innodisk

Standard

Customer:
Customer
Part Number: \qquad
Innodisk
Part Number: \qquad
Innodisk
Model Name: \qquad
Date: \qquad

Innodisk Approver	Customer Approver

Table of contents

1. INTRODUCTION 9
2. FEATURES 9
3. PIN ASSIGNMENT 11
4. PIN DESCRIPTION 13
5. SPECIFICATIONS 17
5.1 CE and FCC Compatibility. 17
5.2 RoHS COMPLIANCE 17
5.3 ENVIRONMENTAL SPECIFICATIONS. 17
5.3.1 Temperature Ranges 17
5.3.2 Humidity. 17
5.3.3 Shock and Vibration 17
5.3.4 Mean Time between Failures (MTBF) 17
5.3.5 Write Protect Function Support 18
5.3.6 Wear-Leveling. 18
5.4 MECHANICALDIMENSIONS 19
5.5 ELECTRICAL SpECIFICATIONS 21
5.5.1 DC CHARACTERISTIC 21
5.5.2 Timing Specifications 21
5.5.2.1 True IDE PIO Mode Read/Write Timing Specification. 21
5.5.2.2 True IDE Multiword DMA Mode Read/Write Timing Specification 22
5.5.2.3 True IDE Ultra DMA Mode Data Burst Timing Specification 23
5.6 Transfer Function 25
5.6.1 True IDE Mode I/O Transfer Function 25
5.7 CONFIGURATION REGISTER. 26
5.7.1 Configuration Option Register (200h in Attribute Memory) 26
5.7.2 Pin Replacement register (204h in Attribute Memory) 27
5.7.3 Socket and Copy Register (206H in Attribute Memory) 27
5.8 Software Interface 28
5.8.1 True IDE Mode Addressing 28
5.9 Hardware Reset 33
5.10 Power on Reset 33
5.11 SUPPORT IDE COMMANDS 34
5.11.1 CHECK POWER MODE -E5H 35
5.11.2 EXECUTE DEVICE DIAGNOSTIC - 90H 35
5.11.3 Flush Cache- E7H 36
5.11.4 IDENTIFY DEVICE- ECH 37
5.11.5 IDLE -97H OR E3H 47
5.11.6 IDLE IMMEDIATE - 95H OR E1H 47
5.11.7 READ BUFFER - E4H 48
5.11.8 READ DMA - C8H 48
5.11.9 READ SECTOR(S) - 20H 49
5.11.10 Read Verify Sector(s) - 40h 49
5.11.11 SET FEATURES - EfH 50
5.11.12 Set Multiple Mode - C6H 51
5.11.13 Set Sleep Mode - E6H 51
5.11.14 Standby-E2H 52
5.11.15 Standby Immediate - E0H 52
5.11.16 WRITE BuFFER - E8H 52
5.11.17 WRITE DMA - CAH 53
5.11.18 WRITE Multiple- C5H 53
5.11.19 Write Sector(S) - 30H 56
5.11.20 Security Set Password- F1H 57
5.11.21 SECURITY UNLOCK- F2H 60
5.11.22 Security Erase Prepare- F3H 62
5.11.23 SECURITY ERASE UNIT- F4H 64
5.11.24 SECURITY FREEZE LOCK- F5H 66
5.11.25 SECURITY DISABLE PASSWORD- F6H 68
5.11.26 SMART 71
5.11.27 SMART READ DATA. 71
5.11.28 SMARTENABLE OPERATIONS 73
5.11.29 SMARTDISABLE OPERATIONS 74
6. DEVICE PARAMETERS 75
7. INNODISK PART NUMBER RULE 76

REVISION HISTORY

Revision	Description	Date
1.0	First release	Nov. 2012
1.1	Update performance	Dec. 2012
1.2	Modify part number	Dec. 2012
1.3	Modify performance Update CE,FCC	Jan. 2013
1.4	Modify device parameter	Feb. 2013
1.5	Modify device parameter	March. 2013
1.6	Modify device parameter	May. 2013
1.7	Modify part number rule	May. 2013
1.8	Add TBW	Aug. 2013
1.9	Modify performance	Feb. 2014

List of Tables
Table 1: iCF9000 Pin Assignments 11
Table 2: ICF9000 Pin Description 13
Table 3: Shock/Vibration Test for iCF9000 17
Table 4: ICF9000 MTBF 17
Table 5: TBW OF EACH CAPACITY 18
Table 6: True IDE PIO Mode Read/Write Timing 22
Table 7: True IDE Multiword DMA Read/Write Timing. 23
Table 8: Timing Diagram, Ultra DMA Mode 0-6 23
Table 9: True IDE Mode I/O Function 25
Table 10: Configuration Option Register 27
Table 11: Information for Configuration Option Register 27
Table 12: Pin Replacement Register. 27
Table 13: Information for Pin Replacement Register 27
Table 14: Socket and Copy Register 28
Table 15: Information for Socket and Copy Register. 28
Table 16: True IDE Mode I/O Decoding 28
Table 17: Data Register 29
Table 18: Error Register 29
Table 19: Feature Register 29
Table 20: Sector Count Register 29
Table 21: Sector Number Register 30
Table 22: Cylinder Low Register 30
Table 23: Cylinder High Register 30
Table 24: Device/Head Register 30
Table 25: Status Register 31
Table 26: Device Control Register 32
Table 27: Drive Address Register 32
Table 28: Timing Diagram, Hardware Reset 33
Table 29: Timing Diagram, Power On Reset 33
Table 30: IDE Commands 34
TABLE 31: CHECK POWER MODE INFORMATION 35
TABLE 32: EXECUTE DEVICE DIAGNOSTIC INFORMATION. 35
Table 33: Diagnostic 35
TABLE 34: FLUSH CACHE COMMAND FOR INPUTS INFORMATION 36
TABLE 35: FLUSH CACHE COMMAND FOR NORMAL OUTPUT INFORMATION. 36
TABLE 36: FLush CACHE COMMAND FOR ERROR OUTPUT INFORMATION 37
TABLE 37: Identify device information 37
TABLE 38: IDENTIFY DEVICE INFORMATION 38
TABLE 39: IdLE INFORMATION 47
Table 40: IdLE Immediate inform ation 47
TABLE 41 : READ BUFFER INFORMATION 48
Table 42: Read DMA information 48
Table 43: Read sector information 49
TAbLE 44: Read VERIFY SECTOR INFORMATION 49
TABLE 45: SET FEATURE INFORMATION 50
Table 46: Feature Supported 50
Table 47: Set multiple mode information 51
Table 48: Set sleep mode information. 51
TABLE 49: StANDBY INFORMATION 52
TABLE 50: Standby immediate inform ation 52
Table 51: Write buffer information 52
Table 52: Write DMA information 53
TABLE 53: WRITE MULTIPLE COMMAND FOR INPUTS INFORMATION 54
Table 54: Write multiple command for normal output information 54
TABLE 55: WRITE MULTIPLE COMMAND FOR NORMAL OUTPUT INFORMATION 55
TABLE 56: Write sector information 56
TABLE 57: SECURITY SET PASSWORD COMMAND FOR INPUTS INFORMATION 57
TABLE 58: SECURITY SET PASSWORD COMMAND FOR NORMAL OUTPUTS INFORMATION 58
TABLE 59: SECURITY SET PASSWORD COMMAND FOR ERROR OUTPUTS INFORMATION 58
TABLE 60: SECURITY SET PASSWORD COMMAND’S DATA CONTENT 59
TABLE 61: SECURITY SET PASSWORD COMMAND'S IDENTIFIER AND SECURITY LEVEL BIT INTERACTION 59
TABLE 62: SECURITY UNLOCK COMMAND FOR INPUTS INFORM ATION 60
TABLE 63: SECURITY UNLOCK COMMAND FOR INPUTS INFORM ATION 60
TABLE 64: SECURITY UNLOCK COMMAND FOR INPUTS INFORM ATION 61
TABLE 65: SeCURITY ERASE PREPARE COMMAND FOR INPUTS INFORMATION 62
TABLE 66: SECURITY ERASE PREPARE COMMAND FOR NORMAL OUTPUTS INFORMATION 62
TABLE 67: SECURITY ERASE PREPARE COMMAND FOR ERROR OUTPUTS INFORMATION 63
TABLE 68: SECURITY ERASE UNIT COMMAND FOR INPUTS INFORMATION 64
TABLE 69: SECURITY ERASE UNIT COMMAND FOR NORMAL OUTPUTS INFORMATION 64
Table 70: Security erase unit command for error outputs information 65
Table 71: Security erase unit password information 66
TABLE 72: SECURITY FREEZE LOCK FOR INPUTS INFORMATION 67
Table 73: Security freeze lock for normal outputs information 67
TABLE 74: SECURITY FREEZE LOCK FOR ERROR OUTPUTS INFORMATION 67
TABLE 75: SECURITY DISABLE PASSWORD COMMAND FOR INPUTS INFORMATION 69
TABLE 76: SECURITY DISABLE PASSWORD COMMAND FOR NORMAL OUTPUTS INFORMATION 69
TABLE 77: SECURITY DISABLE PASSWORD COMMAND FOR ERROR OUTPUTS INFORMATION 69
TABLE 78: SECURITY DISABLE PASSWORD COMMAND CONTENT 70
Table 79: SMART Feature register values 71
TABLE 80: SMART COMMAND FOR INPUTS INFORMATION 71
TABLE 81: SMART COMMAND FOR NORMAL OUTPUTS INFORMATION 71
TABLE 82: SMART DATA STRUCTURE 72
TABLE 83: SMART Enable COMmAND FOR INPUTS Information 73
TABLE 84: SMART COMMAND FOR NORMAL OUTPUTS INFORMATION 73
Table 85: SMART DISABLE Command For inputs information 74
TABLE 86: SMART COMMAND FOR NORMAL OUTPUTS INFORMATION 74
Table 87: Device parameter 75

List of Figures

Figure 1: Mechanical Dimension of iCF9000 ... 19
Figure 2: Read/Write Timing Diagram, PIO Mode... 21
Figure 3: True ide Multiword dMA Mode Read/Write Timing .. 22
Figure 4: timing Diagram, Power On Reset .. 33

1. Introduction

The Innodisk Industrial CompactFlash ${ }^{\circledR} 9000$ Memory Card (iCF9000) products provide high capacity solid-state flash memory that electrically complies with the True IDE Mode that is electrically compatible with an IDE disk drive. The original CF form factor card can be used in any system that has a CF slot. Designed to replace traditional rotating disk drives, Innodisk Industrial CompactFlash ${ }^{\circledR} 9000$ Memory Cards are embedded solid-state data storage systems for mobile computing and the industrial work place. The Industrial CompactFlash ${ }^{\circledR}$ features an extremely lightweight, reliable, low-profile form factor. Industrial CompactFlash ${ }^{\circledR} 9000$ (iCF9000) support advanced PIO (0-6), Multiword DMA (0-4), Ultra DMA (0-7) transfer mode, multi-sector transfers, and LBA addressing.

Figure 1 :iCF 9000

2. Features

The Industrial ATA products provide the following system features:

- Capacities: $2 \mathrm{~GB} / 4 \mathrm{~GB} / 8 \mathrm{~GB} / 16 \mathrm{~GB} / 32 \mathrm{~GB} / 64 \mathrm{~GB}$
- Fully compatible with CompactFlash ${ }^{\circledR}$ specification version 6.0
- Fully compatible with PC Card Standard.
- Fully compatible with the IDE standard interface, ATA Standard
- Three access modes
- True IDE Mode
- PC Card Memory Mode
- PC Card I/O Mode
- ECC (Error Correction Code) function: 72 bits/ per 1 Kbyte
- $\quad+3.3 \mathrm{~V} /+5 \mathrm{~V}$ single power supply operation
- Support Auto Stand-by and Sleep Mode.
- Power Consumption
- Quad:

Active mode
Read operation: 114 mA (max.)
Write operation: $188 \mathrm{~mA}($ max. $)$
Power Down mode: $0.7 \mathrm{~mA}(\mathrm{max}$.

