCR1BL Timer/Counter1 – Compare Register B Low Byte 121
(0x69) ICR1H Timer/Counter1 – Input Capture Register High Byte 122
(0x68) ICR1L Timer/Counter1 – Input Capture Register Low Byte 122
(0x67) GTCCR TSM – – – – – – PSR10 126
(0x66) OSCCAL1 – – – – – – CAL11 CAL10 36
(0x65) OSCTCAL0B Oscillator Temperature Compensation Register B 36
(0x64) OSCTCAL0A Oscillator Temperature Compensation Register A 35
(0x63) OSCCAL0 CAL07 CAL06 CAL05 CAL04 CAL03 CAL02 CAL01 CAL00 35
(0x62) DIDR2 – – – – – ADC11D ADC10D ADC9D 213
(0x61) DIDR1 – – – – ADC8D ADC7D ADC6D ADC5D 213
(0x60) DIDR0 ADC4D ADC3D ADC2D ADC1D ADC0D AIN1D AIN0D AREFD 196, 213

0x3F (0x5F) SREG I T H S V N Z C 15
0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 15
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 15
0x3C (0x5C) GIMSK – INT0 PCIE2 PCIE1 PCIE0 – – – 56
0x3B (0x5B) GIFR – INTF0 PCIF2 PCIF1 PCIF0 – – – 57
0x3A (0x5A) TIMSK TOIE1 OCIE1A OCIE1B – ICIE1 OCIE0B TOIE0 OCIE0A 94, 122
0x39 (0x59) TIFR TOV1 OCF1A OCF1B – ICF1 OCF0B TOV0 OCF0A 95, 123
0x38 (0x58) QTCSR QTouch Control and Status Register 7
0x37 (0x57) SPMCSR – – RSIG CTPB RFLB PGWRT PGERS SPMEN 220
0x36 (0x56) MCUCR – SM1 SM0 SE – – ISC01 ISC00 40, 56
0x35 (0x55) MCUSR – – – – WDRF BORF EXTRF PORF 49
0x34 (0x54) PRR – PRTWI PRTIM0 PRTIM0 PRUSI PRUSART1 PRUSART0 PRADC 41
0x33 (0x53) CLKPR – – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 33
0x32 (0x52) CLKSR OSCRDY CSTR CKOUT_IO SUT CKSEL3 CKSEL2 CKSEL1 CKSEL0 32
0x31 (0x51) Reserved – – – – – – – –
0x30 (0x50) WDTCSR WDIF WDIE WDP3 – WDE WDP2 WDP1 WDP0 50
0x2F (0x4F) CCP CPU Change Protection Register 14
0x2E (0x4E) DWDR DWDR[7:0] 215
288
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

0x2D (0x4D) USIBR USI Buffer Register 153
0x2C (0x4C) USIDR USI Data Register 153
0x2B (0x4B) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 152
0x2A (0x4A) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 149
0x29 (0x49) PCMSK2 – – PCINT17 PCINT16 PCINT15 PCINT14 PCINT13 PCINT12 58
0x28 (0x48) PCMSK1 – – – – PCINT11 PCINT10 PCINT9 PCINT8 58
0x27 (0x47) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 58
0x26 (0x46) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM 178
0x25 (0x45) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 179
0x24 (0x44) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 180
0x23 (0x43) UCSR0D RXCIE0 RXS0 SFDE0 – – – – – 182
0x22 (0x42) UBRR0H – – – – USART0 Baud Rate Register High Byte 183
0x21 (0x41) UBRR0L USART0 Baud Rate Register Low Byte 183
0x20 (0x40) UDR0 USART0 I/O Data Register 177
0x1F (0x3F) EEARH – – – – – – – –
0x1E (0x3E) EEARL EEAR[7:0] 24
0x1D (0x3D) EEDR EEPROM Data Register 24
0x1C (0x3C) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 25
0x1B (0x3B) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 89
0x1A (0x3A) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00 92
0x19 (0x39) TCNT0 Timer/Counter0 93
0x18 (0x38) OCR0A Timer/Counter0 – Compare Register A 94
0x17 (0x37) OCR0B Timer/Counter0 – Compare Register B 94
0x16 (0x36) GPIOR2 General Purpose Register 2 26
0x15 (0x35) GPIOR1 General Purpose Register 1 26
0x14 (0x34) GPIOR0 General Purpose Register 0 26
0x13 (0x33) PORTCR – – – – – BBMC BBMB BBMA 75
0x12 (0x32) PUEA PUEA7 PUEA6 PUEA5 PUEA4 PUEA3 PUEA2 PUEA1 PUEA0 76
0x11 (0x31) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 76
0x10 (0x30) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 76
0x0F (0x2F) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 76
0x0E (0x2E) PUEB – – – – PUEB3 PUEB2 PUEB1 PUEB0 76
0x0D (0x2D) PORTB – – – – PORTB3 PORTB2 PORTB1 PORTB0 76
0x0C (0x2C) DDRB – – – – DDB3 DDB2 DDB1 DDB0 76
0x0B (0x2B) PINB – – – – PINB3 PINB2 PINB1 PINB0 77
0x0A (0x2A) PUEC – – PUEC5 PUEC4 PUEC3 PUEC2 PUEC1 PUEC0 77
0x09 (0x29) PORTC – – PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 77
0x08 (0x28) DDRC – – DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 77
0x07 (0x27) PINC – – PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 77
0x06 (0x26) ACSRA ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 194
0x05 (0x25) ACSRB HSEL HLEV ACLP – ACCE ACME ACIRS1 ACIRS0 195
0x04 (0x24) ADMUX REFS1 REFS0 REFEN ADC0EN MUX3 MUX2 MUX1 MUX0 208
0x03 (0x23) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 210
0x02 (0x22) ADCSRB VDEN VDPD – – ADLAR ADTS2 ADTS1 ADTS0 212
0x01 (0x21) ADCH ADC Data Register High Byte 211
0x00 (0x20) ADCL ADC Data Register Low Byte 211

