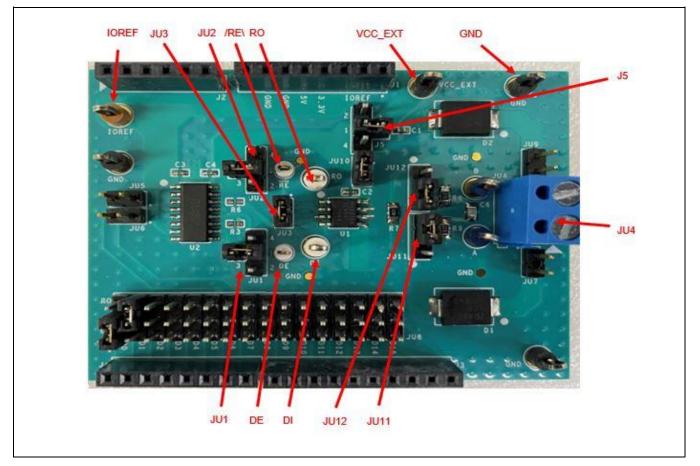
Evaluates: MAX33046E


General Description

The MAX33046E Shield is a fully assembled and tested printed circuit board (PCB) that demonstrates the functionality of the MAX33046E half-duplex RS-485 transceiver with \pm 25V fault protection, extended -7V to +12V common-mode range, and \pm 40kV ESD Human Body Model (HBM) for A/B data lines. The shield features a digital isolator which is used as a level translator between the RS-485 transceiver and the controller interface.

Features

- Easy Evaluation of the MAX33046E
- I/O Interface Compatibility from 1.71V to 5.5V
- Proven PCB Layout
- Arduino[®]/Arm[®] Mbed[™] Platform Compatible
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

EV Kit Photo with Jumpers and Test Point Positions

Quick Start

Required Equipment

- MAX33046E Shield
- 3.3V (or 5V), 500mA DC power supply
- Signal/function generator that can generate a 10MHz square wave signal
- Oscilloscope

Procedure

- 1. Place the MAX33046E Shield on a nonconductive surface to ensure that nothing on the PCB gets shorted to the workspace.
- 2. Set all jumpers to their default position as shown in <u>Table 1</u>.
- 3. With the 3.3V (or 5V) power supply disabled, connect the positive terminal to VCC_EXT and IOREF test points. Connect the negative terminal to a GND test point.
- 4. Connect the positive terminal of the function generator to DI and the negative terminal to any GND test point on the shield.
- 5. Set the function generator to output a 10MHz square wave between 0V and 3.3V (or 5V), then enable function generator output.
- 6. Turn on the 3.3V (or 5V) DC power supply.
- 7. Connect an oscilloscope probe to DI and verify that the output signal at RO matches the DI input signal (DI).

Detailed Description of Hardware

The MAX33046E Shield is a fully assembled and tested circuit board for evaluating the MAX33046E fault-protected halfduplex RS-485 transceiver (U1) with ±25V of fault protection. The Shield is designed to evaluate MAX33046E alone or in a RS-485 system. The MAX33046E Shield can also enable the Arduino or Mbed platform to communicate on a RS-485 bus. The MAX14931 digital isolator is used as a level translator with a 1.71V to 5.5V supply range. Remove the 0 Ω resistor R6 to apply the transmitter input signal directly on the DI test point. Likewise, remove the 0 Ω resistor R3 to measure the receiver output signal directly on the RO test point.

The shield also features an option for TVS diodes (D1 and D2) that can be connected to the A and B lines using JU7 and JU9 respectively if external protection is desired beyond the device's built-in protection.

Powering the Board

The MAX33046E Shield requires two power supplies—one 3V to 5.5V supply for the MAX33046E (U1) transceiver applied at the VCC_EXT test point and one 1.71V to 5.5V supply for the microcontroller domain applied at the IOREF test point. When the shield board is used with an Arduino/Mbed board, the power supply for U1 can also come from the Arduino/Mbed board's 3.3V or 5V rail. Place the shunt on 1-3 position of J5 to connect V_{CC} to VCC_EXT pin. Place the shunt of J5 on the 1-2 position or the 1-4 position to connect the V_{CC} of U1 to the Arduino/Mbed board's 3.3V or 5V supply rail. In this scenario, IOREF is directly taken from the Arduino/Mbed header.

On-Board Termination

A properly terminated RS-485 bus is terminated at each end with the characteristic impedance of the cable. For CAT5 or CAT6 cables, this is typically 120Ω on each end for a 54Ω load on the RS-485 driver. The MAX33046E Shield features a selectable 54Ω or 120Ω load circuit between the A and B driver outputs. If the board is evaluated in a system and connected at the end of the cable, select 120Ω termination. The termination resistors on the MAX33046E Shield should be changed to 54Ω with a 100pF load to simulate a complete system load during evaluation.