- Support transfer modes: $\mathrm{PIO}(0-6)$, Multiword DMA (0-4) and Ultra DMA(0-7)
- MTBF 3,000,000 hours
- R/W performance(Quad):

Product name		2 GB	4 GB	8 GB	16 GB	32 GB	64 GB
iCF 9000	Sequential Read	110	110	110	110	110	110
	Sequential Write	50	50	90	70	100	100

- Operating temperature range:
- Standard Grade: $0^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
- Industrial Grade: $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
- Storage temperature range: $-55^{\circ} \mathrm{C} \sim+95^{\circ} \mathrm{C}$

3. Pin Assignment

See Table 1 for iCF9000 pin assignments.

Table 1: iCF9000 Pin Assignments

True IDE Mode					
Pin No.	Name	I/O	Pin No.	Name	1/0
1	GND		29	D13 ${ }^{1}$	I/O
2	D03	I/O	30	D14 ${ }^{1}$	I/O
3	D04	I/O	31	D15 ${ }^{1}$	I/O
4	D05	I/O	32	-CS1 ${ }^{1}$	1
5	D06	I/O	33	-VS1	GND
6	D07	I/O	34	-IORD ${ }^{7}$	1
7	-CS0	I			
8	A10 ${ }^{2}$	GND			
9	-ATA SEL	GND	35	-IOWR ${ }^{7}$	I
10	A09 ${ }^{2}$	GND			
11	A08 ${ }^{2}$	GND	36	-WE ${ }^{3}$	1
12	A07 ${ }^{2}$	GND	37	INTRQ	0
13	VCC	GND	38	VCC	
14	A06 ${ }^{2}$	GND	39	-CSEL	I
15	A05 ${ }^{2}$	GND	40	-VS2	NC
16	A04 ${ }^{2}$	GND	41	-RESET	1
17	A03 ${ }^{2}$	GND	42	IORDY ${ }^{1}$	O
18	A02	1			
19	A01	1			
20	A00	1	43	DMARQ	0
21	D00	I/O	44	-DMACK ${ }^{6}$	1
22	D01	I/O	45	-DASP	I/O
23	D02	I/O	46	-PDIAG	I/O
24	-IOCS16	NC	47	D08 ${ }^{1}$	I/O
25	-CD2	GND	48	D091	I/O
26	-CD1	GND	49	D10 ${ }^{1}$	I/O
27	D11 ${ }^{1}$	I/O	50	GND	
28	D12 ${ }^{1}$	I/O			

Note:

1) These signals are required only for 16 bit accesses and not required when installed in 8 bit systems. Devices should allow for 1 -state signals not to consume current.
2) The signal should be grounded by the host.
3) The signal should be tied to VCC by the host.
4) The mode is optional for CF+ Cards, but required for CompactFlash ${ }^{\circledR}$ Storage Cards.
5) The -CSEL signal is ignored by the card in PC Card modes. However, because it is not pulled up on the card in these modes, it should not be left floating by the host in PC Card modes. In these modes, the pin should be connected by the host to PC Card A25 or grounded by the host.
6) If DMA operations are not used, the signal should be held high or tied to VCC by the host. For proper operation in older hosts: while DMA operations are not active, the card shall ignore this signal, including a floating condition
7) Signal usage in True IDE Mode except when Ultra DMA mode protocol is active.
8) Signal usage in True IDE Mode when Ultra DMA mode protocol DMA Write is active.
9) Signal usage in True IDE Mode when Ultra DMA mode protocol DMA Read is active.

4. Pin Description

Table 2 describes the pin descriptions for iCF9000

Table 2: iCF9000 Pin Description

Pin No.	Pin Name	I/O	Mode	Description
18,19,20	A2 - A0	I	True IDE Mode	In True IDE Mode, only A[2:0] are used to select the one of eight registers in the Task File, the remaining address lines should be grounded by the host.
46	-PDIAG	I/O	True IDE Mode	In the True IDE Mode, this input / output is the Pass Diagnostic signal in the Master / Slave handshake protocol.
45	-DASP	I/O	True IDE Mode	In the True IDE Mode, this input/output is the Disk Active/Slave Present signal in the Master/Slave handshake protocol.
26, 25	-CD1, -CD2	0	True IDE Mode	This signal is the same for all modes.
7,32	-CS0, -CS1	I	True IDE Mode	In the True IDE Mode, -CSO is the chip select for the task file registers while -CS1 is used to select the Alternate Status Register and the Device Control Register. While -DMACK is asserted, -CS0 and -CS1 shall be held negated and the width of the transfers shall be 16 bits.
39	-CSEL	I	True IDE Mode	This internally pulled up signal is used to configure this device as a Master or a Slave when configured in the True IDE Mode. When this pin is grounded, this device is configured as a Master. When the pin is open, this device is configured as a Slave.
$\begin{aligned} & 2,3,4,5,6 \\ & 31,30,29 \\ & 28,27,49 \\ & 48,47,23 \\ & 22,21 \end{aligned}$	D15-D00	I/O	True IDE Mode	In True IDE Mode, all Task File operations occur in byte mode on the low order bus $\mathrm{D}[7: 0$] while all data transfers are 16 bit using D[15:0].
1,50	GND	-	True IDE Mode	This signal is the same for all modes.

43	DMARQ	0	True IDE Mode	This signal is a DMA Request that is used for DMA data transfers between host and device. It shall be asserted by the device when it is ready to transfer data to or from the host. For Multiword DMA transfers, the direction of data transfer is controlled by -IORD and -IOWR. This signal is used in a handshake manner with -DMACK, i.e., the device shall wait until the host asserts -DMACK before negating DMARQ, and reasserting DMARQ if there is more data to transfer. DMARQ shall not be driven when the device is not selected. While a DMA operation is in progress, -CS0 and -CS1 shall be held negated and the width of the transfers shall be 16 bits. If there is no hardware support for DMA mode in the host, this output signal is not used and should not be connected at the host. In this case, the BIOS must report that DMA mode is not supported by the host so that device drivers will not attempt DMA mode.
34	-IORD	1	True IDE Mode	In True IDE Mode, while Ultra DMA mode is not active, this signal has the same function as in PC Card I/O Mode.
	-HDMARDY			In True IDE Mode when Ultra DMA mode DMA Read is active, this signal is asserted by the host to indicate that the host is read to receive Ultra DMA data-in bursts. The host may negate -HDMARDY to pause an Ultra DMA transfer.
	HSTROBE			In True IDE Mode when Ultra DMA mode DMA Write is active, this signal is the data out strobe generated by the host. Both the rising and falling edge of HSTROBE cause data to be latched by the device. The host may stop generating HSTROBE edges to pause an Ultra DMA data-out burst.
35	-IOWR	1	True IDE Mode	In True IDE Mode, while Ultra DMA mode protocol is not active, this signal has the same function as in PC Card I/O Mode. When Ultra DMA mode protocol is supported, this signal must be negated before entering Ultra DMA mode protocol.
	STOP			In True IDE Mode, while Ultra DMA mode protocol is active, the assertion of this signal causes the termination

				of the Ultra DMA burst.
9	-ATA SEL	I	True IDE Mode	To enable True IDE Mode this input should be grounded by the host.
37	INTRQ	O	True IDE Mode	In True IDE Mode signal is the active high Interrupt Request to the host.
44	-DMACK	I	True IDE Mode	This is a DMA Acknowledge signal that is asserted by the host in response to DMARQ to initiate DMA transfers. While DMA operations are not active, the card shall ignore the -DMACK signal, including a floating condition. If DMA operation is not supported by a True IDE Mode only host, this signal should be driven high or connected to VCC by the host.
41	-RESET	I	True IDE Mode	In the True IDE Mode, this input pin is the active low hardware reset from the host.
13, 38	VCC	-	True IDE Mode	This signal is the same for all modes.
33, 40	-VS1, -VS2	0	True IDE Mode	This signal is the same for all modes.
42	IORDY	0	True IDE Mode	In True IDE Mode, except in Ultra DMA modes, this output signal may be used as IORDY.
	-DDMARDY			In True IDE Mode, when Ultra DMA mode DMA Write is active, this signal is asserted by the host to indicate that the device is read to receive Ultra DMA data-in bursts. The device may negate -DDMARDY to pause an Ultra DMA transfer.
	DSTROBE			In True IDE Mode, when Ultra DMA mode DMA Write is active, this signal is the data out strobe generated by the device. Both the rising and falling edge of DSTROBE cause data to be latched by the host. The device may stop generating DSTROBE edges to pause an Ultra DMA data-out burst.
36	-WE	1	True IDE Mode	In True IDE Mode, this input signal is not used and should be connected to VCC by the host.

24	-IOCS16	O	True IDE Mode	In True IDE Mode this output signal is asserted low when this device is expecting a word data transfer cycle.

5. Specifications

5.1 CE and FCC Compatibility

iCF9000 conforms to CE and FCC requirements.

5.2 RoHS Compliance

iCF9000 is fully compliant with RoHS directive.

5.3 Environmental Specifications

5.3.1 Temperature Ranges

Operating Temperature Range:

- Standard Grade: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Industrial Grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range: $-55^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$

5.3.2 Humidity

Relative Humidity: 10-95\%, non-condensing

5.3.3 Shock and Vibration

Table 3: Shock/Vibration Test for iCF9000

Reliability	Test Conditions	Reference Standards
Vibration	7 Hz to $2 \mathrm{KHz}, 20 \mathrm{G}, 3$ axes	IEC $68-2-6$
Mechanical Shock	Duration: $0.5 \mathrm{~ms}, 1500 \mathrm{G}, 3$ axes	IEC $68-2-27$

5.3.4 Mean Time between Failures (MTBF)

Table 4 summarizes the MTBF prediction results for various iCF9000 configurations. The analysis was performed using a RAM Commander ${ }^{\text {m" }}$ failure rate prediction.

- Failure Rate: The total number of failures within an item population, divided by the total number of life units expended by that population, during a particular measurement interval under stated condition.
- Mean Time between Failures (MTBF): A basic measure of reliability for repairable items: The mean number of life units during which all parts of the item perform within their specified limits, during a particular measurement interval under stated conditions.

Table 4: iCF9000 MTBF

Product	Condition	MTBF (Hours)
iCF9000	Telcordia SR-332 GB, $25^{\circ} \mathrm{C}$	$3,000,000$

5.3.5 Write Protect Function Support

Innodisk CF card within the write-protect function could prevent the CF card from modification and deletion. Write-protected data in CF card could only be read, that is, users could not write to it, edit it, append data to it, or delete it.
When users would like to make sure that neither themselves nor others could modify or destroy the file, users could switch on write-protection. Thus Innodisk CF card would process write-protect mechanism and disable flash memory to be written-in any data. Only while the system power-off, users could switch on write-protection. Write-protection could not be switched-on, after OS booting.

5.3.6 Wear-Leveling

Flash memory can be erased a limited number of times. This number is called the erase cycle limit or write endurance limit and is defined by the flash array vendor. The erase cycle limit applies to each individual erase block in the flash device. iCF9000 uses a wear-leveling algorithm to ensure that consecutive writes of a specific sector are not written physically to the same page in the flash. This spreads flash media usage evenly across all pages, thereby maximizing flash lifetime.

5.3.7 Terabytes Written(TBW)

SSD endurance measurement is determined the relationship between host writes and NAND cycles, and use this relationship to estimate the SSD endurance rating. The estimated endurance rating is the TBW which is described below,

TBW $=($ SSD capacity X P/E Cycles $) /$ NAF

Table 5: TBW of each capacity

Capacity	TBW
$\mathbf{1 G B}$	65.10
$\mathbf{2 G B}$	130.20
4GB	260.41
8GB	520.83
16GB	1041.66
32GB	2083.33
64GB	4166.66

5.4 Mechanical Dimensions

Mechanical Dimension: $42.80 \pm 0.1 / 36.40 \pm 0.1 / 3.30 \pm 0.05 \mathrm{~mm}(\mathrm{~W} / \mathrm{T} / \mathrm{H})$

Figure 1: Mechanical Dimension of iCF9000

Mechanical Dimension: $42.80 \pm 0.1 / 36.40 \pm 0.1 / 3.30 \pm 0.05 \mathrm{~mm}(\mathrm{~W} / \mathrm{T} / \mathrm{H})$

Figure 2: Mechanical Dimension of Icf9000 write protect

5.5 Electrical Specifications

5.5.1 DC Characteristic

Power supply requirement: $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ DC or $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

5.5.2 Timing Specifications

5.5.2.1 True IDE PIO Mode Read/Write Timing Specification

Figure 2: Read/Write Timing Diagram, PIO Mode

Note:

1. Device address comprises CS1\#, CS0\#, and HA[2:0].
2. Data comprises HD[15:0] (16-bit) or HD[7:0] (8-bit).
3. The negation of DSTROBE by the device is used to lengthen the PIO cycle. Whether the cycle is to be extended is determined by the host after Ta from the assertion of HIOR\# or HIOW\#. The assertion and negation of DSTROBE is described in the following three cases. (a) The device never negates DSTROBE: No wait is generated. (b) Device drives DSTROBE low before Ta: a wait is generated. The cycle is completed after DSTROBE is reasserted. For cycles in which a wait is generated and HIOR\# is asserted, the device places read data on D15-D00 for Trd before DSTROBE is asserted.

