# Sapphire 2, 1 & 000 #330-6301 (NZ) RS Components Chemwatch: 5630-34 Version No: 2.1 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Chemwatch Hazard Alert Code: 1 Issue Date: **07/09/2023** Print Date: **07/09/2023** L.GHS.NZL.EN.E #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | | |-------------------------------|------------------------------------|--| | Product name | Sapphire 2, 1 & 000 #330-6301 (NZ) | | | Chemical Name | Not Applicable | | | Synonyms | ProDuct Code : 330-6301 | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Lubricating grease. | |--------------------------|---------------------------------------------| | Kelevani identined uses | Use according to manufacturer's directions. | #### Details of the manufacturer or supplier of the safety data sheet | Registered company name | RS Components | | |-------------------------|---------------------------------------------|--| | Address | PO Box 12-127 Penrose, Auckland New Zealand | | | Telephone | +64 27 4747122 | | | Fax | +64 9 579 1700 | | | Website | www.nz.rs-online.com | | | Email | Not Available | | #### **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE (24/7) | | |-----------------------------------|-------------------------------------|--| | Emergency telephone numbers | +64 800 700 112 | | | Other emergency telephone numbers | +61 3 9573 3188 | | Once connected and if the message is not in your preferred language then please dial 01 #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods. #### Chemwatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|--------------| | Flammability | 1 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 1 | 1 | 1 = Low | | Reactivity | 1 | - 1 | 2 = Moderate | | Chronic | 1 | | 3 = High | | Classification <sup>[1]</sup> | Aspiration Hazard Category 1, Serious Eye Damage/Eye Irritation Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3 | |-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | Determined by Chemwatch using GHS/HSNO criteria | 6.1E (aspiration), 6.4A, 9.1C | #### Label elements Hazard pictogram(s) Chemwatch: 5630-34 Page 2 of 12 Issue Date: 07/09/2023 Version No: 2.1 Print Date: 07/09/2023 #### Sapphire 2, 1 & 000 #330-6301 (NZ) Hazard statement(s) | H304 | May be fatal if swallowed and enters airways. | | |------|----------------------------------------------------|--| | H319 | Causes serious eye irritation. | | | H412 | Harmful to aquatic life with long lasting effects. | | #### Precautionary statement(s) Prevention | P273 | Avoid release to the environment. | | |---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--| | P280 Wear protective gloves, protective clothing, eye protection and face protection. | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | #### Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider. | | |----------------|----------------------------------------------------------------------------------------------------------------------------------|--| | P331 | Do NOT induce vomiting. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | #### Precautionary statement(s) Storage #### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------| | 64742-62-7. | 20-50 | residual oils, petroleum, solvent dewaxed | | 64741-88-4. | 20-50 | paraffinic distillate, heavy, solvent-refined (severe) | | 62-54-4 | 1-2.4 | calcium acetate | | Legend: | Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available | | #### **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | <ul> <li>If fumes, aerosols or combustion products are inhaled remove from contaminated area.</li> <li>Other measures are usually unnecessary.</li> </ul> | | Ingestion | <ul> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Seek medical advice.</li> </ul> | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. - Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product. - In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. - High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** ► Foam. Chemwatch: 5630-34 Page 3 of 12 Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: 07/09/2023 Print Date: 07/09/2023 - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. Version No: 2.1 ► Water spray or fog - Large fires only. #### Special hazards arising from the substrate or mixture Fire Fighting Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Advice for firefighters #### Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Full Equipment should be thoroughly decontaminated after use. Alert Fire Brigade and tell them location and nature of hazard. #### Combustible. - ▶ Slight fire hazard when exposed to heat or flame. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - Mists containing combustible materials may be explosive. #### Fire/Explosion Hazard Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | Slippery when spilt. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water. | |--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Major Spills | Slippery when spilt. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - ► DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. Safe handling - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Version No: 2.1 #### Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: **07/09/2023**Print Date: **07/09/2023** - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Store in original containers. - ► Keep containers securely sealed. - No smoking, naked lights or ignition sources. - Other information Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities Suitable container - Metal can or drun - ► Packaging as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. Storage incompatibility Avoid reaction with oxidising agents #### **SECTION 8 Exposure controls / personal protection** #### Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material<br>name | TWA | STEL | Peak | Notes | |---------------------------------------------------|------------------------------------------------------------|----------------------|------------|-------------|------------------|---------------------------------------------------------| | New