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page(s)
289
8303D–AVR–06/12

27. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← 0xFF None 1
BRANCH INSTRUCTIONS
JMP k Direct Jump PC ← k None 3
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
CALL k Direct Subroutine PC ← k None 4
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
290
8303D–AVR–06/12

ATtiny1634

ATtiny1634
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow. V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
LPM Rd, Z Load Program Memory Rd ← (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3
SPM Store Program Memory (z) ← R1:R0 None
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1
BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
291
8303D–AVR–06/12

28. Ordering Information

Notes: 1. For speed vs. supply voltage, see section 24.3 “Speed” on page 245.
2. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazard-

ous Substances (RoHS).
3. Denotes accuracy of the internal oscillator. See Table 24-2 on page 245.
4. Code indicators:

– U: matte tin
– R: tape & reel

5. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.

28.1 ATtiny1634
Speed (MHz) (1) Supply Voltage (V) Temperature Range Package (2) Accuracy (3) Ordering Code (4)

12 1.8 – 5.5 Industrial
(-40°C to +85°C) (5)

20M1

±10% ATtiny1634-MU

±2% ATtiny1634R-MU

±10% ATtiny1634-MUR

±2% ATtiny1634R-MUR

20S2

±10% ATtiny1634-SU

±2% ATtiny1634R-SU

±10% ATtiny1634-SUR

±2% ATtiny1634R-SUR

20U-1 ±10% ATtiny1634-UUR

Package Type

20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead / Micro Lead Frame Package (QFN/MLF)

20S2 20-lead, 0.300" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)

20U-1 20-ball 2.38 x 2.02 x 0.409mm Body, 5x4 Array, 0.40 mm Pitch, Wafer Level Chip Scale Package (WLCSP)
292
8303D–AVR–06/12

ATtiny1634

ATtiny1634
29. Packaging Information

29.1 20M1

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm,

B20M1

10/27/04

 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)

A 0.70 0.75 0.80

A1 – 0.01 0.05

A2 0.20 REF

b 0.18 0.23 0.30

D 4.00 BSC

D2 2.45 2.60 2.75

E 4.00 BSC

E2 2.45 2.60 2.75

e 0.50 BSC

L 0.35 0.40 0.55

SIDE VIEW

Pin 1 ID

Pin #1
Notch

(0.20 R)

BOTTOM VIEW

TOP VIEW

Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D

E

e

A2

A1

 A

D2

E2

0.08 C

L

1

2

3

b

1

2

3

293
8303D–AVR–06/12

29.2 20S2
294
8303D–AVR–06/12

ATtiny1634

ATtiny1634
29.3 20U-1
295
8303D–AVR–06/12

30. Errata
The revision letters in this section refer to the revision of the corresponding ATtiny1634 device.

30.1 ATtiny1634

30.1.1 Rev. B
• Port Pin Should Not Be Used As Input When ULP Oscillator Is Disabled

1. Port Pin Should Not Be Used As Input When ULP Oscillator Is Disabled
Port pin PB3 is not guaranteed to perform as a reliable input when the Ultra Low Power
(ULP) oscillator is not running. In addition, the pin is pulled down internally when ULP oscil-
lator is disabled.

Problem Fix / Workaround
The ULP oscillator is automatically activated when required. To use PB3 as an input, acti-
vate the watchdog timer. The watchdog timer automatically enables the ULP oscillator.

30.1.2 Rev. A
• Flash / EEPROM Can Not Be Written When Supply Voltage Is Below 2.4V
• Port Pin Should Not Be Used As Input When ULP Oscillator Is Disabled

1. Flash / EEPROM Can Not Be Written When Supply Voltage Is Below 2.4V
When supply voltage is below 2.4V write operations to Flash and EEPROM may fail.

Problem Fix / Workaround
Do not write to Flash or EEPROM when supply voltage is below 2.4V.

2. Port Pin Should Not Be Used As Input When ULP Oscillator Is Disabled
Port pin PB3 is not guaranteed to perform as a reliable input when the Ultra Low Power
(ULP) oscillator is not running. In addition, the pin is pulled down internally when ULP oscil-
lator is disabled.