Table 6: True IDE PIO Mode Read/Write Timing

PIO timing parameters	Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	
t_{0}	Cycle time (min.)	600	383	240	180	120
t_{1}	Address valid to HIOR-/HIOW- setup (min.)	70	50	30	30	25
t_{2}	HIOR-/HIOW- 16-bit (min.)	165	125	100	80	70
t_{2}	HIOR-/HIOW- Register 8-bit (min.)	290	290	290	80	70
$\mathrm{t}_{2 \mathrm{i}}$	HIOR-/HIOW- recovery time (min.)	-	-	-	70	25
t_{3}	HIOW- data setup (min.)	60	45	30	30	20
t_{4}	HIOW- data hold (min.)	30	20	15	10	10
t_{5}	HIOR- data setup (min.)	50	35	20	20	20
t_{6}	HIOR- data hold (min.)	5	5	5	5	5
$\mathrm{t}_{6 z}$	HIOR- data tri-state (max.)	30	30	30	30	30
t_{9}	HIOR-/HIOW- to address valid hold	20	15	10	10	10
$\mathrm{t}_{\text {RD }}$	Read data valid to IORDY active (min.)	0	0	0	0	0
t_{A}	IORDY setup time	35	35	35	35	35
t_{B}	IORDY pulse width (max.)	1250	1250	1250	1250	1250
t_{C}	IORDY assertion to release (max.)	5	5	5	5	5

5.5.2 2 True IDE Multiword DMA Mode Read/Write Timing Specification

Figure 3: True IDE Multiword DMA Mode Read/Write Timing

Note:

1. If a card cannot sustain continuous, minimum cycle time DMA transfers, it may negate DMARQ during the time from the start of a DMA transfer cycle (to suspend DMA transfers in progress) and reassertion of the signal at a relatively later time to continue DMA transfer operations.
2. The host may negate this signal to suspend the DMA transfer in progress.

Table 7: True IDE Multiword DMA Read/Write Timing

Multiword DMA timing parameters		Mode 0	Mode 1	Mode 2
t_{0}	Cycle time (min.)	480	150	120
t_{D}	HIOR-/HIOW- assertion width (min.)	215	80	70
t_{E}	HIOR- data access (max.)	150	60	50
t_{F}	HIOR- data hold (min.)	5	5	5
t_{G}	HIOR-/HIOW- data setup (min.)	100	30	20
t_{H}	HIOW- data hold (min.)	20	15	10
t_{I}	DMACK to HIOR-/HIOW- setup (min.)	0	0	0
t_{J}	HIOR-/HIOW- to DMACK hold (min.)	20	5	5
$t_{K R}$	HIOR- negated width (min.)	50	50	25
$t_{K W}$	HIOW- negated width (min.)	215	50	25
$t_{L R}$	HIOR- to DMARQ delay (max.)	120	40	35
$t_{\text {LW }}$	HIOW- to DMARQ delay (max.)	40	40	35
t_{M}	CS1-, CS0- valid to HIOR-/HIOW-	50	30	25
t_{N}	CS1-, CSO- hold	15	10	10

5.5.2.3 True IDE Ultra DMA Mode Data Burst Timing Specification

Table 8: Timing Diagram, Ultra DMA Mode 0-6

Ultra DMA timing parameters		Mode 0		Mode 1		Mode 2		Mode 3		Mode 4		Mode 5		Mode 6	
		Min.	Max.	Min.	Max.	Min.	Min.	Max.	Min.	Max.	Max.	Max.	Min.	Max.	Max.
$\mathrm{t}_{2 \mathrm{CYC}}$	Typical sustained average two cycle time	240	-	160	-	90	-	60	-	60	-	40	-	30	-
$\mathrm{t}_{\mathrm{cyc}}$	Cycle time allowing for asymmetry and clock variations (from STROBE edge to STROBE edge)	112	-	73	-	39	-	25	-	25	-	16.8	-	13	-
$\mathrm{t}_{2 \mathrm{CYC}}$	Two cycle time allowing for clock variations (from rising edge to next rising	230	-	153	-	86	-	57	-	57	-	38	-	29	-

t_{RP}	Ready-to-pause time (time that recipient shall wait to initiate pause after negating DMARDY-)	160	-	125	-	100	-	100	-	100	-	85	-	85	-
$\begin{aligned} & \mathrm{t}_{\mathrm{IORD}} \\ & \mathrm{yz} \end{aligned}$	Pull-up time before allowing IORDY to be released	-	20	-	20	-	20	-	20	-	20	-	20	-	20
tzIOR DY	Minimum time device shall wait before driving IORDY	0	-	0	-	0	-	0	-	0	-	0	-	0	-
$\mathrm{t}_{\text {ACK }}$	Setup and hold times for DMACK- (before assertion or negation)	20	-	20	-	20	-	20	-	20	-	20	-	20	-
$\mathrm{t}_{\text {ss }}$	Time from STROBE edge to negation of DMARQ or assertion of STOP (when sender terminates a burst)	50		50	-	50	-	50	-	50	-	50	-	50	-
$\mathrm{t}_{\text {FS }}$	First STROBE time (for device to first negate DSTROBE from STOP during a data in burst)	-	230	-	200	-	130	-	120	-	120	-	90	-	80

5.6 Transfer Function

5.6.1 True IDE Mode I/O Transfer Function

The iCF9000 can be configured in a True IDE Mode of operation. The iCF9000 is configured in this mode only when -OE input signal is grounded by the host during the power off to power on cycle.

Table 9: True IDE Mode I/O Function

Function Code	-CS1	-CS0	-A0~A2	-DMACK	-IORD	-IOWR	D15~D8	D7~D0
Invalid Mode	L	L	X	X	X	X	Undefined In/Out	Undefined In/Out
	L	X	X	L	L	X	Undefined Out	Undefined Out
	L	X	X	L	X	L	Undefined In	Undefined In

	X	L	X	L	L	X	Undefined Out	Undefined Out
	X	L	X	L	X	L	Undefined In	Undefined In
Standby Mode	H	H	X	H	X	X	High Z	High Z
Task File Write	H	L	$1-7$ h	H	H	L	Don't Care	Data In
Task File Read	H	L	$1-7$ h	H	L	H	High Z	Data In
PIO Data Register Write	H	L	0	H	H	L	Odd-Byte In	Even-Byte In
DMA Data Register Write	H	H	X	L	H	L	Odd-Byte In	Even-Byte In
Ultra DMA Data Register Write	H	H	X	L	See Note 1	Odd-Byte In	Even-Byte In	
PIO Data Register Read	H	L	0	H	L	H	Odd-Byte Out	Even-Byte Out
DMA Data Register Read	H	H	X	L	L	H	Odd-Byte Out	Even-Byte Out
Ultra DMA Data Register Read	H	H	X	L	See Note 2	Odd-Byte Out	Even-Byte Out	
Control Register Write	L	H	6h	H	H	L	Don't Care	Control In
Alt Status Read	L	H	6h	H	L	H	High Z	Status Out
Drive Address	L	H	7h	H	L	H	High Z	Data Out

Note1: In Ultra DMA Data Register Write mode the signals -IORD, -IOWR and IORDY are redefined and used as follows: -IORD as HSTROBE, -IOWR as STOP and IORDY as -DDMARDY. Data transfers with each edge of HSTROBE.
Note2: In Ultra DMA Data Register Read mode the signals -IORD, -IOWR and IORDY are redefined and used as follows: -IORD as -HDMARDY H, -IOWR as STOP and IORDY as DSTROBE. Data transfer with each edge of DSTROBE.

5.7 Configuration Register

5.7.1 Configuration Option Register (200h in Attribute Memory)

The Configuration Option Register is used to configure the cards interface, address decoding and interrupt and to issue a soft reset to the iCF9000.

Table 10: Configuration Option Register

Operation	D7	D6	D5	D4	D3	D2	D1	D0
RW	SRESET	LeveIREQ	Conf5	Conf4	Conf3	Conf2	Conf1	Conf0

Table 11: Information for Configuration Option Register

Name	Description
SRSET	Soft Reset: Setting this bit to one (1), waiting the minimum reset time and returning to zero(0) places the iCF9000 in the reset state. Setting this bit to one (1) is equivalent to assertion of the +RESET signal except that the SRESET bit is not cleared. Returning this bit to zero (0) leaves the iCF9000 in the same un-configured, Reset state as following power-up and hardware reset. Contrast with Soft Reset in the Device Control Register.
LeveIREQ	This bit is set to one (1) then Level Mode Interrupt is selected, and zero (0) then Pulse Mode is selected. Set to zero (0) by Reset.
Conf5-0	Configuration Index: Set to zero (0) by reset. It is used to select operation mode of the iCF9000 as shown below

Note: Conf5 and Conf4 are reserved for CompactFlash Storage cards and shall be written as zero(0).

5.7.2 Pin Replacement register (204h in Attribute Memory)

Table 12: Pin Replacement Register

Operation	D7	D6	D5	D4	D3	D2	D1	D0
Read	0	0	Cready	0	1	1	Rready	0
Write	0	0	Cready	0	0	0	Mready	0

Table 13: Information for Pin Replacement Register

Name	Description
Cready	This bit is set to one (1) when the bit Rready changes state. This bit can also be written by the host.
Rready	This bit is used to determine the internal state of the READY signal. This bit may be used to determine the state of the READY signal as this pin has been reallocated for use as Interrupt Request on an I/O card. When written, this bit acts as a mask (Mready) for writing the corresponding bit Cready.
Mready	This bit acts as a mask for writing corresponding bit Cready.

5.7.3 Socket and Copy Register (206h in Attribute Memory)

This register contains additional configuration information. This register is always written by the system before writing the card's Configuration Index Register. This register is used for identification of the card from the other card.

Table 14: Socket and Copy Register

Operation	D7	D6	D5	D4	D3	D2	D1	D0
Read	0	0	0	Obsolete (Drive \#)	0	0	0	0
Write	0	0	0	Obsolete (Drive \#)	X	X	X	X

Table 15: Information for Socket and Copy Register

Name	Description
Obsolete(Drive \#)	This bit is obsolete and should be written as 0.

5.8 Software Interface

5.8.1 True IDE Mode Addressing

When the iCF9000 is configured in the True IDE mode, the I/O decoding is as follows:
Table 16: True IDE Mode I/O Decoding

-CS1	-CS0	A2	A1	A0	-DMACK	-IORD $=0$	-IOWR=0	Note
1	0	0	0	0	1	PIO RD Data	PIO WR Data	8 or 16 bit
1	1	X	X	X	0	DMA RD Data	DMA WR Data	16 bit
1	0	0	0	1	1	Error Register	Features	8 bit
1	0	0	1	0	1	Sector Count	Sector Count	8 bit
1	0	0	1	1	1	Sector No.	Sector No.	8 bit
1	0	1	0	0	1	Cylinder Low	Cylinder Low	8 bit
1	0	1	0	1	1	Cylinder High	Cylinder High	8 bit
1	0	1	1	0	1	Select Card/Head	Select Card/Head	8 bit
1	1	1	1	1	1	Status	Command	8 bit
0	1	1	1	0	1	Alt Status	Device Control	8 bit

5.8.2 CF-ATA Register

The following section describes the hardware registers used by the host software to issue commands to the iCF9000.