DI and RO Configuration

Digital channels for DI and RO are selected through JU8, which consists of three columns and 16 rows. The columns labeled DI and RO are connected to MAX33046E through the digital isolator (MAX14931FASE+ (U2)). The middle column contains the digital I/O pins D0 to D15 from the Arduino/Mbed header. This provides flexibility for the user to select different resources on the microcontroller to transmit and receive signals to and from the RS-485 transceiver. <u>Table 2</u> shows the list of JU8 jumper options. For single-channel performance verification, driver input can connect to test point DI and probe to test point RO directly.

Flexible Interface Options

The MAX33046E Shield allows multiple points of connection to the MAX33046E transceiver. The shield board can be placed on an Arduino/Mbed compatible board to connect all the digital pins (DI, DE, RO, POL) through the J3 and J4 headers. These signals can also be connected directly at their respective test points on the board, bypassing the digital isolator (U2). The A/B signals are connected to a terminal block (JU4) to easily connect to a twisted pair cable. Alternately, the A/B test points may be used.

PCB Layout for Thermal Dissipation

PCB layout can affect the performance of the transceiver in conditions with a high common-mode voltage at high ambient temperatures. The layout of the MAX33046E Shield is designed to maximize thermal performance in such cases. The GND pad is connected to a large copper plane on the top layer, with vias throughout the plane connecting to the GND plane on the bottom layer. A thick trace from the V_{CC} pad to JU10 allows for greater heat dissipation at the V_{CC} pin.

Table 1. Jumper Settings

JUMPER	SHUNT POSITION	DESCRIPTION			
	1-2	DE is connected to level shifter output			
11.14	1-3*	DE is shorted to V_{CC}			
JU1	1-4	DE is shorted to GND			
	Open	DE is open			
	1-2	RE is connected to level shifter output			
JU2	1-3	$\overline{\text{RE}}$ is shorted to V _{CC}			
JUZ	1-4*	RE is shorted to GND			
	Open	RE is open			
JU3	1	RE input when JU2 is open			
JU3	2	DE input when JU2 is open			
JU4	1	Driver output A			
JU4	2	Driver output B			
11.15	1-2*	Connects RE to D6 of J4			
JU5	Open	Disconnects RE from D6 of J4			
JU6	1-2*	Connects DE to D7 of J4			
JUO	Open	Disconnects DE from D7 of J4			
JU7	1-2	TVS Diode connected to A			
JU7	Open*	TVS Diode disconnected from A			
JU9	1-2	TVS Diode connected to B			
109	Open*	TVS Diode disconnected from B			
JU10	1-2*	Connects V _{CC} pin of U1 to supply rail			
3010	Open	Disconnects V _{CC} pin of U1 from supply rail			
	1-2	Connects 120Ω between A and B			
JU11 & JU12	2-3*	Connects 54Ω between A and B			
	Open	No load is connected between A and B			
	1-2	V _{CC} connects to onboard 3.3V			
J5	1-3*	V _{CC} connects to VCC_EXT			
JO	1-4	V _{CC} connects to on-board 5.0V			
	Open	RE is open			

* Indicates default jumper state.

Evaluates: MAX33046E

Table 2. DI and RO Jumper Settings

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2*	Connects DI to D0
	4-5	Connects DI to D1
	7-8	Connects DI to D2
	10-11	Connects DI to D3
	13-14	Connects DI to D4
	16-17	Connects DI to D5
	19-20	Connects DI to D6
	22-23	Connects DI to D7
	25-26	Connects DI to D8
	28-29	Connects DI to D9
	31-32	Connects DI to D10
	34-35	Connects DI to D11
	37-38	Connects DI to D12
	40-41	Connects DI to D13
	43-44	Connects DI to D14
11.10	46-47	Connects DI to D15
JU8	2-3	Connects RO to D0
	5-6*	Connects RO to D1
	8-9	Connects RO to D2
	11-12	Connects RO to D3
	14-15	Connects RO to D4
	17-18	Connects RO to D5
	20-21	Connects RO to D6
	23-24	Connects RO to D7
	26-27	Connects RO to D8
	29-30	Connects RO to D9
	32-33	Connects RO to D10
	35-36	Connects RO to D11
	38-39	Connects RO to D12
	41-42	Connects RO to D13
	44-45	Connects RO to D14
	47-48	Connects RO to D15

* Indicates default jumper state.