Problem Fix / Workaround
The ULP oscillator is automatically activated when required. To use PB3 as an input, acti-
vate the watchdog timer. The watchdog timer automatically enables the ULP oscillator.
296
8303D–AVR–06/12

ATtiny1634

ATtiny1634
31. Datasheet Revision History

31.1 Rev. 8303D – 06/12
1. Updated:

– “Ordering Information” on page 292
2. Added:

– Wafer Level Chip Scale Package “20U-1” on page 295

31.2 Rev. 8303C – 03/12
1. Updated:

– “Register Description” on page 177
– “Self-Programming” on page 216

31.3 Rev. 8303B – 03/12
1. Removed Preliminary status.
2. Added:

– “Typical Characteristics” on page 254
– “Temperature Sensor” on page 250
– “Rev. B” on page 296

3. Updated:
– “Pin Descriptions” on page 3
– “Calibrated Internal 8MHz Oscillator” on page 29
– “OSCTCAL0A – Oscillator Temperature Calibration Register A” on page 35
– “OSCTCAL0B – Oscillator Temperature Calibration Register B” on page 36
– “TWSCRA – TWI Slave Control Register A” on page 135
– “USART (USART0 & USART1)” on page 154
– “Temperature vs. Sensor Output Voltage (Typical)” on page 208
– “DC Characteristics” on page 243
– “Calibration Accuracy of Internal 32kHz Oscillator” on page 246
– “External Clock Drive Characteristics” on page 246
– “Reset, Brown-out, and Internal Voltage Characteristics” on page 247
– “Analog Comparator Characteristics, TA = -40°C to +85°C” on page 250
– “Parallel Programming Characteristics, TA = 25°C, VCC = 5V” on page 251
– “Serial Programming Characteristics, TA = -40°C to +85°C” on page 253
– “Ordering Information” on page 292