Note:
In True IDE Mode of operation, the size of the transfer is based solely on the register being addressed. All registers are 8 bit only except for the Data Register, which is normally 16 bits, but can be
programmed to use 8 bit transfers for Non-DMA operations through the use of the Set Features command. The data register is also 8 bits during a portion of the Read Long and Write Long commands, which exist solely for historical reasons and should not be used.

5.8.2.1 Data Register

The Data Register is a 16 bit register, and it is used to transfer data blocks between the card and the host. This register overlaps the Error Register. This register can be accessed in word and byte mode.

Table 17: Data Register

Data Register															
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.2 Error Register

This register contains additional information about the source of an error when an error is indicated in bit 0 of the Status register. The bits are defined as follows.

Table 18: Error Register

BBK	UNC	0	IDNF	0	ABRT	0	AMNF
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.3 Feature Register

This register provides information regarding features of the card that the host can utilize. This register is also accessed in PC Card modes on data D15-D8 during a write operation to Offset 0 with -CE2 low and -CE1 high.

Table 19: Feature Register

Feature Register							
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.4 Sector Count Register

This registers the number of sectors of data requested to be transferred on a read or write operation between the host and the card. If the value in this register is zero, a count of 256 sectors is specified. If the command was successful, this register is zero at command completion. If not successfully completed, the register contains the number of sectors that need to be transferred in order to complete the request.

Table 20: Sector Count Register

Sector Count Register							
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.5 Sector Number Register

This register contains the starting sector number or bits 7-0 of the Logical Block Address (LBA) for iCF9000 data access for the subsequent command.

Table 21: Sector Number Register

Sector Number Register							
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.6 Cylinder Low Register

This Register contains the low order 8 bits of the starting cylinder address or bits 15-8 of the Logical Block Address.

Table 22: Cylinder Low Register

Cylinder Low Register							
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.7 Cylinder High Register

This Register contains the high order 8 bits of the starting cylinder address or bits 23-16 of the Logical Block Address.

Table 23: Cylinder High Register

Cylinder High Register							
D7	D6	D5	D4	D3	D2	D1	D0

5.8.2.8 Device/Head Register

The Drive/Head register is used to select the drive and head. It is also used to select LBA addressing instead of cylinder/head/sector addressing.

Table 24: Device/Head Register

1	LBA	1	DRV	HS3	HS2	HS1	HS0
D7	D6	D5	D4	D3	D2	D1	D0

Bit7: this bit is set 1.
Bit6: LBA is a flag to select either Cylinder/Head/Sector or Logical Block Address mode. When LBA=0, Cylinder/Head/Sector mode is selected. When LBA=1, Logical Block Address is selected.

Bit5: this bit is set 1.
Bit4: DRV is the drive number. When DRV=0, drive (card) 0 is selected. When DRV=1, drive (card) 1 is
selected.
Bit3: When operation in the Cylinder/Head/Sector mode, this is bit 3 of the head number. It is bit 27 in the Logical Block Address mode.
Bit2: When operation in the Cylinder/Head/Sector mode, this is bit 2 of the head number. It is bit 26 in the Logical Block Address mode.

Bit1: When operation in the Cylinder/Head/Sector mode, this is bit 1 of the head number. It is bit 25 in the Logical Block Address mode.
Bit0: When operation in the Cylinder/Head/Sector mode, this is bit 0 of the head number. It is bit 24 in the Logical Block Address mode.

5.8.2.9 Status Register

These registers return the iCF9000 status when read by the host. Reading the Status register does clear a pending interrupt while reading the Auxiliary Status register does not.

Table 25: Status Register

BUSY	RDY	DWF	DSC	DRQ	CORR	0	ERR
D7	D6	D5	D4	D3	D2	D1	D0

Bit7: the busy bit is set when the iCF9000 has access to the command buffer and registers and the host is locked out from accessing the command register and buffer. No other bits in this register are valid when this bit set to a 1.

Bit6: RDY indicates whether the device is capable of performing iCF9000 operations. This bit is cleared at power up and remains cleared until the card is ready to accept a command.
Bit5: This bit, if set, indicates a write fault has occurred.
Bit4: This bit is set when the iCF9000 is ready.
Bit3: The Data Request is set when the iCF9000 requires that information be transferred either to or from the host through the Data register.
During the data transfer of DMA commands, the card shall not asserted DMARD unless either the BUST bit, the DRQ, or both are set to one.
Bit2: This bit is set when a Correctable data error has been encountered and the data has been corrected. This condition does not terminate a multi-sector read operation.
Bit1: This bit is always to 0 .
Bit0: This bit is set when the previous command has ended in some type of error. The bits in the Error register contain additional information description the error.

5.8.2.10 Device Control Register

This register is used to control the iCF9000 interrupt request and to issue an ATA soft reset to the card. This register can be written even if the device is BUSY.

Table 26: Device Control Register

X	X	X	X	X	SW Rst	-len	0
D7	D6	D5	D4	D3	D2	D1	D0

Bit7-3: These bits are ignored.
Bit2: This bit is set to 1 in order to force the iCF9000 to perform a Soft Reset operation. The Card remains in Reset until this bit is reset to ' 0 '.

Bit1: the Interrupt Enable bit enables interrupts when the bit is 0 . When the bit is 1, interrupt from the iCF9000 are disabled. This bit also controls the Int bit in the Configuration and Status Register. This bit is set to 0 at power on and Reset.
Bit0: This bit is ignored.

5.8.2.11 Drive Address Register

This register is provide for compatibility with the AT disk drive interface.

Table 27: Drive Address Register

X	-WTG	- HS3	-HS2	-HS1	-HS0	-Nds1	-Nds0
D7	D6	D5	D4	D3	D2	D1	D0

Bit7: this bit is unknown.
Bit6: this bit is - when a write operation is in progress; otherwise, it is 1.
Bit5: this bit is the negation of bit 3 in the Drive/Head register.
Bit4: this bit is the negation of bit 2 in the Drive/Head register.
Bit3: this bit is the negation of bit 1 in the Drive/Head register.
Bit2: this bit is the negation of bit 0 in the Drive/Head register.
Bit1: this bit is 0 when drive 1 is active and selected.
Bit0: this bit is 0 when the drive 0 is active and selected.

5.9 Hardware Reset

Table 28: Timing Diagram, Hardware Reset

	Item	Min.	Max.	Normal	Unit
tsu(RESET)	Reset Setup Time	20	-	-	ms
$\mathrm{t}_{\text {REC }}(\mathrm{VCC})$	-CE Recover Time	1	-	-	us
$t_{\text {PR }}$	VCC rising up time	0.1	100	-	ms
$t_{\text {PF }}$	VCC falling down time	3	300	-	ms
t_{w} (RESET)	Reset pulse width	10	-	-	ms
$\mathrm{t}_{\mathrm{H}}(\mathrm{Hi}-\mathrm{ZRESET})$		0	-	-	
$\mathrm{t}_{\text {S }}$ (Hi-ZRESET)		0	-	-	

5.10 Power on Reset

When the VCC power reaches to 2.7 V , the disk drive will be reset.

Table 29: Timing Diagram, Power On Reset

	Item	Min.	Max.	Normal	Unit	Note
$t_{\text {SU }}($ RESET $)$	-CE Setup Time	20	-	-	ms	
t_{PR}	-VCC Rising Up Time	0.1	100	-	ms	

Power on Reset Timing

Figure 4: Timing Diagram, Power On Reset

5.11 Support IDE Commands

iCF9000 supports the commands listed in Table 29.
Table 30: IDE Commands

Command	Code	FR	SC	SN	CY	DH	LBA
Check Power Mode	E5H	-	-	-	-	D	-
Execute Device Diagnostic	$90 H$	-	-	-	-	D	-
Flush Cache	E7H	-	-	-	-	Y	-
Identify Device	ECH	-	-	-	-	D	-
Idle	E3H	-	Y	-	-	D	-
Idle immediate	E1H	-	-	-	-	D	-
Read Buffer	E4H	-	-	-	-	D	-
Read DMA	C8H	-	Y	Y	Y	Y	Y
Read Sector(s)	$20 H$	-	Y	Y	Y	Y	Y
Read Verify Sector(s)	$40 H$	-	Y	Y	Y	Y	Y
Set Features	EFH	Y	-	-	-	D	-
Set Multiple Mode	C6H	-	Y	-	-	D	-
Set Sleep Mode	E6H	-	-	-	-	D	-
SMART	B0h	Y	-	-	Y	Y	-
Standby	E2H	-	-	-	-	D	-
Standby Immediate	E0H	-	-	-	-	D	-
Write Buffer	E8H	-	-	-	-	D	-
Write DMA	CAH	-	Y	Y	Y	Y	Y
Write Multiple	C5h	-	Y	Y	Y	Y	Y
Write Sector(s)	$30 H ~$	-	Y	Y	Y	Y	Y

Defines:

FR: Feature Register
SC: Sector Count Register
SN: Sector Number Register
CY: Cylinder Registers
DH: Card/Device/Head Register
LBA: LBA Block Address Mode Supported
Y: The register contains a valid parameter for this command. For Card/Device/Head Register Y means both the CompactFlash Storage Card and head parameter are used; D - only the CompactFlash Storage Card parameter is valid and not the head parameter; C - The register contains command specific data (see command description for use).

5.11.1 Check power mode -E5h

Table 31: Check power mode information

Register	7	6	5	4	3	2	1	0
Command(7)	E5h							
C/D/H(6)	X			Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	x							
Sector Count(2)	X							
Feature(1)	X							

This command checks the power mode. If the CompactFlash Storage is in, going to, or recovering from the sleep mode, the CompactFlash Storage Card sets BSY, sets the Sector Count Register to 00h, clears BSY and generates an interrupt. If the ompactFlash Storage Card is in idle mode, the CompactFlash Storage Card sets BSY, sets the Sector Count Register to FFh, clears BSY and generates an interrupt.

5.11.2 Execute Device Diagnostic - 90h

Table 32: Execute device diagnostic information

Register	7	6	5	4	3	2	1	0
Command(7)	90h							
C/D/H(6)	X			Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	X							
Feature(1)	X							

This command performs the internal diagnostic tests implemented by the CompactFlash Storage Card. When the diagnostic command is issued in the True IDE Mode, the Drive bit is ignored and the diagnostic command is executed by both the Master and the Slave with the Master responding with status for both devices. The Diagnostic codes are shown in Table 34. Diagnostic Codes are returned in the Error Register at the end of the command.

Table 33: Diagnostic

Code	Error Type
01 h	No Error Detected
02 h	Formatter Device Error
03 h	Sector Buffer Error
04 h	ECC Circuitry Error

05 h	Controller Microprocessor Error
8 Xh	Slave Error in True IDE Mode

5.11.3 Flush Cache- E7h

5.11.18.1 Command Code

E7h

5.11.18.2 Protocol
 Non-data

5.11.18.3 Inputs

Table 34: Flush cache command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na	ll						
Sector Count	Na	Na						
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na			
Command	E 7 h							

Device register-

DEV shall specify the selected device.

5.11.18.4 Normal Output

Table 35: Flush cache command for normal output information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register-
DEV shall specify the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be cleared to zero.
DRQ will be cleared to zero

ERR will be cleared to zero.

5.11.18.5 Error Outputs

Table 36: Flush cache command for error output information

Register	7	6	5	4	3	2	1	0
Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na	Na						
LBA Low	LBA(7:0)	LBA(15:8)						
LBA Mid	LBA(23:16)							
LBA High	Obs	Na	obs	DEV	LBA(27:24)			
Device	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR
Status								

Error register-
ABRT may be set to one if the device is not able to complete the action requested by the command.

LBA Low, LBA Mid, and LBA High, Device
Shall be written with the address of first unrecoverable error.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be cleared to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.
5.11.18.6 Prerequisites

DRDY will be set to one.

5.11.18.7 Description

This command is used by the host to request the device to flush the write cache. If there is data in write cache, that data shall be written to the SSD. The BSY bit shall remain set to one until all data has been successfully written or an error occurs.

