VARIMETER

Speed Monitor
MK 9055N/5
MH 9055/5

Circuit Diagrams

MK 9055N.38/5_0

MH 9055.39/5_0
M9857

Connection Terminal
Terminal designation Signalbeschreibung A1+, A1 $+/ \mathrm{L}$ A2 $-/ \mathrm{N}$ IN,+ IN-, P, E Measuring input X1, X2, X3 Programming terminals M Ref. point programming terminals UA Analogue output voltage IA Analogue output current +U / 0V Sensor supply and alternative external auxiliary voltage DC 24 V 11, 12, 14; 21, 22, 24; $31,32,34 ; 41,42,44$ Speed error-Indicator relay (4 changeover contacts)

Your Advantage

- Protection of persons, machines and products
- Easy setting
- Universal input, for configuration of different sensors (PNP, NPN, 2-wire, contact, voltage)
- With fast reaction at low speed

Features:

- According to IEC/EN 60 255-1
- Monitoring of 2 frequency levels (e.g. underspeed/ standstill and overspeed)
- Separate relay outputs for under- and overfrequency (1 or 2 c/o contacts each)
- As alternative window operating mode (monitoring of a speed range)
- Response value for over- and underspeed / frequency separately adjustable in 10 ranges $1 \ldots 120.000$ IPM or $0,15 \ldots 20.000 \mathrm{~Hz}$
- Most fast reaction time also at low speed by time period measurement of the input frequency
- As option with input for NAMUR-sensors with sensor and wire protection against interruption and short circuit
- Programmable via termminals:
- Start up time delay $0 \ldots 50$ s or controllable
- Alarm delay time of 0 or 0.5 s
- With manual reset or auto reset
- LED-indication for auxiliary voltage, measuring input and output relay; additional LED for indication of wire- / sensor failure at NAMUR-input
- Auxiliary voltages AC 230 V and DC 24 V in one unit
- MH 9055 with wide input range for auxiliary voltage AC/DC $24 \ldots 60 \mathrm{~V}$ or AC/DC $110 \ldots 230 \mathrm{~V}$ (only $2 \times 1 \mathrm{C} / \mathrm{O}$)
- As option with analogue output, proportionally to speed
- 2 possible contacts

MK 9055N/5_ _ 2×1 changeover contacs
MH 9055/5_ _: 2×2 hangeover contacs or wide range aux. voltage

- 2 possible compact designs

MK 9055N/5_ _: Width 22,5 mm
MH 9055/5_ _: Width 45 mm

Approvals and Markings

C ϵ

Applications

- Speed monitoring on rotating machine parts
- Monitoring of cyclic movements
- General monitoring of pulse sequences (transportation, conveyors, production systems),
- Monitoring of pulse frequency (e.g. flow sensors, anemometers)

Function Diagram

Function

The auxiliary supply is connected to terminals A1-A2. An operation with alternatively DC 24 V is possible via terminals $+\mathrm{U} / 0 \mathrm{~V}$.
Different sensors can be connected to the measuring input that detects the speed pulses.
The input frequency is compared to the setting value over- and underfrequency (response value f 1 or $\mathrm{f} 2=$ fine tunig x range).
As the device measures the periods duration the fastest frequency measurement is possible.
If the input frequency is under the threshold f1 (2 upper setting elements on the front) minus hysteresis and over the the threshold f2 (2 lower setting elements on the front) plus hysteresis, both output relays are energized and the Yellow LEDs "<f1" and ">f2" are on.
If the input frequency rises over the threshold f1, in 2 -level mode relay 1 de-energizes (contact 11-12 closes); in window mode also relay 2 de-energizes (contact 21-22 closes) the yellow LED "<f1" goes off (alarm state).
Only when the input frequency returns under threshold f 1 minus hysteresis the relay (in window mode both relays) energize again and the the yellow LED"<f1" lights up.
If the input frequency goes under the threshold f2, in 2-level mode relay 2 de-energizes (contact 21-22 closes); in window mode also relay 1 de-energizes (contact 11-12 closes) the yellow LED "<f2" goes off (alarm state).
Only when the input frequency returns over threshold f2 plus hysteresis the relay (in window mode both relays) energize again and the the yellow LED"<f2" lights up.
If manual reset is activated (terminal X2 unconnected) the relevant output relays remain in alarm state when the frequency is back in good state and the LED stays off. Reset of the alarm state is the possible by bridging X2-M or by disconnection of the auxiliary supply.
If a start up delay is adjusted, after connection of the auxiliary supply the start up delay elapses. During this time the frequency is not monitored. the yellow LEDs "<f1" and >f2" flash and the output relays are in good state (energized).
During start up delay an alarm signal can be avoided e.g. during the starting period of a motor.