31.4 Rev. 8303A – 11/11
Initial revision.
297
8303D–AVR–06/12

298
8303D–AVR–06/12

ATtiny1634

ATtiny1634
Table of Contents

Features ... 1

1 Pin Configurations ... 2
1.1 Pin Descriptions ...3

2 Overview ... 5

3 General Information ... 7
3.1 Resources ...7

3.2 Code Examples ...7

3.3 Capacitive Touch Sensing ...7

3.4 Data Retention ...7

4 CPU Core .. 8
4.1 Architectural Overview ...8

4.2 ALU – Arithmetic Logic Unit ...9

4.3 Status Register ..9

4.4 General Purpose Register File ..10

4.5 Stack Pointer ...11

4.6 Instruction Execution Timing ...12

4.7 Reset and Interrupt Handling ...12

4.8 Register Description ..14

5 Memories .. 17
5.1 Program Memory (Flash) ...17

5.2 Data Memory (SRAM) and Register Files ...18

5.3 Data Memory (EEPROM) ..20

5.4 Register Description ..24

6 Clock System ... 27
6.1 Clock Subsystems ...27

6.2 Clock Sources ...28

6.3 System Clock Prescaler ..31

6.4 Clock Output Buffer ...31

6.5 Register Description ..32

7 Power Management and Sleep Modes ... 37
7.1 Sleep Modes ..37

7.2 Power Reduction Register ...39
i
8303D–AVR–06/12

7.3 Minimizing Power Consumption ..39

7.4 Register Description ..40

8 System Control and Reset .. 43
8.1 Resetting the AVR ...43

8.2 Reset Sources ...43

8.3 Internal Voltage Reference ..47

8.4 Watchdog Timer ..47

8.5 Register Description ..49

9 Interrupts .. 52
9.1 Interrupt Vectors ..52

9.2 External Interrupts ...54

9.3 Register Description ..56

10 I/O Ports .. 59
10.1 Overview ..59

10.2 Ports as General Digital I/O ...60

10.3 Alternate Port Functions ..64

10.4 Register Description ..75

11 8-bit Timer/Counter0 with PWM .. 78
11.1 Features ..78

11.2 Overview ..78

11.3 Clock Sources ...79

11.4 Counter Unit ..79

11.5 Output Compare Unit ...80

11.6 Compare Match Output Unit ..82

11.7 Modes of Operation ...83

11.8 Timer/Counter Timing Diagrams ...87

11.9 Register Description ..89

12 16-bit Timer/Counter1 .. 96
12.1 Features ..96

12.2 Overview ..96

12.3 Timer/Counter Clock Sources ...98

12.4 Counter Unit ..98

12.5 Input Capture Unit ...99

12.6 Output Compare Units ...101
ii
8303D–AVR–06/12

ATtiny1634

ATtiny1634
12.7 Compare Match Output Unit ..103

12.8 Modes of Operation ...105

12.9 Timer/Counter Timing Diagrams ...112

12.10 Accessing 16-bit Registers ..114

12.11 Register Description ..117

13 Timer/Counter Prescaler ... 124
13.1 Prescaler Reset ...124

13.2 External Clock Source ...125

13.3 Register Description ..126

14 I2C Compatible, Two-Wire Slave Interface .. 127
14.1 Features ..127

14.2 Overview ..127

14.3 General TWI Bus Concepts ...127

14.4 TWI Slave Operation ...133

14.5 Register Description ..135

15 USI – Universal Serial Interface .. 141
15.1 Features ..141

15.2 Overview ..141

15.3 Three-wire Mode ...142

15.4 Two-wire Mode ..144

15.5 Alternative Use ..146

15.6 Program Examples ..147

15.7 Register Descriptions ..149

16 USART (USART0 & USART1) .. 154
16.1 Features ..154

16.2 USART0 and USART1 ..154

16.3 Overview ..154

16.4 Clock Generation ...156

16.5 Frame Formats ..159

16.6 USART Initialization ...160

16.7 Data Transmission – The USART Transmitter ..161

16.8 Data Reception – The USART Receiver ...164

16.9 Asynchronous Data Reception ..168

16.10 Multi-processor Communication Mode ..172

16.11 Examples of Baud Rate Setting ...173
iii
8303D–AVR–06/12

16.12 Register Description ..177

17 USART in SPI Mode ... 184
17.1 Features ..184

17.2 Overview ..184

17.3 Clock Generation ...184

17.4 SPI Data Modes and Timing ..185

17.5 Frame Formats ..185

17.6 Data Transfer ...187

17.7 Compatibility with AVR SPI ...189

17.8 Register Description ..190

18 Analog Comparator ... 193
18.1 Analog Comparator Multiplexed Input ...193

18.2 Register Description ..194

19 Analog to Digital Converter .. 197
19.1 Features ..197

19.2 Overview ..197

19.3 Operation ...198

19.4 Starting a Conversion ..199

19.5 Prescaling and Conversion Timing ..200

19.6 Changing Channel or Reference Selection ...203

19.7 ADC Noise Canceler ...204

19.8 Analog Input Circuitry ..204

19.9 Noise Canceling Techniques ...205

19.10 ADC Accuracy Definitions ...205

19.11 ADC Conversion Result ...207

19.12 Temperature Measurement ...207

19.13 Register Description ..208

20 debugWIRE On-chip Debug System .. 214
20.1 Features ..214

20.2 Overview ..214

20.3 Physical Interface ..214

20.4 Software Break Points ...215

20.5 Limitations of debugWIRE ...215

20.6 Register Description ..215
iv
8303D–AVR–06/12

ATtiny1634

ATtiny1634
21 Self-Programming .. 216
21.1 Features ..216

21.2 Overview ..216

21.3 Lock Bits ..216

21.4 Self-Programming the Flash ..216

21.5 Preventing Flash Corruption ..220

21.6 Programming Time for Flash when Using SPM ..220

21.7 Register Description ..220

22 Lock Bits, Fuse Bits and Device Signature 222
22.1 Lock Bits ..222

22.2 Fuse Bits ..223

22.3 Device Signature Imprint Table ...224

22.4 Reading Lock, Fuse and Signature Data from Software225

23 External Programming .. 228
23.1 Memory Parametrics ...228

23.2 Parallel Programming ..228

23.3 Serial Programming ...237

23.4 Programming Time for Flash and EEPROM ...242

24 Electrical Characteristics .. 243
24.1 Absolute Maximum Ratings* ...243

24.2 DC Characteristics ...243

24.3 Speed ..245

24.4 Clock ..245

24.5 System and Reset ...247

24.6 Two-Wire Serial Interface ..248

24.7 Analog to Digital Converter ..249

24.8 Analog Comparator ...250

24.9 Temperature Sensor ..250

24.10 Parallel Programming ..250

24.11 Serial Programming ...252

25 Typical Characteristics .. 254
25.1 Current Consumption in Active Mode ..254

25.2 Current Consumption in Idle Mode ..257

25.3 Current Consumption in Standby Mode ..259

25.4 Current Consumption in Power-down Mode ..260
v
8303D–AVR–06/12

25.5 Current Consumption in Reset ..261

25.6 Current Consumption of Peripheral Units ..262

25.7 Pull-up Resistors ...265

25.8 Input Thresholds ..268

25.9 Output Driver Strength ...271

25.10 BOD ...277

25.11 Bandgap Voltage ...280

25.12 Reset ...281

25.13 Analog Comparator Offset ...283

25.14 Internal Oscillator Speed ...284

26 Register Summary ... 288

27 Instruction Set Summary .. 290

28 Ordering Information ... 292
28.1 ATtiny1634 ..292

29 Packaging Information .. 293
29.1 20M1 ..293

29.2 20S2 ..294

29.3 20U-1 ...295

30 Errata ... 296
30.1 ATtiny1634 ..296

31 Datasheet Revision History .. 297
31.1 Rev. 8303D – 06/12 ...297

31.2 Rev. 8303C – 03/12 ...297

31.3 Rev. 8303B – 03/12 ...297

31.4 Rev. 8303A – 11/11 ...297
vi
8303D–AVR–06/12

ATtiny1634

8303D–AVR–06/12

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2012 Atmel Corporation. All rights reserved.