5.11.4 Identify Device- Ech

Table 37: Identify device information

Register	7	6	5	4	3	2	1	0
Command(7)	Ech							
C/D/H(6)	X	X	X	Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							

Sector Number(3)	X
Sector Count(2)	X
Feature(1)	X

The Identify Device command enables the host to receive parameter information from the CompactFlash Storage Card. This command has the same protocol as the Read Sector(s) command. The parameter words in the buffer have the arrangement and meanings defined in Table 35. All reserved bits or words are zero. Hosts should not depend in Obsolete words in Identify Device containing 0 . Table 35 specifies each filed in the data returned by the Identify Device Command. In Table 35, X indicates a numeric nibble vale specific to the card and aaaa indicates an ASCII string specific to the particular drive.

Table 38: IDENTIFY DEVICE information

Word	Description	Value
0	General configuration bit-significant information: $150=$ ATA device 14-8 Retired $7 \quad 1$ = removable media device 6 Obsolete 5-3 Retired 2 Response incomplete 1 Retired 0 Reserved	044Ah
1	Obsolete	XXXXh
2	Specific configuration	0000h
3	Obsolete	00XXh
4-5	Retired	XXXXh
6	Obsolete	XXXXh
7-8	Reserved for assignment by the CompactFlash ${ }^{\text {N/ }}$ Association	XXXXh
9	Retired	0000h
10-19	Serial number (20 ASCII characters)	20 ASCII characters
20-21	Retired	0002h
22	Obsolete	0004h
23-26	Firmware revision (8 ASCII characters)	8 ASCII characters
27-46	Model number (40 ASCII characters)	40 ASCII characters

47	15-8 80h 7-0 00h = Reserved 01 h -FFh $=$ Maximum number of sectors that shall be transferred per interrupt on READ/WRITE MULTIPLE commands	8001h
48	Reserved	0000h
49	Capabilities 15-14 Reserved for the IDENTIFY PACKET DEVICE command. 13 1 = Standby timer values as specified in this standard are supported $0=$ Standby timer values shall be managed by the device 12 Reserved for the IDENTIFY PACKET DEVICE command. 11 1 = IORDY supported $0=$ IORDY may be supported 10 1 = IORDY may be disabled $9 \quad 1=$ LBA supported $8 \quad 1=$ DMA supported. 7-0 Retired	OFOOh
50	Capabilities 15 Shell be cleared to zero 14: Shall be set to one 13-2 Reserved 1 Obsolete 0 Shall be set to one to indicate a device specific Standby timer value minimum.	0000h
51	Obsolete	0200h
52	Obsolete	0000h
53	15-3 Reserved $2 \quad 1=$ the fields reported in word 88 are valid Reserved $0=$ the fields reported in word 88 are not valid $1 \quad 1=$ the fields reported in words ($70: 64$) are valid $0=$ the fields reported in words (70:64) are not valid 0 Obsolete	0007h
54	Number of current logical cylinders	XXXXh
55	Number of current logical heads	XXXXh
56	Number of current logical sectors per logical track	XXXXh
57-58	Current capacity in sectors	XXXXh
59	15-9 Reserved 8 1 = Multiple sector setting is valid 7-0 $\quad \mathrm{xxh}=$ Current setting for number of sectors that shall be transferred per interrupt on	01XXh

	R/W Multiple command	
60-61	Total number of user addressable sectors	XXXXXXXXh
62	Obsolete	0000h
63	15-11 Reserved 10 $1=$ Multiword DMA mode 2 is selected 9 $0=$ Multiword DMA mode 2 is not selected 9 $1=$ Multiword DMA mode 1 is selected 0 $0=$ Multiword DMA mode 1 is not selected 8 $1=$ Multiword DMA mode 0 is selected $7-3$ $0=$ Multiword DMA mode 0 is not selected 2 $1=$ Multiword DMA mode 2 and below are supported 1 $1=$ Multiword DMA mode 1 and below are supported 0 $1=$ Multiword DMA mode 0 is supported	XX07h
64	15-8 Reserved 7-0 PIO modes supported	0003h
65	Minimum Multiword DMA transfer cycle time per word 15-0 Cycle time in nanoseconds	0078h
66	Manufacturer's recommended Multiword DMA transfer cycle time 15-0 Cycle time in nanoseconds	0078h
67	Minimum PIO transfer cycle time without flow control 15-0 Cycle time in nanoseconds	0078h
68	Minimum PIO transfer cycle time with IORDY flow control 15-0 Cycle time in nanoseconds	0078h
69-70	Reserved (for future command overlap and queuing)	0000h
71-74	Reserved for the IDENTIFY PACKET DEVICE command.	0000h
75	Queue depth 15-5 Reserved 4-0 Maximum queue depth - 1	0000h
76-79	Reserved for Serial ATA	$\begin{aligned} & 0000 \mathrm{~h} \\ & 0000 \mathrm{~h} \\ & 0000 \mathrm{~h} \\ & 0000 \mathrm{~h} \end{aligned}$
80	Major version number 0000 h or FFFFh $=$ device does not report version 15 Reserved 14 Reserved for ATA/ATAPI-14	0080h

	13	Reserved for ATA/ATAPI-13	
	12	Reserved for ATA/ATAPI-12	
	11	Reserved for ATA/ATAPI-11	
	10	Reserved for ATA/ATAPI-10	
	9	Reserved for ATA/ATAPI-9	
	8	Reserved for ATA/ATAPI-8	
	7	1 = supports ATA/ATAPI-7	
	6	1 = supports ATA/ATAPI-6	
	5	1 = supports ATA/ATAPI-5	
	4	1 = supports ATA/ATAPI-4	
	3	Obsolete	
	2	Obsolete	
	1	Obsolete	
	0	Reserved	
81	Minor 0000 h 0001 h	rsion number FFFFh = device does not report version FFEh = See 6.17.41	0000h
82	Command set supported.		742Bh
	15	Obsolete	
	14	1 = NOP command supported	
	13	1 = READ BUFFER command supported	
	12	1 = WRITE BUFFER command supported	
	11	Obsolete	
	10	1 = Host Protected Area feature set supported	
	9	1 = DEVICE RESET command supported	
	8	1 = SERVICE interrupt supported	
	7	1 = release interrupt supported	
	6	1 = look-ahead supported	
	5	1 = write cache supported	
		Shall be cleared to zero to indicate that the PA supported.	
	3	1 = mandatory Power Management feature set	
	2	1 = Removable Media feature set supported	
	1	1 = Security Mode feature set supported	
		1 = SMART feature set supported	
83	Command sets supported.		5100h
	15	Shall be cleared to zero	

	14 13 12	Shall be set to one 1 = FLUSH CACHE EXT command supported 1 = mandatory FLUSH CACHE command supported	
	11 10 9 8	1 = Device Configuration Overlay feature set supported $1=48$-bit Address feature set supported 1 = Automatic Acoustic Management feature set supported 1 = SET MAX security extension supported	
	$\begin{aligned} & 7 \\ & 6 \\ & 5 \end{aligned}$	See Address Offset Reserved Area Boot, INCITS TR27:2001 1 = SET FEATURES subcommand required to spinup after power-up 1 = Power-Up In Standby feature set supported	
	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \text { = Removable Media Status Notification feature set supported } \\ & 1 \text { = Advanced Power Management feature set supported } \end{aligned}$	
	2	$\begin{aligned} & 1=\text { CFA feature set supported } \\ & 1=\text { READ/WRITE DMA QUEUED supported } \\ & 1=\text { DOWNLOAD MICROCODE command supported } \end{aligned}$	
84	Com 15 14 13 12 12 11 10 9 8 7 7 6 5 4 3 2 1 0	nd set/feature supported extension Shall be cleared to zero Shall be set to one 1 = IDLE IMMEDIATE with UNLOAD FEATURE supported Reserved for technical report Reserved for technical report 1 = URG bit supported for WRITE STREAM DMA EXT and WRITE STREAM EXT 1 = URG bit supported for READ STREAM DMA EXT and READ STREAM EXT $1=64$-bit World wide name supported 1 = WRITE DMA QUEUED FUA EXT command supported 1 = WRITE DMA FUA EXT and WRITE MULTIPLE FUA EXT commands supported 1 = General Purpose Logging feature set supported $1=$ Streaming feature set supported 1 = Media Card Pass Through Command feature set supported 1 = Media serial number supported $1=$ SMART self-test supported 1 = SMART error logging supported	4003h
85	Command and feature sets supported or enabled		
	15 14	Obsolete 1 = NOP command enabled	0 0
	13	1 = READ BUFFER command enabled	0

	12	1 = WRITE BUFFER command enabled	0
	11	Obsolete	0
	10	1 = Host Protected Area feature set enabled	1
	9	1 = DEVICE RESET command enabled	0
	8	1 = SERVICE interrupt enabled	0
	7	1 = release interrupt enabled	0
	6	1 = look-ahead enabled	0
	5	1 = Write Cache enabled	1
	4	Shall be cleared to zero to indicate that the PACKET Command feature set is not supported.	0
	3	1 = Power Management feature set enabled	0
	2	1 = Removable Media feature set enabled	0
	1	1 = Security Mode feature set enabled	X
	0	1 = SMART feature set enabled	X
86	Command set/feature enabled		1000h
	15-14	$0=$ Reserved	
	13	1 = FLUSH CACHE EXT command supported	
	12	1 = FLUSH CACHE command supported	
	11	1 = Device Configuration Overlay supported	
	10	$1=48$-bit Address features set supported	
	9	1 = Automatic Acoustic Management feature set enabled	
		1 = SET MAX security extension enabled by SET MAX SET PASSWORD	
	7	See Address Offset Reserved Area Boot, INCITS TR27:2001	
	6	1 = SET FEATURES subcommand required to spin-up after power-up	
	5	1 = Power-Up In Standby feature set enabled	
	4	1 = Removable Media Status Notification feature set enabled	
	3	1 = Advanced Power Management feature set enabled	
	2	1 = CFA feature set enabled	
	1	1 = READ/WRITE DMA QUEUED command supported	
	0	1 = DOWNLOAD MICROCODE command supported	
87	Command and feature sets supported or enabled		0003h
	15	Shall be cleared to zero	
	14	Shall be set to one	
	13	1 = IDLE IMMEDIATE with UNLOAD FEATURE supported	
	12	Reserved for technical report-	
	11	Reserved for technical report-	
	10	1 = URG bit supported for WRITE STREAM DMA EXT and WRITE STREAM EXT	

	91 = URG bit supported for READ STREAM DMA EXT and READ STREAM EXT $8 \quad 1=64$ bit World wide name supported $7 \quad 1$ = WRITE DMA QUEUED FUA EXT command supported 61 = WRITE DMA FUA EXT and WRITE MULTIPLE FUA EXT commands supported $5 \quad 1=$ General Purpose Logging feature set supported 41 = Valid CONFIGURE STREAM command has been executed 31 = Media Card Pass Through Command feature set enabled 21 = Media serial number is valid $1 \quad 1=$ SMART self-test supported $0 \quad 1$ = SMART error logging supported	
88		XX7Fh
89	Time required for security erase unit completion	0001h
90	Time required for Enhanced security erase completion	0000h
91	Current advanced power management value	0000h
92	Master Password Revision Code	FFFEh

93	Hardware reset result. The contents of bits (12:0) of this word shall change only during the execution of a hardware reset. 15 Shall be cleared to zero. 14 Shall be set to one. 13 1 = device detected CBLID- above ViH $0=$ device detected CBLID- below ViL 12-8 Device 1 hardware reset result. Device 0 shall clear these bits to zero. Device 1 shall set these bits as follows: 12 Reserved. 110 = Device 1 did not assert PDIAG- 1 = Device 1 asserted PDIAG-. 10-9 These bits indicate how Device 1 determined the device number: $\begin{aligned} & 00=\text { Reserved. } \\ & 01 \text { = a jumper was used. } \\ & 10 \text { = the CSEL signal was used. } \end{aligned}$ 11 = some other method was used or the method is unknown. 8 Shall be set to one. 7-0 Device 0 hardware reset result. Device 1 shall clear these bits to zero. Device 0 shall set these bits as follows: 7 Reserved. $60=$ Device 0 does not respond when Device 1 is selected. 1 = Device 0 responds when Device 1 is selected. $50=$ Device 0 did not detect the assertion of DASP-. 1 = Device 0 detected the assertion of DASP- $40=$ Device 0 did not detect the assertion of PDIAG- 1 = Device 0 detected the assertion of PDIAG-. $30=$ Device 0 failed diagnostics. 1 = Device 0 passed diagnostics. 2-1 These bits indicate how Device 0 determined the device number: $00=$ Reserved. 01 = a jumper was used. $10=$ the CSEL signal was used. 11 = some other method was used or the method is unknown. 0 Shall be set to one.	XXXXh
94	15-8 Vendor's recommended acoustic management value. 7-0 Current automatic acoustic management value.	0000h
95	Stream Minimum Request Size	0000h
96	Streaming Transfer Time - DMA	0000h