Ordering Information

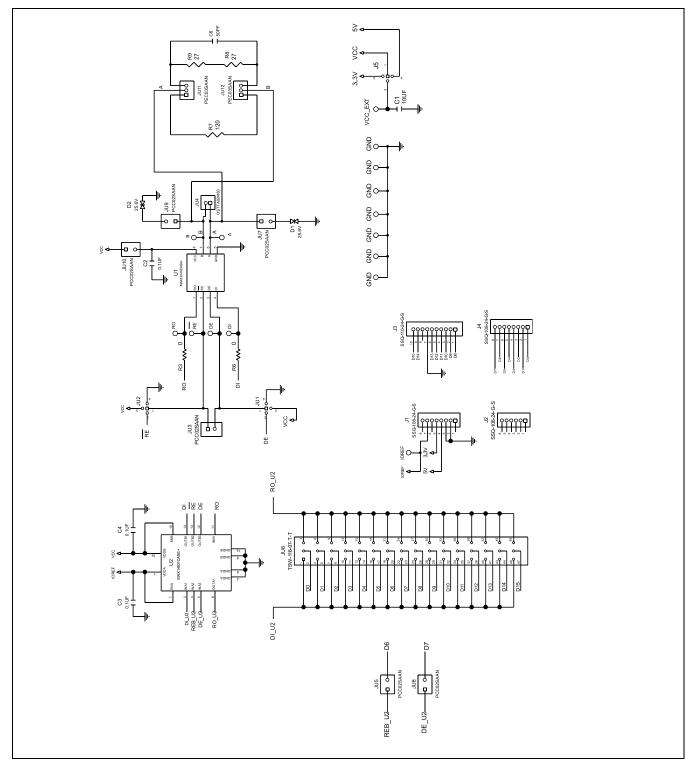
PART	TYPE
MAX33046ESHLD#	EV Kit

#Denotes RoHS-compliant.

Evaluates: MAX33046E

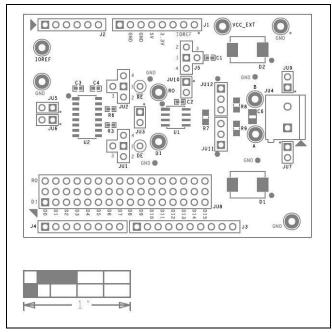
MAX33046E EV Kit Bill of Materials

ITEM	QTY	REF DES	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION	
1	2	А, В	5127	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLUE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
2	1	C1	GRM155R60J106 ME44; GRM155R60J106 ME47; C1005X5R0J106M 050BC	MURATA;MURATA;T DK;SAMSUNG ELECTRONICS;KEM ET	10UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 10UF; 6.3V; TOL=20%; TG=-55 DEGC TO +85 DEGC; TC=X5R	
3	3	C2- C4	C0402C104J4RAC ;GCM155R71C104 JA55	KEMET;MURATA	0.1UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 0.1UF; 16V; TOL=5%; MODEL=; TG=-55 DEGC TO +125 DEGC; TC=X7R	
4	1	C6	08051A500FAT2A	AVX	50PF	CAP; SMT (0805); 50PF; 1%; 100V; C0G; CERAMIC CHIP	
5	2	D1, D2	SM15T30CA	ST MICROELECTRONIC S	25.6V	DIODE; TVS; SMC (DO-214AB); VRM=25.6V; IPP=36A	
6	2	DE, RE	5002	KEYSTONE	N/A	TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; WHITE; PHOSPHOR BRONZE WIRE SILVER	
7	2	DI, RO	5012	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
8	1	IOR EF	5125	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BROWN; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
9	2	J1, J4	SSQ-108-24-G-S	SAMTEC	SSQ-108- 24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 8PINS ;NOTE:PURCHASE DIRECT FROM THE MANUFACTURER	
10	1	J2	SSQ-106-24-G-S	SAMTEC	SSQ-106- 24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 6PINS ;NOTE:PURCHASE DIRECT FROM THE MANUFACTURER	