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.

	Features
	1. Pin Configurations
	1.1 Pin Descriptions
	1.1.1 VCC
	1.1.2 GND
	1.1.3 XTAL1
	1.1.4 XTAL2
	1.1.5 RESET
	1.1.6 Port A (PA7:PA0)
	1.1.7 Port B (PB3:PB0)
	1.1.8 Port C (PC5:PC0)

	2. Overview
	3. General Information
	3.1 Resources
	3.2 Code Examples
	3.3 Capacitive Touch Sensing
	3.4 Data Retention

	4. CPU Core
	4.1 Architectural Overview
	4.2 ALU – Arithmetic Logic Unit
	4.3 Status Register
	4.4 General Purpose Register File
	4.4.1 The X-register, Y-register, and Z-register

	4.5 Stack Pointer
	4.6 Instruction Execution Timing
	4.7 Reset and Interrupt Handling
	4.7.1 Interrupt Response Time

	4.8 Register Description
	4.8.1 CCP – Configuration Change Protection Register
	4.8.2 SPH and SPL — Stack Pointer Registers
	4.8.3 SREG – Status Register

	5. Memories
	5.1 Program Memory (Flash)
	5.2 Data Memory (SRAM) and Register Files
	5.2.1 General Purpose Register File
	5.2.2 I/O Register File
	5.2.3 Extended I/O Register File
	5.2.4 Data Memory (SRAM)

	5.3 Data Memory (EEPROM)
	5.3.1 Programming Methods
	5.3.2 Read
	5.3.3 Erase
	5.3.4 Write
	5.3.5 Preventing EEPROM Corruption
	5.3.6 Program Examples

	5.4 Register Description
	5.4.1 EEARL – EEPROM Address Register Low
	5.4.2 EEDR – EEPROM Data Register
	5.4.3 EECR – EEPROM Control Register
	5.4.4 GPIOR2 – General Purpose I/O Register 2
	5.4.5 GPIOR1 – General Purpose I/O Register 1
	5.4.6 GPIOR0 – General Purpose I/O Register 0

	6. Clock System
	6.1 Clock Subsystems
	6.1.1 CPU Clock – clkCPU
	6.1.2 I/O Clock – clkI/O
	6.1.3 Flash Clock – clkFLASH
	6.1.4 ADC Clock – clkADC

	6.2 Clock Sources
	6.2.1 External Clock
	6.2.2 Calibrated Internal 8MHz Oscillator
	6.2.3 Internal 32kHz Ultra Low Power (ULP) Oscillator
	6.2.4 Crystal Oscillator / Ceramic Resonator
	6.2.5 Default Clock Settings

	6.3 System Clock Prescaler
	6.3.1 Switching Prescaler Setting

	6.4 Clock Output Buffer
	6.5 Register Description
	6.5.1 CLKSR – Clock Setting Register
	6.5.2 CLKPR – Clock Prescale Register
	6.5.3 OSCCAL0 – Oscillator Calibration Register
	6.5.4 OSCTCAL0A – Oscillator Temperature Calibration Register A
	6.5.5 OSCTCAL0B – Oscillator Temperature Calibration Register B
	6.5.6 OSCCAL1 – Oscillator Calibration Register

	7. Power Management and Sleep Modes
	7.1 Sleep Modes
	7.1.1 Idle Mode
	7.1.2 ADC Noise Reduction Mode
	7.1.3 Power-Down Mode
	7.1.4 Standby Mode

	7.2 Power Reduction Register
	7.3 Minimizing Power Consumption
	7.3.1 Analog to Digital Converter
	7.3.2 Analog Comparator
	7.3.3 Brown-out Detector
	7.3.4 Internal Voltage Reference
	7.3.5 Watchdog Timer
	7.3.6 Port Pins
	7.3.7 On-chip Debug System

	7.4 Register Description
	7.4.1 MCUCR – MCU Control Register
	7.4.2 PRR – Power Reduction Register

	8. System Control and Reset
	8.1 Resetting the AVR
	8.2 Reset Sources
	8.2.1 Power-on Reset
	8.2.2 External Reset
	8.2.3 Watchdog Reset
	8.2.4 Brown-Out Detection

	8.3 Internal Voltage Reference
	8.3.1 Voltage Reference Enable Signals and Start-up Time

	8.4 Watchdog Timer
	8.4.1 Timed Sequences for Changing the Configuration of the Watchdog Timer
	8.4.2 Code Examples

	8.5 Register Description
	8.5.1 MCUSR – MCU Status Register
	8.5.2 WDTCSR – Watchdog Timer Control and Status Register

	9. Interrupts
	9.1 Interrupt Vectors
	9.2 External Interrupts
	9.2.1 Low Level Interrupt
	9.2.2 Pin Change Interrupt Timing

	9.3 Register Description
	9.3.1 MCUCR – MCU Control Register
	9.3.2 GIMSK – General Interrupt Mask Register
	9.3.3 GIFR – General Interrupt Flag Register
	9.3.4 PCMSK2 – Pin Change Mask Register 2
	9.3.5 PCMSK1 – Pin Change Mask Register 1
	9.3.6 PCMSK0 – Pin Change Mask Register 0