97	Streaming Access Latency - DMA and PIO	0000h
98-99	Streaming Performance Granularity	0000h
100-103	Maximum user LBA for 48-bit Address feature set.	0000h
104	Streaming Transfer Time - PIO	0000h
105	Reserved	0000h
106	Physical sector size / Logical Sector Size 15 Shall be cleared to zero 14 Shall be set to one 131 = Device has multiple logical sectors per physical sector. 12 1= Device Logical Sector Longer than 256 Words 11-4 Reserved 3-0 $\quad 2^{\mathrm{x}}$ logical sectors per physical sector	0000h
107	Inter-seek delay for ISO-7779 acoustic testing in microseconds	0000h
108	$\begin{array}{ll} 15-12 & \text { NAA (3:0) } \\ 11-0 & \text { IEEE OUI (23:12) } \\ \hline \end{array}$	0000h
109	$\begin{array}{ll} 15-4 & \text { IEEE OUI }(11: 0) \\ 3-0 & \text { Unique ID }(35: 32) \end{array}$	0000h
110	15-0 Unique ID (31:16)	0000h
111	15-0 Unique ID (15:0)	0000h
112-115	Reserved for world wide name extension to 128 bits	0000h
116	Reserved for technical report-	0000h
117-118	Words per Logical Sector	0000h
119-120	Reserved	0000h
121-126	Reserved	0000h
127	Removable Media Status Notification feature set support 15-2 Reserved 1-0 $00=$ Removable Media Status Notification feature set not supported $01=$ Removable Media Status Notification feature supported $10=$ Reserved 11 = Reserved	0000h
128	Security Status	$\begin{aligned} & 0 \\ & x \\ & 0 \\ & 0 \\ & 0 \\ & x \end{aligned}$

5.11.5 Idle -97H or E3H

Table 39: Idle information

Register	7	6	5	4	3	2	1	0
Command(7)	97h or E3h							
C/D/H(6)	X	Drive	X					
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	Timer Count (5 msec increments)							
Feature(1)	X							

This command causes the CompactFlash Storage Card to set BSY, enter the IDLE mode, clear BSY and generate an interrupt. If the sector count is non-zero, it is interpreted as a timer count with each count being 5 milliseconds and the automatic power down mode is enabled. If the sector count is zero, the automatic power down mode is disabled. Note that this time base (5 msec) is different from the ATA specification.

5.11.6 Idle immediate - 95 H or E1H

Table 40: Idle immediate information

Register	7	6	5	4	3	2	1	0
Command (7)	95 h or E1h							
C/D/H(6)	X							
Cylinder $\operatorname{High}(5)$	X	Drive	X					

Cylinder Low(4)	X
Sector Number(3)	X
Sector Count(2)	X
Feature(1)	X

This command causes the CompactFlash Storage Card to set BSY, enter the IDLE mode, clear BSY and generate an interrupt.

5.11.7 Read Buffer - E4h

Table 41: Read buffer information

Register	7	6	5	4	3	2	1	0
Command(7)	E4h							
C/D/H(6)	X	Drive	X					
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	X							
Feature(1)	X							

The Read Buffer command enables the host to read the current contents of the CompactFlash Storage Card's sector buffer. This command has the same protocol as the Read Sector(s) command.

5.11.8 Read DMA - C8h

Table 42: Read DMA information

Register	7	6	5	4	3	2	1	0
Command(7)	C8h							
C/D/H(6)	1	LBA	1	Drive	Head (LBA 27-24)			
Cylinder High(5)	Cylinder High (LBA 23-16							
Cylinder Low(4)	Cylinder Low (LBA 15-8							
Sector Number(3)	Sector Numbe(LBA 7-0							
Sector Count(2)	Sector Count							
Feature(1)	X							

This command uses DMA mode to read from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 request 256 sectors. The transfer begins at he sector specified in the Sector Number Register. When this command is issued the CompactFlash Storage Card sets BSY, puts all or part of the sector of data in the buffer. The Card is then permitted, although not required, to set DRQ, cleat BSY. The Card asserts DMAREQ while data is available to be transferred. The Card asserts DMAREQ while data is available to be transferred. The host then reads the (512 \& sector -count) bytes of data from the Card using DMA. While DMAREQ is asserted by the Card, the Host asserts -DMACK
while it is ready to transfer data by DMA and asserts -IORD once for each 16 bit word to be transferred to the Host.

Interrupts are not generated on every sector, but upon completion of the transfer of the entire number of sectors to be transferred or upon the occurrence of an unrecoverable error. At command completion, the Command Block Registers contain the cylinder, head and sector number of the last sector read. If an error occurs, the read terminates at the sector where the error occurred. The command Block Registers contain the cylinder, head, and sector number of the sector where the occurred. The amount of data transferred is indeterminate. When a Read DMA command is received by the Card and 8 bit transfer mode has been enabled by the Set Features command, the Card shall return the Aborted error.

5.11.9 Read Sector(s) - 20h

Table 43: Read sector information

Register	7	6	5	4	3	2	1	0
Command(7)	20h							
C/D/H(6)	1	LBA	1	Drive				
Cylinder High(5)	Cylinder High (LBA 23-16)							
Cylinder Low(4)	Cylinder Low (LBA 15-8)							
Sector Number(3)	Sector Number (LBA 7-0)							
Sector Count(2)	Sector Count							
Feature(1)	X							

This command reads from 1 to 256 sectors as specified in the Sector Count Register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number Register. When this command is issued and after each sector of data (except the last one) has buffer, sets DRQ, cleats BSY, and generates an interrupt. The host then reads the 512 bytes of data from the buffer.

At command completion, the Command Block Registers contain the cylinder, head and sector number of the last sector read. If an error occurs, the read terminates at the sector where the error occurred. The command Block Registers contain the cylinder head, and sector number of the sector 2where the error occurred. The flawed data is pending in the sector buffer.

5.11.10 Read Verify Sector(s) - 40h

Table 44: Read verify sector information

Register	7	6	5	4	3	2	1	0
Command(7)	40 h							
C/D/H(6)	1	LBA	1	Drive	Head (LBA 27-24)			

Cylinder High(5)	Cylinder High (LBA 23-16)
Cylinder Low(4)	Cylinder Low (LBA 15-8)
Sector Number(3)	Sector Number (LBA 7-0)
Sector Count(2)	Sector Count
Feature(1)	X

This command is identical to the Read Sectors command, except that DRQ is never set and no data is transferred to the host. When the command is accepted, the CompactFlash Storage Card sets BSY. When the requested sectors have been verified, the CompactFlash Storage Card clears BSY and generates an interrupt. Upon command completion, the Command Block Registers contain the cylinder, head, and sector number of the last sector verified. If an error occurs, the Read Verify Command terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head and sector number of the sector where the error occurred. The Sector Count Register contains the number of sectors not yet verified.

5.11.11 Set Features - Efh

Table 45: Set feature information

Register	7	6	5	4	3	2	1	0
Command(7)	Efh	X	Drive	X				
C/D/H(6)	X							
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	Config							
Feature(1)	Feature							

This command is used by the host to establish or select certain features. If any subcommand input value is not supported or is invalid, the CompactFlash Storage Card shall return command aborted.

Table 46: Feature Supported

Command Name	Code	Sub Command
Set Transfer Mode	Efh	03 h
Disable Read Look-ahead feature	Efh	55 h
Enable write cache	Efh	02 h
Disable reverting to power-on defaults	Efh	66 h
Disable write cache	Efh	82 h
Enable reverting to power-on	Efh	CCh

```
defaults
```


5.11.12 Set Multiple Mode - C6h

Table 47: Set multiple mode information

Register	7	6	5	4	3	2	1	0
Command(7)	C6h	X						
C/D/H(6)	Xrive	X						
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	Sector Count							
Feature(1)	X							

This command enables the CompactFlash Storage Card to perform Read and Write Multiple operations and establishes the block count for these commands. The Sector Count Register is loaded with the number of sectors per block. Upon receipt of the command, the CompactFlash Storage Card sets BSY to 1 and checks the Sector Count Register. If the Sector Count Register contains a valid value and the block count is supported, the value is loaded and execution is enabled for all subsequent Read Multiple and Write Multiple commands. If the Sector Count Register contains 0 when the command is issued, Read and Write Multiple commands are disabled. At power on, or after a hardware or (unless disabled by a Set Feature command) software reset, the default mode is Read and Write multiple disabled.

5.11.13 Set Sleep Mode -E6h

Table 48: Set sleep mode information

Register	7	6	5	4	3	2	1	0
Command(7)	E6h							
C/D/H(6)	X			Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	X							
Feature(1)	X							

This command causes the CompactFlash Storage Card to set BSY, enter the Sleep mode, clear BSY and generate an interrupt. Recovery from sleep mode is accomplished by simply issuing another command (a reset is permitted but not required). Sleep mode is also entered when internal timers expire so the host does not need to issue this command except when it wishes to enter Sleep mode immediately. The default value for the timer is 5 milliseconds.

5.11.14 Standby -E2h

Table 49: Standby information

Register	7	6	5	4	3	2	1	0
Command(7)	E2h	X	Drive	X				
C/D/H(6)	X							
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	X							
Feature(1)	X							

This command causes the CompactFlash Storage Card to set BSY, enter the Sleep mode, cleat BSY and return interrupt immediately. Recovery from sleep mode is accomplished by simply issuing another command (a reset is not required).

5.11.15 Standby Immediate -EOh

Table 50: Standby immediate information

Register	7	6	5	4	3	2	1	0
Command(7)	E0h							
C/D/H(6)	X			Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	X							
Sector Count(2)	X							
Feature(1)	X							

This command causes the CompactFlash Storage Card to set BSY, enter the Sleep mode, clear BSY and return the interrupt immediately. Recovery from sleep mode is accomplished by simply issuing another command (a reset is not required).

5.11.16 Write Buffer - E8h

Table 51: Write buffer information

Register	7	6	5	4	3	2	1	0
Command(7)	E8h							
C/D/H(6)	X			Drive	X			
Cylinder High(5)	X							
Cylinder Low(4)	X							
Sector Number(3)	x							
Sector Count(2)	x							
Feature(1)	X							

The Write Buffer command enables the host to overwrite contents of the CompactFlash Storage Card's sector buffer with any data pattern desired. This command has the same protocol as the Write Sector(s) command and transfer 512 bytes.

5.11.17 Write DMA - Cah

Table 52: Write DMA information

Register	7	6	5	4	3	2	1	0
Command(7)	Cah							
C/D/H(6)	1	LBA	1	Drive	Head (LBA 27-24)			
Cylinder High(5)	Cylinder High (LBA 23-16)							
Cylinder Low(4)	Cylinder Low(LBA 15-8)							
Sector Number(3)	Sector Number (LBA 7-0)							
Sector Count(2)	Sector Count							
Feature(1)	X							

This command uses DMA mode to write from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer begins at the sector specified in the Sector Number Register. When this command is issued the CompactFlash Storage Card sets BSY, puts all or part of the sector of data in the buffer. The Card is then permitted, although not required, to set $D R Q$, clear BSY. The Card asserts DMAREQ while data is available to be transferred. The host then writes the (512^{*} sector count) bytes of data to the Card using DMA. While DMAREQ is asserted by the Card, the host asserts -DMACK while it is ready to transfer data by DMA and asserts -IOWR once for each 16 bit word to be transferred from the Host.

Interrupts are not generated on every sector, but upon completion of the transfer of the entire number of sectors to be transferred or upon the occurrence of an unrecovertable error. At command completion, the Command Block Registers contain the cylinder, head and sector number of the last sector read. If an error occurs, the read terminates at the sector where the error occurred. The Command Block Registers contain the cylinder, head and sector number of the sector where the error occurred. The amount of data transferred is indeterminate. When a write DMA command is received by the Card and 8 bit transfer mode has been enabled by the Set Features command, the Card shall return the Aborted error.