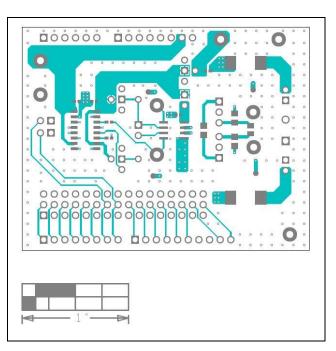

Evaluates: MAX33046E

ITEM	QTY	REF DES	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION	
11	1	J3	SSQ-110-24-G-S	SAMTEC	SSQ-110- 24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 10PINS ;NOTE:PURCHASE DIRECT FROM THE MANUFACTURER	
12	3	J5, JU1, JU2	PEC04SAAN	SULLINS ELECTRONICS CORP.	PECO4SAA N	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS	
13	6	JU3, JU5- JU7, JU9, JU10	PCC02SAAN	SULLINS	PCC02SAA N	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC	
14	1	JU4	OSTTA024163	ON-SHORE TECHNOLOGY INC.	OSTTA024 163	CONNECTOR; FEMALE; THROUGH HOLE; 5.08MM TERM BLOCK CONNECTOR; STRAIGHT; 2PINS; -30 DEGC TO +105 DEGC	
15	1	JU8	TSW-116-07-T-T	SAMTEC	TSW-116- 07-T-T	CONNECTOR; MALE; THROUGH HOLE; 0.025IN SQ POST HEADER; STRAIGHT; 48PINS	
16	2	JU11 , JU12	PEC03SAAN	SULLINS	PECO3SAA N	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS	
17	2	R3, R6	ERJ-2GE0R00	PANASONIC	0	RESISTOR; 0402; 0 OHM; 0%; JUMPER; 0.10W; THICK FILM	
18	1	R7	CRCW0805120RF K	VISHAY DALE	120	RESISTOR; 0805; 120 OHM; 1%; 100PPM; 0.125W; THICK FILM	
19	2	R8, R9	ERA-6AHD270	PANASONIC	27	RES; SMT (0805); 27; 0.5%; +/- 50PPM/DEGC; 0.125W	
20	8	SU1, SU2, SU5, SU8- SU1 2	2SN-BK-G	SAMTEC	2SN-BK-G	TEST POINT; JUMPER; STR; TOTAL LENGTH=0.175IN; BLACK; INSULATION=PBT;PHOSPHOR BRONZE CONTACT=GOLD PLATED	
21	3	TP18 - TP20	5011	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	

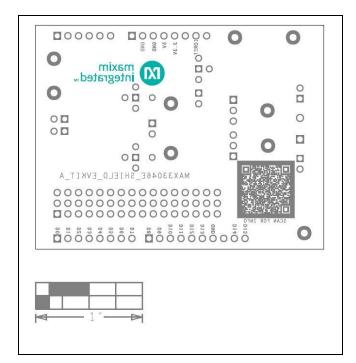
Evaluates: MAX33046E

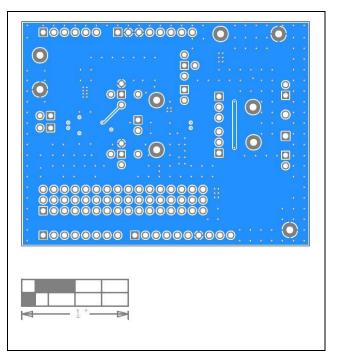

ITEM	QTY	REF DES	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION
22	1	U1	MAX33046EASA+	MAXIM	MAX3304 6EASA+	EVKIT PART - IC; MAX33046EASA+; HALF-DUPLEX RS-485/422 TRANSCEIVER; PACKAGE OUTLINE DRAWING: 21-0041; LAND PATTERN DRAWING: 90-0096; NSOIC8
23	1	U2	MAX14931CASE+	MAXIM	MAX1493 1CASE+	IC; DISO; 3/1 CHANNEL; 150MBPS; DEFAULT LOW; 2.75KVRMS DIGITAL ISOLATOR; NSOIC16
24	1	VCC _EX T	5010	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL
25	1	PCB	MAX33046ESHIEL D	MAXIM	РСВ	PCB:MAX33046ESHIELD

MAX33046 EV Kit Schematic

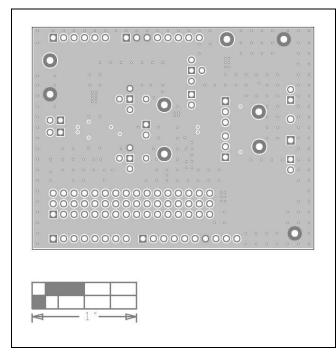


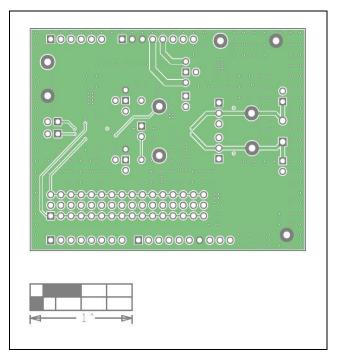
Evaluates: MAX33046E


MAX33046 EV Kit PCB Layouts


MAX33046E EV Kit Component Placement Guide—Top Silkscreen

MAX330466E EV Kit PCB Layout—Top Layout




MAX33046E EV Kit Component Placement Guide—Bottom Silkscreen

MAX330466E EV Kit PCB Layout—Bottom Layout

MAX33046 EV Kit PCB Layouts (continued)

MAX330466E EV Kit PCB Layout—Second Layer

MAX330466E EV Kit PCB Layout—Third Layer

Evaluates: MAX33046E

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	3/21	Initial release	_

Arduino is a registered trademark of Arduino, LLC.

Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.