	10. I/O Ports
	10.1 Overview
	10.2 Ports as General Digital I/O
	10.2.1 Configuring the Pin
	10.2.2 Toggling the Pin
	10.2.3 Break-Before-Make Switching
	10.2.4 Reading the Pin Value
	10.2.5 Digital Input Enable and Sleep Modes
	10.2.6 Unconnected Pins
	10.2.7 Program Examples

	10.3 Alternate Port Functions
	10.3.1 Alternate Functions of Port A
	10.3.2 Alternate Functions of Port B
	10.3.3 Alternate Functions of Port C

	10.4 Register Description
	10.4.1 PORTCR – Port Control Register
	10.4.2 PUEA – Port A Pull-up Enable Control Register
	10.4.3 PORTA – Port A Data Register
	10.4.4 DDRA – Port A Data Direction Register
	10.4.5 PINA – Port A Input Pins
	10.4.6 PUEB – Port B Pull-up Enable Control Register
	10.4.7 PORTB – Port B Data Register
	10.4.8 DDRB – Port B Data Direction Register
	10.4.9 PINB – Port B Input Pins
	10.4.10 PUEC – Port C Pull-up Enable Control Register
	10.4.11 PORTC – Port C Data Register
	10.4.12 DDRC – Port C Data Direction Register
	10.4.13 PINC – Port C Input Pins

	11. 8-bit Timer/Counter0 with PWM
	11.1 Features
	11.2 Overview
	11.2.1 Registers
	11.2.2 Definitions

	11.3 Clock Sources
	11.4 Counter Unit
	11.5 Output Compare Unit
	11.5.1 Force Output Compare
	11.5.2 Compare Match Blocking by TCNT0 Write
	11.5.3 Using the Output Compare Unit

	11.6 Compare Match Output Unit
	11.6.1 Compare Output Mode and Waveform Generation

	11.7 Modes of Operation
	11.7.1 Normal Mode
	11.7.2 Clear Timer on Compare Match (CTC) Mode
	11.7.3 Fast PWM Mode
	11.7.4 Phase Correct PWM Mode

	11.8 Timer/Counter Timing Diagrams
	11.9 Register Description
	11.9.1 TCCR0A – Timer/Counter Control Register A
	11.9.2 TCCR0B – Timer/Counter Control Register B
	11.9.3 TCNT0 – Timer/Counter Register
	11.9.4 OCR0A – Output Compare Register A
	11.9.5 OCR0B – Output Compare Register B
	11.9.6 TIMSK – Timer/Counter Interrupt Mask Register
	11.9.7 TIFR – Timer/Counter0 Interrupt Flag Register

	12. 16-bit Timer/Counter1
	12.1 Features
	12.2 Overview
	12.2.1 Registers
	12.2.2 Definitions
	12.2.3 Compatibility

	12.3 Timer/Counter Clock Sources
	12.4 Counter Unit
	12.5 Input Capture Unit
	12.5.1 Input Capture Trigger Source
	12.5.2 Noise Canceler
	12.5.3 Using the Input Capture Unit

	12.6 Output Compare Units
	12.6.1 Force Output Compare
	12.6.2 Compare Match Blocking by TCNT1 Write
	12.6.3 Using the Output Compare Unit

	12.7 Compare Match Output Unit
	12.7.1 Compare Output Mode and Waveform Generation

	12.8 Modes of Operation
	12.8.1 Normal Mode
	12.8.2 Clear Timer on Compare Match (CTC) Mode
	12.8.3 Fast PWM Mode
	12.8.4 Phase Correct PWM Mode
	12.8.5 Phase and Frequency Correct PWM Mode

	12.9 Timer/Counter Timing Diagrams
	12.10 Accessing 16-bit Registers
	12.10.1 Reusing the Temporary High Byte Register

	12.11 Register Description
	12.11.1 TCCR1A – Timer/Counter1 Control Register A
	12.11.2 TCCR1B – Timer/Counter1 Control Register B
	12.11.3 TCCR1C – Timer/Counter1 Control Register C
	12.11.4 TCNT1H and TCNT1L – Timer/Counter1
	12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	12.11.7 ICR1H and ICR1L – Input Capture Register 1
	12.11.8 TIMSK – Timer/Counter Interrupt Mask Register
	12.11.9 TIFR – Timer/Counter Interrupt Flag Register

	13. Timer/Counter Prescaler
	13.1 Prescaler Reset
	13.2 External Clock Source
	13.3 Register Description
	13.3.1 GTCCR – General Timer/Counter Control Register

	14. I2C Compatible, Two-Wire Slave Interface
	14.1 Features
	14.2 Overview
	14.3 General TWI Bus Concepts
	14.3.1 Electrical Characteristics
	14.3.2 START and STOP Conditions
	14.3.3 Bit Transfer
	14.3.4 Address Packet
	14.3.5 Data Packet
	14.3.6 Transaction
	14.3.7 Clock and Clock Stretching
	14.3.8 Arbitration
	14.3.9 Synchronization
	14.3.10 Compatibility with SMBus

	14.4 TWI Slave Operation
	14.4.1 Receiving Address Packets
	14.4.1.1 Case 1: Address packet accepted - Direction bit set
	14.4.1.2 Case 2: Address packet accepted - Direction bit cleared
	14.4.1.3 Case 3: Collision
	14.4.1.4 Case 4: STOP condition received.