5.11.18 Write Multiple- C5h

5.11.18.1 Command Code
 C5h

5.11.18.2 Protocol
 PIO data-out

5.11.18.3 Inputs

The LBA mid, LBA High, Device, and LBA Low specify the starting sector address to be written. The Sector Count register specifies the number of sectors to be transferred.

Table 53: Write multiple command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Sector Count							
LBA Low	LBA(7:0)							
LBA Mid	LBA(15:8)							
LBA High	LBA(23:16)							
Device	obs	Na	obs	DEV	LBA(27:24)			
Command	C5h							

Sector Count-
Number of sectors to be transferred. A value of 00 h specifies that 256 sectors shall be transferred.
LBA Low-
Starting LBA bits (7:0)
LBA Mid-
Starting LBA bits (15:8)
LBA High-
Starting LBA bits (23:16)
Device -
The LBA bit shall be set to one to specify the address is an LBA.
DEV shall specify the selected device.
Bits(3:0) starting LBA bits (27:24)

5.11.18.4 Normal Output

Table 54: Write multiple command for normal output information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register-

DEV shall specify the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be cleared to zero.
DRQ will be cleared to zero
ERR will be cleared to zero.

5.11.18.5 Error Outputs

An unrecoverable error encountered during the execution of this command results in the termination of the command. The Command Block register contain the address of the sector where the first unrecoverable error occurred. The amount of data transferred is indeterminate.

Table 55: Write multiple command for normal output information

Register	7	6	5	4	3	2	1	0
Error	Na	WP	MC	IDNF	MCR	ABRT	NM	Na
Sector Count	Na							
LBA Low	LBA(7:0)							
LBA Mid	LBA(15:8)							
LBA High	LBA(23:16)							
Device	Obs	Na	obs	DEV	LBA(27:24)			
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Error register-
IDNF shall be set to one if a user-accessible address could not be found. IDNF shall be set to one if an address outside of the range user-accessible address is requested if command aborted is not returned.

ABRT shall be set to one if an error, include an ICRC error, has occurred during an Ultra DMA data transfer. ABRT shall be set to one if an address outside of the range of user-accessible address is requested if IDNF is not set to one.
LBA Low, LBA Mid, and LBA High, Device -
Shall be written with the address of first unrecoverable error.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.18.6 Prerequisites

DRDY set to one. If bit 8 of IDENTIFY DEVICE word 59 is cleared to zero, a successful SET MULTIPLE MODE command shall proceed a WRITE MULTIPLE command.

5.11.18.7 Description

This command writes the number of sectors specified in the Sector Count register.

The number of sectors per block is defined by the content of word 59 of the IDENTIFY DEVICE response.

When the WRITE MULTIPLE command is issued, the SECTOR Count register contains the number of sectors (not the number of blocks) requested. The device shall interrupt for each DRQ block transferred.

IF the number of requested sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. The partial block transfer is for n sectors, where:
$\mathrm{N}=$ Remainder (sector count / block count).

If the WRITE MULTIPLE command is received when WRITE MULTIPLE commands are disabled, the Write Multiple operation shall be rejected with command aborted.

Device errors encountered during WRITE MULTIPLE commands are posted after the attempted device write of the block or partial block transferred. The command ends with the sector in error, even if the error was in the middle of a block. Subsequent blocks are not transferred in the event of an error.

The contents of the Command Block Registers following the transfer of a data block that had a sector in error are undefined. The host should retry the transfer as individual requests to obtain valid error information. Interrupt pending is set when the DRQ bit is set to one at the beginning of each block or partial block.

5.11.19 Write Sector(s) - 30h

Table 56: Write sector information

Register	7	6	5	4	3	2	1	0
Command(7)	30 h							
C/D/H(6)	1	LBA	1	Drive	Head(LBA 27-24)			

Cylinder High(5)	Cylinder High (LBA 23-16)
Cylinder Low(4)	Cylinder Low (LBA 15-8)
Sector Number(3)	Sector Number (LBA 7-0)
Sector Count(2)	Sector Count
Feature(1)	X

This command writes from 1 to 256 sectors as specified in the Sector Count Register. A sector count of zero requests 256 sectors. The transfer begins at the sector specified in the Sector Number Register. When this command is accepted, the CompactFlash Storage Card sets BST, then sets DRQ and clears BSDY, then waits for the host to fill the sector buffer with the data to be written. No interrupt is generated to start the first host transfer operation. No data should be transferred by the host until BSY has been cleared by the host.

For multiple sectors, after the first sector of data is in the buffer, BSY shall be set and DRQ shall be cleared. After the next buffer is ready for data, BSY is cleared, DRQ is set and an interrupt is generated. When the final sector of data is transferred, BSY is set and DRQ is cleared. It shall remain in this state until the command is completed at which time BSY is cleared and an interrupt is generated. If an error occurs during a write of more than one sector, writing terminates at the sector where the error occurs. The Command Block Registers contain the cylinder, head and sector number of the sector where the error occurred. The host may then read the command block to determine what error has occurred, and on which sector.

5.11.20 Security Set Password- F1h

5.11.20.1 Command Code
 F1h

5.11.20.2 Feature Set
 Security Mode feature set

5.11.20.3 Protocol
 PIO data-out

5.11.20.4 Inputs

Table 57: Security set password command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na	ll						
Sector Count	Na	Na						
LBA Low	Na	Na						
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	Na	Na			

Command \quad F1h

Device -
DEV shall specify the selected device.
Normal Outputs

Table 58: Security set password command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na			
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register
DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be set to zero.
DRQ will be cleared to zero
ERR will be set to zero.

5.11.20.5 Error Outputs

Table 59: Security set password command for error outputs information

Register	7	6	5	4	3	2	1	0
Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na							
LBA Low	Na	Na						
LBA Mid	Na							
LBA High	Na							
Device	Obs	Na	obs	DEV	Na			
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Error Register

ABRT may be set to one if the device is not able to complete the action requested by the command

Device register
DEV shall indicate the selected device.

Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.20.6 Prerequisites
 DRDY set to one.

5.11.20.7 Description

This command transfer 512 byte of data from the host. Table 10 defines the content of this information. The data transferred controls the function of this command. Table 11 defines the interaction of the identifier and security level bits.

The revision code field shall be returned in the IDENTIFY DEVICE word 92. The valid revision codes are 0001h through FFFEh. A value of 0000h or FFFFh indicates that the Master Password Revision Code is not supported.

Table 60: Security set password command's data content

Word	Content
0	Control Word Bit 0 Identifier $0=$ set User password $1=$ set Master password Bits (7:1) Reserved Bit(8) Security level $0=$ High Bits(15:9) Reserved
1-16	Password(32 bytes)
17	Master Password Revision Code()
18-255	Reserved

Table 61: Security Set password command's identifier and security level bit interaction

Identifier	Level	Command result
User	High	The password supplied with the command shall be saved as the new User password. The Lock mode shall be enabled from the next power-on or hardware reset. The device shall than be unlocked by either the User password it the previously set Master password.
User	Maximum	The password supplied with the command shall be saved as the

		new User password. The lock mode shall be enabled from the next power-on or hardware reset. The device shall then be unlocked by only the User password. The Master password previously set is still stored in the device but shall not be unlock
Master	High or Maximum	This combination shall set a Master password but shall not enable or disable the Lock mode. The security level is not changed. Master password revision code set to the value in Master Password Revision Code field.

5.11.21 Security Unlock- F2h

5.11.21.1 Command Code
 F2h

5.11.21.2 Feature Set

Security Mode feature set
5.11.21.3 Protocol

PIO data-out
5.11.21.4 Inputs

Table 62: Security unlock command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	Na	Na			
Command	F2h							

Device register-
DEV shall specify the selected device.
Normal Outputs

Table 63: Security unlock command for inputs information

Register	7	6	5	4	3	2	1	0
Error	Na	Na						
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na	Na						
LBA High	Na							

Device	obs	Na	obs	DEV	Na						
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR			

Device register
DEV shall indicate the selected device.

Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be set to zero.
DRQ will be cleared to zero
ERR will be set to zero.

5.11.21.5 Error Outputs

The device shall return aborted if the device is in Frozen mode.

Table 64: Security unlock command for inputs information

Register	7	6	5	4	3	2	1	0		
Error	Na	Na	Na	Na	Na	ABRT	Na	Na		
Sector Count	Na	Na	Na							
LBA Low	Na	Na								
LBA Mid	Na									
LBA High	Na	Na	obs	DEV	Na					
Device	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR		
Status										

Error Register

ABRT may be set to one if the device is not able to complete the action requested by the command
Device register
DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.
5.11.21.6 Prerequisites

DRDY set to one.
5.11.21.7 Description

This command transfers 512 bytes of data from the host. Table 13 defines the content
of this information. If the Identifier bit is set to Master and the device is in high security level, then the password supplied shall be compared with the stored Master password. If the device is in maximum security level then the unlock shall be rejected.

If the Identifier bit is set to user then the device shall compare the supplied password with the stored User password. If the password compare fails then the device shall return command aborted to the host and decrements the unlock counter. This counter shall be initially set to five and shall decremented for each password mismatch when SECURITY UNLOCK and SECURITY ERASE UNIT commands shall be command aborted until a power-on reset or a hardware reset. SECURITY UNLOCK commands issued when the device is unlocked have no effect on the unlock counter.

5.11.22 Security Erase Prepare- F3h

5.11.22.1 Command Code
 F3h

5.11.22.2 Feature Set
 Security Mode feature set

5.11.22.3 Protocol

Non-data
5.11.22.4 Inputs

Table 65: Security erase prepare command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	Na	Na			
Command	F3h							

Device register-
DEV shall specify the selected device.
Normal Outputs

Table 66: Security erase prepare command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							

LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register
DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) will be set to zero.
DRQ will be cleared to zero
ERR will be set to zero.

5.11.22.5 Error Outputs

The device shall return aborted if the device is in Frozen mode.

Table 67: Security erase prepare command for error outputs information

Register	7	6	5	4	3	2	1	0
Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na	Na	Na					
LBA Low	Na	Na						
LBA Mid	Na							
LBA High	Nas	Na	obs	DEV	Na			
Device	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR
Status								

Error Register

ABRT shall be set to one if the device is in Frozen mode. ABRT may be set to one if the device is not able to complete the action requested by the command

Device register

DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.22.6 Prerequisites

DRDY set to one.
5.11.22.7 Description

The SECURITY ERASE PREPARE command shall be issued immediately before the SECURITY ERASE UNIT command to enable device erasing and unlocking. This command prevents accidental loss of data on the device.

5.11.23 Security Erase Unit- F4h

5.11.23.1 Command Code
 F4h

5.11.23.2 Feature Set
 Security Mode feature set

5.11.23.3 Protocol

PIO data-out.
5.11.23.4 Inputs

Table 68: Security erase unit command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	Na	Na	Na	Na	Na
Command	F4h							

Device register-
DEV shall specify the selected device.
Normal Outputs

Table 69: Security erase unit command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register

DEV shall indicate the selected device.

Status register
BSY shall be cleared to zero indicating command completion
DRDY shall be set to one.
DF (Device Fault) will be set to zero.
DRQ shall be cleared to zero
ERR shall be cleared to zero.

5.11.23.5 Error Outputs

The device shall return aborted if the device is in Frozen mode, not preceded by a SECURITY ERASE PREPARE command, if Enhance Erase is specified but not supported, or if the data area is not successfully overwritten.

Table 70: Security erase unit command for error outputs information

Register	7	6	5	4	3	2	1	0
Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na	Na						
LBA Low	Na	Na						
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na			
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Error Register

ABRT shall be set to one if the device is in Frozen mode, not preceded by a SECURITY ERASE PREPARE command, or if the data area is not successfully overwritten. ABRT may be set to one if the device is not able to complete the action requested by the command.
Device register
DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.23.6 Prerequisites

DRDY set to one. This command shall be immediately preceded by a SECURITY ERASE PREPARE command.
5.11.23.7 Description

This command transfer 512 bytes of data from the host. Table12 defines the content of
this information. If the password does not match the password previously saved by the device, the device shall reject the command with command aborted.

