CRIMPING SPECIFICATION

PRODUCT NAME；． 062 MINIATURE CRIMP PIN／RECEPTACLE．
1．SCOPE
THIS STANDARD SPECIFIES THE DIMENSIONS AFTER CRIMPING OF THE TERMINALS UNDERMENTIONED．

PARTS NO．	WIRE SIZE		$\underset{(\mathrm{mm})}{\text { INSULATION DIA. }}$
	AWG	mm^{2}	
1560＊	\＃18～\＃24	$0.20 \sim 0.75$	$\phi(1.5) \sim 3.1$
1561＊	\＃18～\＃ 24	$0.20 \sim 0.75$	$\phi(1.5) \sim 3.1$

2．DEFINTION（TERMS）

FIG 1

				裉战（prefraid bit $A \cdot A=- \text { No1/87. } 9$	molex MOLEX－JAPAS CO．LTD． 					
－	REVISED ECN NO，4／22	F／2／85	H 8×4							PAGS
C	REVISEO ECN NO． 1890	12／4／80	K．H							$1 / 3$
0	RELEASE	＂1／7／99］	K．H							HEV．
（LT	隻更内突（fertsions）	（1）	（				－ 1560	1	1561	\dagger

3．SPECIFICATION

N0．0F FIG． 1	ITEM	REQUIREMENT
（1）	BEND UP	3 ${ }^{\circ}$ MAX．
	BEND DOWN	$3{ }^{\circ} \mathrm{MAX}$ ．
	TWISTING	$4^{\circ} \quad \operatorname{MAX}$ ．
	ROLLING	8° MAX．
（2）	BELL MOUTH（FLARE）	$0.2 \sim 0.5 \mathrm{~mm}$（REF．）
（3）	LANCE	$3.01 \pm 0.17 \mathrm{~mm}$
（4）	EXTRUDED WIRE LENGTH	$0 \sim 1 \mathrm{~mm}$
（5）	SEAM	Seam shall not be opened and no wire allowed out of crimping the area．
－	INS．CRIMP HEIGHT	$2.8 \sim 3.4$ mm（REF．）
（8）	CUT－OFF TAB LENGTH	$0 \sim 0.5 \mathrm{~mm}$

4．CONDITIONS．（（6）and（7）of FIG．1）
After crimping the wire（ equivalent to UL1007），the crimped areas should be as follows．

$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \\ & \text { (AWG) } \end{aligned}$	CRIMP DIE MODEL NO．	TERM．PART NO．	（6）CONDUCTOR（mm）		（7）INSULATION（mm）		CRIMP STRENGTH （ Kg ）
			$\begin{array}{\|l\|l\|} \text { CRIMP } \\ \text { WIDTH } \end{array}$	CRIMP HEIGHT	$\begin{aligned} & \text { CRIMP } \\ & \text { WIDTH } \end{aligned}$	CRIMP HEIGHT	
\＃18	$\begin{array}{r} \operatorname{CD}(J) \\ 1739 \end{array}$	$\begin{aligned} & \text { 1560* } \\ & \text { 1561* } \end{aligned}$	1.91	1．01～1．06	2.75	\rightarrow	9．0 MIN．
\＃20				0．88～0．93		\cdots	6．0 MIN．
\＃22				0．83～0．88		＂	4．0 MIN．
\＃24				0．77～0．82		＂	3．0 MIN．

Molex MOLEX－JAPANCO．LTD．	
名称（NME） Crimping Specification	$\begin{array}{\|l} \text { PAGEE } \\ 2 / 3 \end{array}$
規格番号（NO．） CS $-1560 / 156]$	${ }^{\text {RIVV. }}$

5．CONDITIONS．（（6）and（7）of FIG．1）
After crimping the wire（equivalent to UL1007），the crimped areas should be as follows．

$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \\ & (A W G) \end{aligned}$	CRIMP DIE MODEL NO．	TERMINAL PART NO．	（6）CONDUCTOR（mm）		（7）INSULATION（mm）（REF．）		$\left\{\begin{array}{c} \text { CRIMP } \\ \text { STRENGTH } \\ (\mathrm{Kg}) \end{array}\right.$
			$\begin{aligned} & \text { TOOL } \\ & \text { MARK } \end{aligned}$	CRIMP HEIGHT	T00L MARK	CRIMP HEIGHT	
\＃18	$\underset{5867 A}{ }$	$\begin{aligned} & \text { 1560* } \\ & 1561 * \end{aligned}$	D	$1.01 \sim 1.06$	6	2.2	9．0 MIN．
\＃20			C	0．88～0．93	6	2.1	6．0 MIN．
\＃22			B	0．83～0．88	6	2.0	4．0 MIN．
\＃24			A	0．77～0．82	6	2.0	3.0 MIN ．

In case of using Japanese Modular Crimp Die．

Molex $\begin{gathered}\text { MOLEX－JAPAN CO．L．TD．} \\ \text { 日本モレックス株式会社 }\end{gathered}$	
名妳（NMME）	page
Crimping Specification	$3 / 3$
规格番号（ NO ．）	$\stackrel{\text { HEV．}}{\oplus}$