	14.4.2 Receiving Data Packets
	14.4.3 Transmitting Data Packets

	14.5 Register Description
	14.5.1 TWSCRA – TWI Slave Control Register A
	14.5.2 TWSCRB – TWI Slave Control Register B
	14.5.3 TWSSRA – TWI Slave Status Register A
	14.5.4 TWSA – TWI Slave Address Register
	14.5.5 TWSD – TWI Slave Data Register
	14.5.6 TWSAM – TWI Slave Address Mask Register

	15. USI – Universal Serial Interface
	15.1 Features
	15.2 Overview
	15.3 Three-wire Mode
	15.4 Two-wire Mode
	15.4.1 Start Condition Detector
	15.4.2 Clock speed considerations

	15.5 Alternative Use
	15.5.1 Half-Duplex Asynchronous Data Transfer
	15.5.2 4-Bit Counter
	15.5.3 12-Bit Timer/Counter
	15.5.4 Edge Triggered External Interrupt
	15.5.5 Software Interrupt

	15.6 Program Examples
	15.6.1 Example: SPI Master Operation
	15.6.2 Example: Full-Speed SPI Master
	15.6.3 Example: SPI Slave Operation

	15.7 Register Descriptions
	15.7.1 USICR – USI Control Register
	15.7.2 USISR – USI Status Register
	15.7.3 USIDR – USI Data Register
	15.7.4 USIBR – USI Buffer Register

	16. USART (USART0 & USART1)
	16.1 Features
	16.2 USART0 and USART1
	16.3 Overview
	16.4 Clock Generation
	16.4.1 Internal Clock Generation – The Baud Rate Generator
	16.4.2 Double Speed Operation
	16.4.3 External Clock
	16.4.4 Synchronous Clock Operation

	16.5 Frame Formats
	16.5.1 Parity Bit Calculation

	16.6 USART Initialization
	16.7 Data Transmission – The USART Transmitter
	16.7.1 Sending Frames with 5 to 8 Data Bits
	16.7.2 Sending Frames with 9 Data Bit
	16.7.3 Transmitter Flags and Interrupts
	16.7.4 Parity Generator
	16.7.5 Disabling the Transmitter

	16.8 Data Reception – The USART Receiver
	16.8.1 Receiving Frames with 5 to 8 Data Bits
	16.8.2 Receiving Frames with 9 Data Bits
	16.8.3 Receive Compete Flag and Interrupt
	16.8.4 Receiver Error Flags
	16.8.5 Parity Checker
	16.8.6 Disabling the Receiver
	16.8.7 Flushing the Receive Buffer

	16.9 Asynchronous Data Reception
	16.9.1 Asynchronous Clock Recovery
	16.9.2 Asynchronous Data Recovery
	16.9.3 Asynchronous Operational Range
	16.9.4 Start Frame Detection

	16.10 Multi-processor Communication Mode
	16.11 Examples of Baud Rate Setting
	16.12 Register Description
	16.12.1 UDRn – USART I/O Data Register
	16.12.2 UCSRnA – USART Control and Status Register A
	16.12.3 UCSRnB – USART Control and Status Register B
	16.12.4 UCSRnC – USART Control and Status Register C
	16.12.5 UCSRnD – USART Control and Status Register D
	16.12.6 UBRRnL and UBRRnH – USART Baud Rate Registers

	17. USART in SPI Mode
	17.1 Features
	17.2 Overview
	17.3 Clock Generation
	17.4 SPI Data Modes and Timing
	17.5 Frame Formats
	17.5.1 USART MSPIM Initialization

	17.6 Data Transfer
	17.6.1 Transmitter and Receiver Flags and Interrupts
	17.6.2 Disabling the Transmitter or Receiver

	17.7 Compatibility with AVR SPI
	17.8 Register Description
	17.8.1 UDRn – USART MSPIM I/O Data Register
	17.8.2 UCSRnA – USART MSPIM Control and Status Register n A
	17.8.3 UCSRnB – USART MSPIM Control and Status Register n B
	17.8.4 UCSRnC – USART MSPIM Control and Status Register n C
	17.8.5 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers

	18. Analog Comparator
	18.1 Analog Comparator Multiplexed Input
	18.2 Register Description
	18.2.1 ACSRA – Analog Comparator Control and Status Register
	18.2.2 ACSRB – Analog Comparator Control and Status Register B
	18.2.3 DIDR0 – Digital Input Disable Register