Zealand Workplace<br>Exposure Standards (WES) | residual oils, petroleum, solvent dewaxed | Oil mist,<br>mineral | 5<br>mg/m3 | 10<br>mg/m3 | Not<br>Available | (om) - Sampled by a method that does not collect vapour | | New Zealand Workplace<br>Exposure Standards (WES) | paraffinic distillate, heavy, solvent-<br>refined (severe) | Oil mist,<br>mineral | 5<br>mg/m3 | 10<br>mg/m3 | Not<br>Available | (om) - Sampled by a method that does not collect vapour | #### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |--------------------------------------------------------|-----------|-------------|-------------| | residual oils, petroleum, solvent dewaxed | 140 mg/m3 | 1,500 mg/m3 | 8,900 mg/m3 | | paraffinic distillate, heavy, solvent-refined (severe) | 140 mg/m3 | 1,500 mg/m3 | 8,900 mg/m3 | | calcium acetate | 13 mg/m3 | 140 mg/m3 | 850 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------------------------------------------------|---------------|---------------| | residual oils, petroleum, solvent dewaxed | 2,500 mg/m3 | Not Available | | paraffinic distillate, heavy, solvent-refined (severe) | 2,500 mg/m3 | Not Available | | calcium acetate | Not Available | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--| | calcium acetate | E ≤ 0.01 mg/m³ | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### MATERIAL DATA NOTE L: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 3% DMSO extract as measured by IP 346. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. ## Appropriate engineering controls Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | l | Type of Contaminant: | Air Speed: | |---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------| | | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s<br>(50-100 f/min.) | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | Chemwatch: **5630-34** Page **5** of **12** Version No: 2.1 #### Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: **07/09/2023**Print Date: **07/09/2023** direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 1-2.5 m/s (200-500 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Individual protection measures, such as personal protective equipment #### Eve and face protection Skin protection #### Safety glasses with side shields - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) ► Eye wash unit. Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Blue paste with no odour; does not mix wi | ith water. | | |-------------------------------------|-------------------------------------------|-----------------------------------------|---------------| | | 1 | | | | Physical state | Non Slump Paste | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | >200 | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | >230 | Viscosity (cSt) | Not Available | Chemwatch: 5630-34 Issue Date: 07/09/2023 Page 6 of 12 Print Date: 07/09/2023 Version No: 2.1 #### Sapphire 2, 1 & 000 #330-6301 (NZ) | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | |----------------------------------------------|----------------|----------------------------------|----------------| | Flash point (°C) | >200 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | <1 | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Chemical stability | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation hazard is increased at higher temperatures. Not normally a hazard due to non-volatile nature of product Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis. | |--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Ingestion | The material has <b>NOT</b> been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | Skin Contact | Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. | Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### Eye Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin #### Chronic Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis. Many studies have linked cancers of the skin and scrotum with mineral oil exposure. Contaminants in the form of additives and the polycyclic aromatic hydrocarbons (PAHs - as in the crude base stock) are probably responsible. PAH levels are higher in aromatic process oils/used /reclaimed motor oils. Subchronic 90-day feeding studies conducted on male and female rats on highly refined white mineral oils and waxes found that higher molecular-weight hydrocarbons (microcrystalline waxes and the higher viscosity oils) were without biological effects. Paraffin waxes and low- to mid viscosity oils produced biological effects that were inversely proportional to molecular weight, viscosity and melting point: oil-type and processing did not appear to be determinants. Biological effects were more pronounced in females than in males. Effects occurred mainly in the liver and mesenteric lymph nodes and included increased organ weights, microscopic inflammatory changes, and evidence for the presence of saturated mineral hydrocarbons in affected tissues. Inflammation of the cardiac mitral valve was also observed at high doses in rats treated with paraffin waxes. Chemwatch: **5630-34** Page **7** of **12**Version No: **2.1** Complete **2.4.8** 000 #2 Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: **07/09/2023**Print Date: **07/09/2023** Smith J.H., et al: Toxicologic Pathology: 24, 2, 214-230, 1996 High boiling residues of petroleum process streams produced a significant number of benign and malignant skin tumours after application to the skin of mice. Appreciable concentrations of polynuclear aromatic hydrocarbons (PAHs) may be present in residual fuels because of the common practice of using both uncracked and cracked residues in their manufacture. | Sapphire 2, 1 & 000 #330-6301<br>(NZ) | TOXICITY | IRRITATION | |---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | residual oils, petroleum, | Dermal (rabbit) LD50: >2000 mg/kg <sup>[2]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> | | solvent dewaxed | Inhalation(Rat) LC50: 2.18 mg/l4h <sup>[2]</sup> | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> | | | Oral (Rat) LD50: >5000 mg/kg <sup>[2]</sup> | | | | TOXICITY | IRRITATION | | paraffinic distillate, heavy, | Dermal (rabbit) LD50: >2000 mg/kg <sup>[2]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> | | solvent-refined (severe) | Inhalation(Rat) LC50: 2.18 mg/l4h <sup>[2]</sup> | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> | | | Oral (Rat) LD50: >5000 mg/kg <sup>[2]</sup> | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >20000 mg/kg <sup>[1]</sup> | Not Available | | calcium acetate | Inhalation(Rat) LC50: >5.6 mg/l4h <sup>[1]</sup> | | | | Oral (Rat) LD50: 4280 mg/kg <sup>[2]</sup> | | | Legend: | Value obtained from Europe ECHA Registered Substar<br>specified data extracted from RTECS - Register of Toxic E | nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise | #### **Residual Base Oils** Residual oils have substantial polycyclic aromatic compound (PAC) levels when assayed by traditional methods. On this basis, they would be expected to have mutagenic and/or carcinogenic activity. However, no adverse effects have been seen in either in vitro mutagenicity or dermal carcinogenicity testing of residual base oils, irrespective of the degree of processing they have undergone. Ultraviolet, HPLC/UV, GC/MS, and infrared analyses of these oils indicate that the aromatics they contain are predominantly 1-3 rings that are highly alkylated (paraffinic and naphthenic). Because they are found in such a high boiling material (> 550 C), it is estimated that the alkyl side-chains of these 1-3 ring aromatics would be approximately 13 to 25 carbons in length. These highly alkylated aromatic ring materials are either devoid of the biological activity necessary to cause mutagenesis and carcinogenesis, or are largely non-bioavailable to the organisms Acute toxicity: There are no acute toxicity data available for the residual base oils. It is thought that the high molecular weight of these materials and associated low bioavailability preclude the systemic doses necessary to produce acute toxicity. Furthermore, tests of a variety of distillate base oils, including unrefined materials that contain high levels of biologically active materials, have consistently shown low acute toxicity. Repeat dose toxicity: No subchronic repeat-dose studies have been reported on residual base oils. However, two dermal carcinogenicity studies have been performed ## RESIDUAL OILS, PETROLEUM, SOLVENT DEWAXED Reproductive and developmental toxicity: There are no reproductive or developmental toxicity data available for the residual base oils Carcinogenicity: A dermal carcinogenicity study of a residual base oil in mice has been reported. The test substance was described as "a non-solvent refined, deasphalted, dewaxed residual paraffinic lubricant base oil". For eighteen months, three times/week, undiluted test material was applied to the skin of female CF1 mice. Two other groups of mice underwent similar treatments, but for only 22 or 52 weeks. The base oil produced minimal clinical evidence of skin irritation. No tumours of epidermal origin were observed in animals dosed with the base oil. Furthermore, no treatment-related effects were observed with regard to clinical condition, body weight gain, mortality or post mortem findings. A second dermal carcinogenicity study of a residual base oil has been conducted in male C3H/HeJ mice. The test substance was described as "deasphalted, dewaxed, residual oil". The test material was applied undiluted to the animals backs, three times/week for 24 months. None of the animals treated with the test material developed skin tumours, or any other tumours considered treatment-related. The absence of systemic toxicity in these two dermal carcinogenicity studies supports the belief that the high molecular weight of the residual base oils and the resulting low bio- availability preclude the internal doses necessary to elicit systemic toxicity. #### Genotoxicity: In vitro (mutagenicity): Samples of a vacuum residuum and four residual base oils tested negative for the induction of frame shift mutations in modified Ames assays In vivo (chromosomal aberrations): There is no in vivo genotoxicity data available for the residual base oils. However, in vitro mutagenicity tests have been conducted on residual base oils and have produced negative results. Dermal carcinogenicity studies on these materials have also been negative. Given these consistent results, and the low bioavailability of these materials, it is expected that in vivo mutagenicity tests would also be negative. #### PARAFFINIC DISTILLATE, HEAVY, SOLVENT-REFINED (SEVERE) The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans Evidence of carcinogenicity may be inadequate or limited in animal testing ### CALCIUM ACETATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. # RESIDUAL OILS, PETROLEUM, SOLVENT DEWAXED & PARAFFINIC DISTILLATE, HEAVY, SOLVENT-REFINED (SEVERE) The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: - $\cdot$ The adverse effects of these materials are associated with undesirable components, and - The levels of the undesirable components are inversely related to the degree of processing; - Distillate base oils receiving the same degree or extent of processing will have similar toxicities; The potential toxicity of residual base oils is independent of the degree of processing the oil receives. - · The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing. Chemwatch: 5630-34 Page 8 of 12 Issue Date: 07/09/2023 Version No: 2.1 Print Date: 07/09/2023 #### Sapphire 2, 1 & 000 #330-6301 (NZ) The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential. Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method). Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO class(Other Lubricant Base Oils). Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils)) Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)). Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance is not toxic for reproduction. STOT (toxicity on specific target organs) – repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3. Sub-chronic toxicity 90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies). Repeat dose toxicity: Oral NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered orally. Inhalation The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3. Dermal In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals. Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day. Toxicity to reproduction: Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined. Developmental toxicity, teratogenicity: Highly and Severely Refined Distillate Base Oils Heavy paraffinic distillate furfural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis. the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l. When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil s toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study. Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or - The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive, - The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and - The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials. Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study s authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat. #### Genotoxicity: In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices. Chemwatch: 5630-34 Page 9 of 12 Issue Date: 07/09/2023 Version No: 2.1 Print Date: 07/09/2023 #### Sapphire 2, 1 & 000 #330-6301 (NZ) In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow $cytogenetics\ assay.\ The\ test\ materials\ were\ administered\ via\ gavage\ at\ dose\ levels\ ranging\ from\ 500\ to\ 5000\ mg/kg\ (bw).\ Dosing\ occurred\ for\ begin{picture}(100,000) \put(0,0){\ occurred\ occurred$ either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally. RESIDUAL OILS, PETROLEUM, SOLVENT **DEWAXED & PARAFFINIC** DISTILLATE, HEAVY, SOLVENT-REFINED (SEVERE) & CALCIUM ACETATE No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | ✓ | Legend: ★ - Data either not available or does not fill the criteria for classification – Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | Sapphire 2, 1 & 000 #330-6301<br>(NZ) | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------------------------------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------|------------------|------------------| | | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | residual oils, petroleum,<br>solvent dewaxed | EC50 | 48h | Crustacea | >1000mg/l | 1 | | Servent de naxed | NOEC(ECx) | 504h | Crustacea | >1mg/l | 1 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | >1000mg/l | 1 | | paraffinic distillate, heavy,<br>solvent-refined (severe) | EC50 | 96h | Algae or other aquatic plants | >1000mg/l | 1 | | | ErC50 | 72h | Algae or other aquatic plants | >1000mg/l | 1 | | | NOEC(ECx) | 504h | Crustacea | >1mg/l | 1 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >402.92mg/l | 2 | | calcium acetate | EC50 | 48h | Crustacea | >919mg/l | 2 | | | LC50 | 96h | Fish | >96.45mg/l | 2 | | | NOEC(ECx) | 96h | Fish | 402.92mg/l | 2 | | Legend: | Ecotox databas | | HA Registered Substances - Ecotoxicological Informati<br>Aquatic Hazard Assessment Data 6. NITE (Japan) - Bi | | | Harmful to aquatic organisms. DO NOT discharge into sewer or waterways #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: 07/09/2023 Print Date: 07/09/2023 - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | #### Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS #### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------------------------------------------------|---------------| | residual oils, petroleum, solvent dewaxed | Not Available | | paraffinic distillate, heavy, solvent-refined (severe) | Not Available | | calcium acetate | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------------------------------------------------|---------------| | residual oils, petroleum, solvent dewaxed | Not Available | | paraffinic distillate, heavy, solvent-refined (severe) | Not Available | | calcium acetate | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|-------------------------------------------------------------------------------------| | HSR002503 | Additives Process Chemicals and Raw Materials Subsidiary Hazard Group Standard 2020 | Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit. #### residual oils, petroleum, solvent dewaxed is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### paraffinic distillate, heavy, solvent-refined (severe) is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### calcium acetate is found on the following regulatory lists New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) Version No: 2.1 #### Sapphire 2, 1 & 000 #330-6301 (NZ) Issue Date: **07/09/2023**Print Date: **07/09/2023** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantities | |----------------|----------------| | Not Applicable | Not Applicable | #### **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |----------------|--------------------------------------|----------------|----------------|------------------------------------------------------| | Not Applicable | #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory | Status | | |----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Australia - AIIC / Australia<br>Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (residual oils, petroleum, solvent dewaxed; paraffinic distillate, heavy, solvent-refined (severe); calcium acetate) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 07/09/2023 | |---------------|------------| | Initial Date | 07/09/2023 | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### Definitions and abbreviations PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit₀ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List Chemwatch: 5630-34 Page 12 of 12 Issue Date: 07/09/2023 Version No: 2.1 Print Date: 07/09/2023 #### Sapphire 2, 1 & 000 #330-6301 (NZ) IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.