- AC or DC voltage monitor
$\leqslant 3$ different current ranges
$\star 4$ selectable base modes (over, under, between septoints, outside setpoints)
$\star 2$ selectable measuring function
* automatical and manual reset selectable
\star output relay contact invertable
\vee LED indicator for power supply, over voltage and under voltage, failure and status of the output relay, start-up \& reaction timer
, 22.5mm DIN rail mount housing

specification

supply voltage variation	nominal voltage - $20 \% . .+10 \%$
frequency range	$48-63 \mathrm{~Hz}$
duty cycle	100\%
repeat accuracy	<1\%
output relay specification	max. 6A 230V
Ue/le AC-15	24V/1,6A 115V/1,6A 230V/1,6A
Ue/le DC-13	24V/1A
expected life time	DPCO
mechanical	10×10^{6} operations
electrical	8×10^{4} operations
screws	pozidrive 1
screw tightening torque	0,6...0,8Nm
operating conditions	-20 to $+60^{\circ} \mathrm{C}$ non condensing

*EN 60947-5-1 VDE 0435

ordering information

Function

mol Control relay active $\begin{gathered}\text { Control relay passive }\end{gathered}$

- Contact closed

DIP-Switch: Auto-Reset / Relay normal

Function:

over voltage with window
Function:

over voltage with hysteresis

Function:
under voltage with hysteresis

Function:

For further information please refer to our homepage www.hiquel.com in the products area, or contact us per mail or e-mail.

input	range	resistance	$\mathbf{U}_{\text {EMax }}\left(\mathbf{2 0} 0^{\circ} \mathrm{C}\right)$
E1-M	OV -10 V	30 kOhm	13 Vac
E2-M	OV -45 V	200 kOhm	70 Vac
E3-M	OV -450 V	$1,7 \mathrm{MOhm}$	550 Vac

pcit no	supply		ouput	sup. calv. iso*	$\mathrm{c}_{-1}{ }^{\text {us }}$	housing types
ICV 24Vac	$24 \mathrm{~V} \sim$	2,5VA/1W	DCPO	yes	-	L
ICV 115 Vac	115V	2,5VA/1W	DCPO	yes	-	L
ICV 230Vac	230V~	2,5VA/1W	DCPO	yes	-	L
ICV 400Vac	400V~	2,5VA/1W	DCPO	yes	-	L

[^0]
Monitoring relays - in-case Series Single-phase voltage relay - ICV

FEATURES

- $\quad \mathrm{AC}$ or DC voltage monitor
- 3 different volatge ranges
- 4 selectable base modes (over, under, active band, dead band)
- 2 selectable measuring functions
- Automatic or manual reset selectable
- output relay contact normal or inverted
- DPCO configuration
- LED indicator for supply voltage, over current and under
voltage, failure, output relay status, start-up and reaction timers - $22,5 \mathrm{~mm}$ DIN rail mount housing

Start-up and reaction timers, and the thresholds for the functions can be easily adjusted using the potentiometers and rotary switches on the front plate. Terminals A1+A2 are used to supply the ICV single phase voltage monitor. In order to increase the accuracy and flexibility of the ICV three different input measurement ranges are featured. The measuring inputs are galvanically isolated from the power supply terminals and the output relay circuit and can be direct voltage terminal ' M ' must be connected to negative potential, when measuring alternating voltage the polarity is of no significance.

input	range	resistance	max. voltage @+20 ${ }^{\circ} \mathrm{C}$
E1-M	$0 \mathrm{~V} . .10 \mathrm{~V}$	$30 \mathrm{k} \Omega$	13 Vac
$\mathrm{E} 2-\mathrm{M}$	$0 \mathrm{~V} . .60 \mathrm{~V}$	$200 \mathrm{k} \Omega$	75 Vac
$\mathrm{E} 3-\mathrm{M}$	$0 \mathrm{~V} . .450 \mathrm{~V}$	$1,7 \mathrm{M} \Omega$	550 Vac

LED STATUS INDICATION

The presence of the supply voltage is indicated with a green LED (U), and the active state of the start-up timer and low flashing timer of the time delay (ts, tr) with a the upper thresho . If the measured voltage exceelu this is represented by a flashing 'OV' LED. A continuous yellow 'OV' LED indicates that the measured value exceeds the upper threshold value. If the measured voltage had fallen below the lower threshold value but flashes, If the measured value is under the lower threshold value the 'UN' LED is a continuous yellow. A red flashing LED represents a device or setting fault condition. An active state of the output relay is indicated with the yellow LED R1.