The SECURITY ERASE PREPARE command shall be completed immediately prior to the SECURITY ERASE UNIT command. If the device receives a SECURITY ERASE UNIT command without an immediately prior SECURITY ERASE PREPARE command, the device shall command abort the SECURITY ERASE UNIT command.

When Normal Erase mode is specified, the SECURITY ERASE UNIT command shall write binary zeroes to all user data areas. The Enhanced Erase mode is optional. When Enhanced Erase Mode is specified, the device shall write predetermined data patterns to all user areas. In Enhanced Erase mode, all previously written user data shall be overwritten, including sectors that are no longer in use due to reallocation.

This command shall disable the device Lock mode, however, the Master password shall still be stored internally within the device and may be reactivated later a new User password is set.

Table 71: Security erase unit password information

Word	Content	
0	Control Word Bit 0 Identifier Bit 1 Erase mode Bit(15:2) Reserved	0=Compare User password 1= Compare Master password 0=Normal Erase 1=Enhanced Erase
1-16	Password (32 Bytes)	
17-255	Reserved	

5.11.24 Security Freeze Lock- F5h

5.11.24.1 Command Code
 F5h

5.11.24.2 Feature Set
 Security Mode feature set

5.11.24.3 Protocol

Non-data.

5.11.24.4 Inputs

Table 72: Security freeze lock for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	Obs	Na	obs	Na	Na	Na	Na	Na
Command	F5h							

Device register-
DEV shall specify the selected device.

Normal Outputs

Table 73: Security freeze lock for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register

DEV shall indicate the selected device.

Status register

BSY shall be cleared to zero indicating command completion
DRDY shall be set to one.
DF (Device Fault) will be set to zero.
DRQ shall be cleared to zero
ERR shall be cleared to zero.

5.11.24.5 Error Outputs

The device shall return aborted if the device is in Frozen mode, not preceded by a SECURITY ERASE PREPARE command, if Enhance Erase is specified but not supported, or if the data area is not successfully overwritten.

Table 74: Security freeze lock for error outputs information

Register	7	6	5	4	3	2	1	0

Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na	Na						
LBA Low	Na	Na						
LBA Mid	Na	Na						
LBA High	Na							
Device	Obs	Na	obs	DEV	Na			
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Error Register

ABRT shall be set to one if the device is in locked mode. ABRT may be set to one if the device is not able to complete the action requested by the command.

Device register
DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.24.6 Prerequisites
 DRDY set to one.

5.11.24.7 Description

The SECURITY FREEZE LOCK command shall set the device to Frozen mode. After command completion any other commands that update the device Lock mode shall be command aborted. Frozen mode shall be disabled by power-off or hardware reset. If SECURITY FREEZE LOCK shall be issued when the device in Frozen mode, the command executes and the device shall remain in Frozen mode.
Command disabled by SECURITY FREEZE LOCK are:

- SECUIRTY SET PASSWORD
- SECURITY UNLOCK
- SECURITY DISABLE PASSWORD
- SECURITY ERASE PREPARE
- SECURITY ERASE UNIT

5.11.25 Security Disable Password- F6h

5.11.25.1 Command Code
 F6h

5.11.25.2 Feature Set

Security Mode feature set

5.11.25.3 Protocol

PIO data-out.
5.11.25.4 Inputs

Table 75: Security disable password command for inputs information

Register	7	6	5	4	3	2	1	0
Features	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	Na	Na	Na	Na	Na
Command	F6h							

Device register-
DEV shall specify the selected device.
Normal Outputs
Table 76: Security disable password command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device register
DEV shall indicate the selected device.
Status register
BSY shall be cleared to zero indicating command completion
DRDY shall be set to one.
DF (Device Fault) will be set to zero.
DRQ shall be cleared to zero
ERR shall be cleared to zero.

5.11.25.5 Error Outputs

The device shall return aborted if the device is in Locked mode, or device is in Frozen mode.

Table 77: Security disable password command for error outputs information

Register	7	6	5	4	3	2	1	0
Error	Na	Na	Na	Na	Na	ABRT	Na	Na
Sector Count	Na	Na						
LBA Low	Na	Na	Na					
LBA Mid	Na	Na						
LBA High	Obs	Na	obs	DEV	Na			
Device	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR
Status								

Error Register

ABRT may be set to one if the device is not able to complete the action requested by the command.

Device register

DEV shall indicate the selected device.
Status register
BSY will be cleared to zero indicating command completion
DRDY will be set to one.
DF (Device Fault) should be set to one if a device fault has occurred.
DRQ will be cleared to zero
ERR will be set to one if an Error register bit is set to one.

5.11.25.6 Prerequisites
 DRDY set to one. Device shall be in Unlocked mode.

5.11.25.7 Description

The SECURITY DISABLE PASSWORD command transfer 512 bytes of data from the host. Table 13 defines the content of this information. If the password selected by word 0 matches the password previously saved by the device, the device shall disable the Lock mode. This command shall not change the Master password. The Master password shall be reactivated when a User password if set.

Table 78: Security disable password command content

Word	Content
0	Control Word Bit 0_Identifier Bit(15:1) Reserved
$1=$ Compare User password Master password	

5.11.26 SMART

Individual SMART commands are identified by the value placed in the Feature register.

Table 79: SMART Feature register values

Value	Command
D0h	SMART Read Data
D8h	SMART ENABLE OPERATIONS
D9h	SMART DISABLE OPERATIONS

5.11.27 SMART Read Data

5.11.27.1 Command Code

BOh with a Feature register value of DOh
5.11.27.2 Feature Set

Smart Feature Set

- Operation when the SMART feature set is implemented.
5.11.27.3 Protocol

PIO data-in
5.11.27.4 Inputs

Table 80: SMART command for inputs information

Register	7	6	5	4	3	2	1	0
Features	DOh							
Sector Count	Na							
LBA Low	Na							
LBA Mid	4Fh							
LBA High	C2h							
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Command	B0h							

Device register-
DEV shall specify the selected device.

Normal Outputs

Table 81: SMART command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							

LBA Low	Na							
LBA Mid	Na							
LBA High	Na							
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device Register-

DEV shall indicate the selected device.
Status register-
BSY will be cleared to zero indicating command completion.
DRDY will be set to one.
DF (Device Fault) will be cleared to zero.
DRQ shall be cleared to zero.
ERR shall be cleared to zero.
5.11.27.5 Prerequisites

DRDY set to one. SMART enabled.
5.11.27.6 Description

This command returns the Device SMART data structure to the host.
Table 82: SMART data structure

BYTE	Description
$0-1$	Revision code
$2-361$	Vendor specific
362	Off-line data collection status
363	Self-test execution status byte
$364-365$	Total time in seconds to complete off-line data collection activity
366	Vendor specific
367	Off-line data collection capability
$368-369$	SMART capability 370
Error logging capability *7-1 Reserved *0	
371	Vendor Device error logging supporific
372	Short self-test routine recommended polling time (in minutes)
373	Extended self-test routine recommended polling time (in minutes)
374	Conveyance self-test routine recommended polling time (in minutes)
$375-385$	Reserved
$386-395$	Firmware Version/Date Code
$396-399$	Reserved
$400-406$	'SMI2236'
$407-511$	Reserved
511	Checksum

5.11.28 SMART ENABLE OPERATIONS

5.11.28.1 Command Code

B0h with a Feature register value of D8h
5.11.28.2 Feature Set

Smart Feature Set
5.11.28.3 Protocol

Non-data
5.11.28.4 Inputs

Table 83: SMART Enable command for inputs information

Register	7	6	5	4	3	2	1	0
Features	D8h							
Sector Count	Na							
LBA Low	Na							
LBA Mid	4Fh							
LBA High	C2h							
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Command	B0h							

Device register-
DEV shall specify the selected device.

5.11.28.5 Normal Outputs

Table 84: SMART command for normal outputs information

Register	7	6	5	4	3	2	1	0	
Error	Na								
Sector Count	Na								
LBA Low	Na								
LBA Mid	Na								
LBA High	Na								
Device	Obs	Na	obs	DEV	Na	Na	Na	Na	
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR	

Device Register-

DEV shall indicate the selected device.
Status register-
BSY will be cleared to zero indicating command completion.
DRDY will be set to one.
DF (Device Fault) will be cleared to zero.

DRQ shall be cleared to zero.
ERR shall be cleared to zero.
5.11.28.6 Prerequisites

DRDY set to one.
5.11.28.7 Description

This command enables access to all SMART capabilities within device.

5.11.29 SMART DISABLE OPERATIONS

5.11.29.1 Command Code

B0h with a Feature register value of D9h
5.11.29.2 Feature Set

Smart Feature Set
5.11.29.3 Protocol

Non-data
5.11.29.4 Inputs

Table 85: SMART DISABLE Command for inputs information

Register	7	6	5	4	3	2	1	0
Features	D9h							
Sector Count	Na							
LBA Low	Na							
LBA Mid	4Fh							
LBA High	C2h							
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Command	B0h							

Device register-
DEV shall specify the selected device.
5.11.29.5 Normal Outputs

Table 86: SMART command for normal outputs information

Register	7	6	5	4	3	2	1	0
Error	Na							
Sector Count	Na							
LBA Low	Na							
LBA Mid	Na							
LBA High								
Device	Obs	Na	obs	DEV	Na	Na	Na	Na
Status	BSY	DRDY	DF	Na	DRQ	Na	Na	ERR

Device Register-
DEV shall indicate the selected device.
Status register-
BSY will be cleared to zero indicating command completion.
DRDY will be set to one.
DF (Device Fault) will be cleared to zero.
DRQ shall be cleared to zero.
ERR shall be cleared to zero.
5.11.29.6 Prerequisites

DRDY set to one. SMART enabled.
5.11.29.7 Description

This command disables all SMART capabilities within device.

6. Device Parameters

iCF 9000 device parameters are listed in Table 86.
Table 87: Device parameter

Capacity	Cylinders	Heads	Sectors	LBA	Capacity(MB)
2GB	3,900	16	63	$3,931,200$	$1,919.53$
4GB	7,785	16	63	$7,847,280$	$3,831.68$
8GB	15,538	16	63	$15,662,304$	$7,647.61$
16GB	31,045	16	63	$31,293,360$	$15,279.96$
32GB	62,041	16	63	$62,537,328$	$30,535.80$
64GB	16,383	15	63	$125,059,072$	$61,064.00$

7. Part Number Rule

Issued Date: June 29, 2012

Report No. : 126319R-ITCEP07V04
This is to certify that the following designated product
Product : ICF9000
Product : ICF9000
Trade name I InnoDisk
Trade name I InnoDisk
Model Number : DC1M-XXXD71\#E*%%,DC1F-XOXXD71\#8*%%,
Model Number : DC1M-XXXD71\#E*%%,DC1F-XOXXD71\#8*%%,
DC15-XXXXD71\#8*% %
DC15-XXXXD71\#8*% %
Company Name : Innodisk Corporation.
Company Name : Innodisk Corporation.
This product, which has been issued the test report listed as above in QuieTek Laboratory, is based on a single evaluation of one sample and confirmed to comply with the requirements of the following EMC standard.

EN 55022:2010 Class B
EN 61000-3-2: 2006+A2: 2009
EN 61000-3-3: 2008

EN 55024: 2010
IEC 61000-4-2: 2008
IEC 61000-4-3: 2010
IEC 61000-4-4: 2011
IEC 61000-4-5: 2005
IEC 61000-4-6: 2008
IEC 61000-4-8: 2009
IEC 61000-4-11: 2004

TEST LABORATORY

Vincent Lin / Manager

QuieTeK Na 5-22, Puishukeng, Unkou Dist, Nem Taigei Cey 24451 , Taiwan, R.O.C.
TEL+866-2-8601-3789 FAXC+886-2-8601-3762 Email:service0quietsk,com http://www.quietek.com

[^0]
[^0]: QuieTek No.5-22, Rulshukeng, Unkou Dist., New Talpel Cty 24451, Talwan, RO.C
 TEL:+886-2-8601-3783 FAX:+886-2-8601-3789 Emailservice(0quietek.com http://www.quietek.com