With the sliding switch on the front either 2-level mode or window mode is selected.
"2 level mode":
2 x 1 c/o contact; the output relays switch separately at the corresponding thresholds for f1 and f .
"Window mode": 2 c/o contacts; the output relays switch simultaneously on threshold f1 and f2 (where f1 > f2), i.e. the relays both de-energise either going over f1 or going under f2.
The variant $/ 510$ (NAMUR sensor input) includes broken wire and short circuit monitoring of the sensor and connection wire. A red LED indicates this failure and the output relays switch off.

Indicators

Upper LED "UH/E":	- green: - yellow: - linterm impuls	Auxiliary supply is present, measuring input is Low Auxiliary supply is present, measuring input is High d/green flashing if U_{H} and nce present
Red LED "Sen.Err": (only at NAMUR input) - on, when broken wire or interruption at sensor ciruit detected		
Lower LED "<f1" (yellow):- on, when inout frequency lower than f1 (relay 1 energized in 2 level mode)		
Lower LED ">f2" (yellow):- on, when input frequency hig		

LEDs "<f1" and ">f2" flash during start up delay

Notes

Adjustment of threshold f 1 and f 2 /

energized on trip for output relays

Normally the frequency threshold f1 is used for overfrequency and the frequency thresholdf2 for underfrequency. The hysteresis works accordingly. Both output relays when adjusted as above work in de-energized on trip mode. in 2 level mode the monitoring and the control of the output relays on both frequency settings f 1 and f 2 work completely independent. so that f1 can be set higher then f 2 when manual reset is not selected. Therefore if F2 is used for overfrequency monitoring the output relay will operate in energized on trip mode as relay $2(21-22-24)$ always energises when threshold f2 plus hysteresis is exceeded. Equally the threshold $\mathrm{f1}$ minus hysteresis is used for underfrequency monitoring also now in energized on trip mode for relay 1 (11-12-14). In windows mode with manual reset the frequency threshold f 1 must be always adjusted higher than f 2 otherwise the output relays will not energize.

Universal measuring input

The universal input of the speed monitor (terminals +U, P, E, OV) can handle a large variety of sensors (inductive or capacitve proximity sensors, ultra sonic, halleffect, optical sensors, light barriers, reed contacts etc.). The input is suitable for all sensors according to IEC / EN 60947-5-2 (VDE 0660 part 208).
Depending on the sensor that is used (3-wire PNP or NPN, 2-wire, contact) the connection to the input terminals could be different (see Connection Examples).
As the speed monitor is suitable for a very high maximum frequency, RCelements need to be installed to suppress bouncing of contact sensors (see Connection Examples). It is possible to use standard RC-elements suitable for contact protection or RF interference protection.

NAMUR input

The Variant M_9055N/510 is optimzed for the connection of NAMUR sensors according to IEC / EN 60947-5-6 (VDE 0660 Teil 212; former EN 50227 / DIN 19234). These 2-wire-sensors are connedted to terminals IN+ / IN(see application example).
Namur sensors have a defined current in ON as well as in OFF state. This allows to detect short circuits and broken wire on sensor and connection wires with this variant. Together with the upper green/yellow LED the type of failure is indicated:
Red LED "Sen..Err" ON and upper LED "UH/E" lights up green:
Broken wire at input circuit
Red LED "Sen..Err" ON and upper LED "UH/E" lights up yellow:
Short circuit at input circuit
Instead of a NAMUR sensor also a contact sensor with correspondent resistor circuit can be used (see Connection Examples). The suggested resistors are necessary to avoid broken wire or short circuit detection alarm. If the resistors are connected directly on the sensor side, the wiring still is monitored. Because of contact bouncing of mechanical contacts a capacitor has to be connected on the measuring input terminals.

Sensor supply, 24V DC auxiliary supply as alternative

The input circuit (+U, P, E, OV) is galvanic separated to the auxiliary supply A1, A2 (eg. AC 230V). By connecting AC 230V auxiliary voltage on terminals A1-A2 the unit provides a voltage of approx. 24 V max 20 mA to supply external sensors. If the auxiliary supply is DC 24 V or sensors with higher power consumption are used, the DC 24 V auxiliary supply is connected to terminals $+\mathrm{U} / \mathrm{OV}$. The sensors are also supplied from this source. (In this case there is no galvanic separation between auxiliary supply and measuring input).

Monitoring indicator of sensor input

The upper 2-coloure LED shows the connected supply voltage and the electrical state of the measuring input:
Green: input E ist on LOW level
Yellow: input E ion HIGH level
Depending on the type of sensor (PNP, NPN, 2-wire, NO or NC contact) the actual state (active or inactive) is indicated.
Green / yellow: input pulses from sensor present

Several speed monitors on one sensor

Parallel operation of several speed monitors on one sensor is possible the universal input e.g. to monitor several speed levels. The corresponding terminals are all connected in parallel.