The supply voltage must not be removed before making any changes or settings of the controls. If either time range or time function is changed (changes of the selector switch position) a red LED is active for a short time for checking purposes. The new settings are immediately active. Depending on the change of the settings, the output relay
 might be switched off temporary

CONTROLS

The controls of the in-case series are colour coded for simplicity. Blue potentiometers or rotary switches are used for set values, time settings are yellow, the time range of a reaction timer is red, and percentage hysteresis is always grey.

The ICV features a blue potentiometer for adjusting the first threshold, a grey one for second threshold or hysteresis setting, a yellow one for start up delay time and a red one for trip reaction time setting.

POTENTIOMETER

With the blue SP1 (set point 1) potentiometer the voltage threshold of the monitoring function is set. The desired threshold is set as a factor between 0% and 100% of the selected input range
Depending on the function selected the grey H/SP2 control is used to fix either the $\%$ value for hysteresis (H) or the voltage value for set point 2 (SP2). Hysteresis can be adjusted between 0\% and 25% o the SP1 value. SP2 can be set between 0% and 100% of the selected input range
With the yellow potentiometer the start delay time (ts) of the measurement is set, and can be selected between 0 and 10 seconds The voltage on the measuring input is not measured until 'ts' has The red
The red potentiometer is used to set the reaction time (tr) in case of any current alarm. At the end of this trip time which can be set between 0 and 5 seconds the relay switches into the alarm position

PUSH-BUTTON

The blue push-button in the middle of the front plate is only used in the ,manual reset' mode. If a failure condition is detected and the relay was set accordingly, the stored failure state is deleted and the relay is reset by pushing the 'MR' button.

FUNCTION SETTING

Using the six white DIP switches on the front plate, the reset mode of a failure condition (A / M), the nature of the voltage ($\mathrm{ac} / \mathrm{dc}$), the switching function (W/H), the output relay function (n / v) and the
desired monitoring function ($-/ \mathrm{OV}$) $(-/ \mathrm{UN})$ can be selected

auto-reset	A	M	manual-reset
alternating voltage	ac	dc	direct voltage
window function	W	H	hysteresis function
normal output relay	n	v	inverted output relay
-	-	OV	OVER
-	-	UN	UNDER

Reset after failure condition
The first (A/M) DIP switch is used to select between ,automatic reset (A) and ,manual reset' (M) function. If 'A' is selected, the relay resets immediately the voltage fault condition has cleared. If the DIP switch is in the ' M ' position even if the voltage fault condition has cleared, the relay only resets after pressing the middle blue ,MR' (manual reset) button. This is also the case if the supply voltage is interrupted for some time. Thus any error remains stored when the ' M ' function is selected even if the supply voltage is interrupted

Selecting the nature of the current

This selection is to be taken according to the signal form of the This selection is to be taken according to the signal form

NOTE: Only superposition-free direct voltage signals when measuring direct voltage signals and sinusoidal alternating voltage signals when measuring alternating voltage lead to correct results!

Reset Differential
SP1 is always the base for the reset differential calculation. windows' (W) function is selected, this differential extends symmetrically in both directions from SP1, and if H (Hysteresis value depending if Over or Undercurrent mode is selected. From this it follows that compared to the ' H ' function, the total switching differential is two times larger when the 'W' function is selected. Refer to drawing
The relay changes over to a fault condition after the measured voltage has passed a certain threshold in a certain direction (error threshold - ET). The error condition is cleared, after the so
 passed in the opposite direction.

The reset differential is only of significance if ,OVER' or ,UNDER unction is selected and is always set with potentiometer H/SP2 no matter if ' H ' or ' W ' is selected. The table below summarises the corresponding ET or FT depending on the selected reset differential. SP1 in that case represents the value set with potentiometer SP1, H the value set with potentiometer SP2/H

Function	Differential	ET	FT
OVER	hystersis	SP1	SP1-H
OVER	window	SP1+H	SP1-H
UNDER	hystersis	SP1	SP1+H
UNDER	window	SP1-H	SP1+H

Output relay function
If the function 'normal output relay' (n) is selected the output relay is pulled in as long as no fault condition is present. This offers open circuit detection and failsafe operation. If the 'inverted output relay' (v) function is selected the output relay state is exactly opposite to the ' n function. Therefore the output relay is dropped out when there is no fault condition and pulled in when a fault condition is detected. In both (n) and (v) modes the output relay is dropped out when no supply voltage is present

Monitoring functions
The table below summarises the ICV features in all six differen monitoring functions by combining the four base modes OVER UNDER; INNER and OUTER with the hystereses and window
function. (also see list of abbreviations below)

Function	ET / UET	FT / UFT	LET	LFT
Over+H	SP1	SP1-H		
Over+W	SP1+H	SP1-H		
Under+H	SP1	SP1+H		
Under+W	SP1-H	SP1+H		
INNER	SP1	SP1-[(SP1- SP2)/16]	SP2	SP2+[(SP1- SP2)/16]
OUTER	SP1	SP1+[(SP1- SP2)/16]	SP2	SP2-[(SP1- SP2)/16]

As can be seen from the table above, the hysteresis for ,inner' and outer' functions is equal to the difference of the error thresholds divided by 16 .