	19. Analog to Digital Converter
	19.1 Features
	19.2 Overview
	19.3 Operation
	19.4 Starting a Conversion
	19.5 Prescaling and Conversion Timing
	19.6 Changing Channel or Reference Selection
	19.6.1 ADC Input Channels
	19.6.2 ADC Voltage Reference

	19.7 ADC Noise Canceler
	19.8 Analog Input Circuitry
	19.9 Noise Canceling Techniques
	19.10 ADC Accuracy Definitions
	19.11 ADC Conversion Result
	19.12 Temperature Measurement
	19.13 Register Description
	19.13.1 ADMUX – ADC Multiplexer Selection Register
	19.13.2 ADCSRA – ADC Control and Status Register A
	19.13.3 ADCL and ADCH – ADC Data Register
	19.13.3.1 ADLAR = 0
	19.13.3.2 ADLAR = 1

	19.13.4 ADCSRB – ADC Control and Status Register B
	19.13.5 DIDR0 – Digital Input Disable Register 0
	19.13.6 DIDR1 – Digital Input Disable Register 1
	19.13.7 DIDR2 – Digital Input Disable Register 2

	20. debugWIRE On-chip Debug System
	20.1 Features
	20.2 Overview
	20.3 Physical Interface
	20.4 Software Break Points
	20.5 Limitations of debugWIRE
	20.6 Register Description
	20.6.1 DWDR – debugWire Data Register

	21. Self-Programming
	21.1 Features
	21.2 Overview
	21.3 Lock Bits
	21.4 Self-Programming the Flash
	21.4.1 Addressing the Flash During Self-Programming
	21.4.2 4-Page Erase
	21.4.3 Page Load
	21.4.4 Page Write
	21.4.5 SPMCSR Can Not Be Written When EEPROM is Programmed

	21.5 Preventing Flash Corruption
	21.6 Programming Time for Flash when Using SPM
	21.7 Register Description
	21.7.1 SPMCSR – Store Program Memory Control and Status Register

	22. Lock Bits, Fuse Bits and Device Signature
	22.1 Lock Bits
	22.2 Fuse Bits
	22.2.1 Latching of Fuses

	22.3 Device Signature Imprint Table
	22.3.1 Signature Bytes
	22.3.2 Calibration Bytes

	22.4 Reading Lock, Fuse and Signature Data from Software
	22.4.1 Lock Bit Read
	22.4.2 Fuse Bit Read
	22.4.3 Device Signature Imprint Table Read

	23. External Programming
	23.1 Memory Parametrics
	23.2 Parallel Programming
	23.2.1 Enter Programming Mode
	23.2.2 Considerations for Efficient Programming
	23.2.3 Chip Erase
	23.2.4 Programming the Flash
	23.2.5 Programming the EEPROM
	23.2.6 Reading the Flash
	23.2.7 Reading the EEPROM
	23.2.8 Programming Low Fuse Bits
	23.2.9 Programming High Fuse Bits
	23.2.10 Programming Extended Fuse Bits
	23.2.11 Programming the Lock Bits
	23.2.12 Reading Fuse and Lock Bits
	23.2.13 Reading Signature Bytes
	23.2.14 Reading the Calibration Byte

	23.3 Serial Programming
	23.3.1 Pin Mapping
	23.3.2 Programming Algorithm
	23.3.3 Programming Instruction Set

	23.4 Programming Time for Flash and EEPROM

	24. Electrical Characteristics
	24.1 Absolute Maximum Ratings*
	24.2 DC Characteristics
	24.3 Speed
	24.4 Clock
	24.4.1 Accuracy of Calibrated 8MHz Oscillator
	24.4.2 Accuracy of Calibrated 32kHz Oscillator
	24.4.3 External Clock Drive

	24.5 System and Reset
	24.5.1 Power-On Reset
	24.5.2 Brown-Out Detection

	24.6 Two-Wire Serial Interface
	24.7 Analog to Digital Converter
	24.8 Analog Comparator
	24.9 Temperature Sensor
	24.10 Parallel Programming
	24.11 Serial Programming

	25. Typical Characteristics
	25.1 Current Consumption in Active Mode
	25.2 Current Consumption in Idle Mode
	25.3 Current Consumption in Standby Mode
	25.4 Current Consumption in Power-down Mode
	25.5 Current Consumption in Reset
	25.6 Current Consumption of Peripheral Units
	25.7 Pull-up Resistors
	25.8 Input Thresholds
	25.9 Output Driver Strength
	25.10 BOD
	25.11 Bandgap Voltage
	25.12 Reset
	25.13 Analog Comparator Offset
	25.14 Internal Oscillator Speed

	26. Register Summary
	27. Instruction Set Summary
	28. Ordering Information
	28.1 ATtiny1634

	29. Packaging Information
	29.1 20M1
	29.2 20S2
	29.3 20U-1

	30. Errata
	30.1 ATtiny1634
	30.1.1 Rev. B
	30.1.2 Rev. A

	31. Datasheet Revision History
	31.1 Rev. 8303D – 06/12
	31.2 Rev. 8303C – 03/12
	31.3 Rev. 8303B – 03/12
	31.4 Rev. 8303A – 11/11

	Table of Contents