Programming terminals ($\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3$):
Attention! The terminals $\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3$ have no galvanic separation to the measuring circuit (+U / P/E/OV) e.g. auxiliary voltage DC 24 V

Notes

M: Common connection (Ground) of the programming terminals (identically with OV

X1: Start up delay with range $0 \ldots 50$ s by bridging X 1 with M using a resistor or potentiometer (see Technical Data). If no start up delay is required $\mathrm{X} 1-\mathrm{M}$ has to be bridged

X2: Manual reset with NO contact push button on X2-M, auto reset with terminals X2-M bridged.

X3: With open terminal: alarm delay $=0.5 \mathrm{~s}$, bridged with M no time delay.

Start up delay

A start up delay ($\mathrm{t}_{\mathrm{A}}, 0 \ldots 50 \mathrm{~s}$) is adjusted by connecting terminal X 1 with M via a resistor $0 . .500 \mathrm{kOhm}$ (details see technical data) and it is initiated when the power supply is connected. During this time the frequency is not monitored and both output relays are energised.

If the connection $\mathrm{X} 1-\mathrm{M}$ is interrupted (resistance $>500 \mathrm{kOhm}$), the start up delay is permanent, this allows to disable the monitoring by an external contact until a system reaches the operational state. Closing the external contact will initiate the start up delay determined by a connected resistor If no start up delay is required $\mathrm{X} 1-\mathrm{M}$ needs to be bridged.
The X1-M connection is necessary to enable the monitoring of the frequency.
During elapse of the sart up delay the yellow LEDs <f1 and >f2 flash with a 2 Hz frequency. to adjust a certain time in seconds the number of flashes can be counted as setting aid. The number of flashes divided by 2 gives the delay time in seconds.

Manual reset

To store the alarm states for over or underfrequency, the X2 terminal needs to be unconnected. The alarm storing has effect on the relays and corresponding LEDs By bridging X2-M or disconnecting the power supply the alarm state is reset.

Variants with Analogue Output Indicating the Actual Speed / Frequency

With this variant the programming terminal X 3 is replaced by terminal UA or IA, that provides an analogue signal proportional to the speed with reference to terminal 0 V . This signal is either $0 \ldots 10 \mathrm{~V}$ or $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$. As the X3 terminal is not available, these variants do not have an alarm delay.
With the variant $/ 517$ (NAMUR sensor input with analogue output $4 \ldots 20 \mathrm{~mA}$) the analogue output also indicates a sensor or wiring failure by switching the output to 0 mA .
The analogue output has no galvanic separation to measuring input and the alternative auxiliary supply on terminals $+\mathrm{U} / 0 \mathrm{~V}$.

Technical Data

Frequency Measuring Input

Universal Input (+U / P / E OV)

for PNP-, NPN-, 2-wire sensors, contacts and voltages, connection see application examples;
suitable for all proximity sensors according to IEC / EN 60947-5-2 (VDE 0660 part 208)
built in power supply approx. DC $24 \mathrm{~V} / \mathrm{max} .20 \mathrm{~mA}$ on terminals $+\mathrm{U} / 0 \mathrm{~V}$ Alternatively external auxiliary voltage supply DC 24 V via terminals +U / OV
Max. residual current
at 2-wire sensors:
Max. voltage drops
at 2-wire sensors: Voltage control Input resistance: Low-capability: High-capability:

NAMUR Input (Variant /510) IN+ / IN-

for NAMUR sensors according to IEC/EN 60947-5-6 (VDE 0660 part 212)

No-load voltage:
Input resistance:
Short circuit current:
response value
Low:
High:
Broken wire threshold:
short circuit threshold:

2 mA (OFF state)
8 V (ON state)
Approx. $17 \mathrm{k} \Omega$
$\leq 8 \mathrm{~V}$
$\geq 11 \mathrm{~V}$

Alternatively external auxiliary voltage supply DC 24 V via terminals +U / OV

Common Data for Inputs

Response value (f1 / f2)

10 ranges each: 1 ... 120.000 IPM

range	1	2	3	4	5	6	7	8	9	10
Imp. /	1	3	10	30	100	300	1.000	3.000	10.000	30.000
	to									
	4	12	40	120	400	1.200	4.000	12.000	40.000	120.000

oder 0,15 ... 20.000 Hz

range	1	2	3	4	5	6	7	8	9	10
	0.15	0,5	1,5	5	15	50	150	500	1.500	5.000
Hz	to									
	0.6	2	6	20	60	200	600	2.000	6.000	20.000

Fine adjustment:
Max. input frequency
(Impuls : Pause = 1:1)

Range 1 ... 4:	1.5 kHz
Range $5 \ldots 7:$	5 kHz

Range 8 ... 10: $\quad 25 \mathrm{kHz}$
Min. pulse- and breaktime
Range 1 ... 4:
Range 5 ... 7:
Range 8 ... 10:

Stability of the setting
threshold at variation of
auxiliary voltage and
temperature:
Hysteresis:
Reaction time of
Frequency monitoring:

Response delay:
with terminal X3 open: with X3-M bridged:
$350 \mu \mathrm{~s}$
$100 \mu s$
Infinite 1:4 each range
$20 \mu \mathrm{~s}$
the "higher" range of the f1 and f2 determines the above values.