Monitoring relays - in-case Series Single-phase voltage relay - ICV

Diagrams: Time is plotted on the X -axis, signal status on the Y -axis. Status OFF or ZERO is shown on the base line, status ON or signal/voltage present' is stepped upward.

Abbreviations used in the function diagrams:
Um supply voltage
ts start timer, start time, measuring delay time
tr reaction timer, reaction time, failure trip delay time
tr< duration of the failure condition is shorter than tr
R1 relay, output relay
ET, LET, UET error threshold, lower - upper error threshold
FT, LFT, UFT fall-back threshold, lower - upper fall-back threshold
OV - OVER
DIP-Switch positioning: \square
With this function over voltage can be monitored. R1 drops out as soon as I exceeds the error threshold level. If 'automatic reset' function is selected R1 resets immediately when the measured voltage returns within the permitted range (falls below the fall-back threshold). If 'manual reset' is selected, the error condition remains until the 'MR' button is pushed.
OFF: Um > ET; ON: Um < FT

UN - UNDER
DIP-Switch positioning
With this function under voltage can be monitored. R1 drops out as soon as I falls below the error threshold. If the 'automatic reset' function is selected R1 resets immediately when the measured voltage returns within the permitted range (exceeds the fall-back threshold). If 'manual reset' is selected, the error condition remains until the 'MR' button is pushed.
OFF: Um < ET; ON: Um > FT

IN - INNER (ACTIVE BAND)

DIP-Switch positioning:
This function monitors if the measured voltage (Um) is within a permitted range limited by the LET and UET. This function can be seen as a combination of both functions described previously. R1 drops out, if I falls below the LET or exceeds the UET. If 'automatic reset' function is selected R1 resets immediately when the measured current returns within the two fall-back thresholds. If 'manual reset' is selected, the error condition remains until the 'MR' button is pushed. OFF: (Um < LET) || (Um > UET); ON: (Um > LFT) \&\& (Um < UFT)

OU - OUTER (Dead band)
DIP-Switch positioning:
品
This function monitors if the measured voltage (Um) is outside a permitted range limited by the LET and UET. R1 drops out, if I exceeds the LET or falls below the UET. If 'automatic reset' function is selected R1 resets immediately when the measured voltage falls under the lower threshold or exceeds the upper threshold. If 'manual pushed.
OFF: (Um > LET) \&\& (Um < UET); ON: (Um < LFT) || (Um > UFT)

BLOCK CONNECTION DIAGRAM:

SPECIFICATION	
supply voltage variation	nominal voltage -20\%..+10\%
frequency range	$48-63 \mathrm{~Hz}$
duty cycle	100\%
repeat accuracy	<1\%
output relay specification	max. 6A 230V~
Ue/le AC-15*	$\begin{aligned} & 24 \mathrm{~V} / 1,5 \mathrm{~A} \quad 115 \mathrm{~V} / 1,5 \mathrm{~A} \\ & 230 \mathrm{~V} / 1,5 \mathrm{~A} \end{aligned}$
Ue/le DC-13*	24V/1,5A
expected life time	DPCO
Mechanical	10×10^{6} operations
Electrical	8×10^{4} operations
screws	Pozidrive 1
screw tightening torque	0,6...0,8Nm
operating conditions	-20 to +60 C
	non condensing

TYPE APPROVAL INFORMATION DIMENSIONS (in mm)

Use the base to mount device on a symmetrical DIN rail according to DIN EN 50022
郎 with an ambient temperature range from -20 to $+60^{\circ} \mathrm{C}$.
ORDERING INFORMATION

Part no	supply	
ICV 24Vac	24 Vac	$1 \mathrm{~W} / 2,5 \mathrm{VA}$
ICV 115Vac	115 Vac	$1 \mathrm{~W} / 2,5 \mathrm{VA}$
ICV 230Vac	230Vac	$1 \mathrm{~W} / 2,5 \mathrm{VA}$
ICV 400Vac	400Vac	$1 \mathrm{~W} / 2,5 \mathrm{VA}$

[^0]: * The measurement input is galvanically isolated from the power supply