2 \%
Fixed, approx. 5% at f 1 and f 2
(Alarm delay set to 0)
Duration of 1 cycle (inverse value of adjusted frequency) +10 ms (at over frequency: inverse value of signal frequency +10 ms)

0,5 s

No response delay

Standard Type

MK 9055N. $38 / 500 \quad 1$... 120.000 IPM U HC 230 V
Article number: 0058718

- 2 adjustable frequency thresholds in 10 ranges each: 1 ... 120.000 IPM
- Response value unfinitely adjustable 1:4
- Universal input for PNP-, NPN-, 2-wire-sensors, contacts, voltage
- Monitoring mode 2-level or window selectable
- Hysteresis: Fixed approx. 5 \%, for f 1 and f2
- Alarm delay via terminal programmable: $0 / 0.5 \mathrm{~s}$
- Response delay:

Settalbe with external resitor to $0 \ldots 50 \mathrm{~s}$

- Alarm storing or auto-reset selectable
- Auxiliary voltage U_{H} : $\quad \mathrm{AC} 230 \mathrm{~V}+\mathrm{DC} 24 \mathrm{~V}$
- Energized on trip
- Output: 2 changeover contacts
- Width: 22.5 mm

Variants

M_9055_.3_/5
0 Standard
5 Analogue output $0 \ldots 10 \mathrm{~V}$ (instead of terminal X3)
6 Analogue output $0 \ldots 20 \mathrm{~mA}$ (instead of terminal X3)
7 Analogue output 4 ... 20 mA (instead of terminal X3)
0 Universal input (standard)
1 NAMUR input with sensor monitoring

Ordering example for variants

Application Examples

Universal input

NAMUR input only at M_9055.3_/51_

Initiators (proximity sensors), inductive

Type	NA 5001.01.10 pnp NA 5001.01.20 npn	NA 5002.01.34 pnp/npn	NA 5005.01.34 pnp/npn	NA 5010.01.10 pnp NA 5010.01.20 npn
Dimensions		M12 $\times 1$ SW 17 M7267		
Enclosure	Metal	Metal	Metal	Metal
Switching distance S_{n}	1 mm	2 mm	5 mm	10 mm
Switching frequency	5000 Hz	1000 Hz	300 Hz	200 Hz
Hysteresis	2 ... 10%			
Repeat accuracy	5 \%			
Voltage range	$10 \ldots 30 \mathrm{~V}$			
Residual ripple	< 10 \%			
Continuous current	$\leq 200 \mathrm{~mA}$	$\leq 100 \mathrm{~mA}$	$\leq 100 \mathrm{~mA}$	$\leq 400 \mathrm{~mA}$
Output	. 10 pnp NO .20 npn NO	$\begin{gathered} .34 \\ \mathrm{pnp} \mathrm{NO}+\mathrm{npn} \mathrm{NO} \end{gathered}$	$\begin{gathered} .34 \\ \text { pnp } \mathrm{NO}+\mathrm{npn} \mathrm{NO} \end{gathered}$	$\begin{aligned} & .10 \mathrm{pnp} \mathrm{NO} \\ & .20 \mathrm{npn} \mathrm{NO} \end{aligned}$
Indication of output state	LED			
Ambient temperature	- $25 . . .70^{\circ} \mathrm{C}$			
Temperature influence	10 \%			
Degree of protection	IP 67			
Connection wire	2 m			
Fixing torque	4 Nm	15 Nm	40 Nm	100 Nm
Weight	45 g	70 g	120 g	270 g

Connection Table MK9055N.12/50x, MH9055.12/50x

Type	Wire	Terminal on MK 9055N / MH 9055
	brown +	+U
	blue -	0 V
NA 5002.01.34	black NO	E
NA 5005.01.34	brown +	+U
	blanc +	+U
	blue -	0 V
NA 5010.01.10	black NO	E
	brown +	+U
	blue -	0 V
	black NO	E

Connection Table MK9055N.12/50x, MH9055.12/50x

Type	Wire	Terminal on MK 9055N / MH 9055
NA 5001.01.20	brown +	$+\mathrm{U}$
	blue -	0 V
	black NO	P, E
NA 5002.01.34 NA 5005.01.34	brown +	+ U
	blanc NO	P, E
	blue -	0 V
	black -	0 V
NA 5010.01.20	brown +	$+\mathrm{U}$
	blue -	0 V
	black NO	P, E

