Instrument transformers –
Part 8:
Electronic current transformers

Transformateurs de mesure –
Partie 8:
Transformateurs de courant électroniques
CONTENTS

FOREWORD ... 6

1 Scope .. 7
 1.1 General ... 7
 1.2 General block diagram of electronic current transformers ... 8
 1.3 General block diagram of electronic transformers with a digital output 9

2 Normative references .. 9

3 Definitions ... 12
 3.1 General definitions .. 12
 3.2 Additional definitions for measuring electronic current transformers .. 19
 3.3 Additional definitions for protective electronic current transformers 19
 3.4 Additional definitions for digital output ... 22
 3.5 Additional definitions for analogue voltage output .. 23
 3.6 Index of main definitions and abbreviations ... 23

4 Normal and special service conditions ... 24
 4.1 General ... 24
 4.2 Normal service conditions ... 25
 4.3 Special service conditions .. 26
 4.4 System earthing ... 28

5 Ratings .. 28
 5.1 General ratings ... 28
 5.2 Standard values for rated phase offset ... 32
 5.3 Rating for digital output ... 32
 5.4 Rating for analogue voltage output .. 33

6 Design requirements ... 34
 6.1 General design requirements .. 34
 6.2 Design requirements for digital output ... 43
 6.3 Design requirements for analogue voltage output .. 60

7 Classification of tests .. 60
 7.1 General ... 60
 7.2 Type tests .. 60
 7.3 Routine tests .. 61
 7.4 Special tests ... 62

8 Type test .. 62
 8.1 Short-time current tests .. 62
 8.2 Temperature-rise test ... 63
 8.3 Impulse tests on primary terminals ... 63
 8.4 Wet test for outdoor type electronic current transformers ... 65
 8.5 RIV tests ... 65
 8.6 Transmitted overvoltage test ... 65
 8.7 Low-voltage components voltage withstand test ... 66
 8.8 EMC tests ... 67
 8.9 Accuracy test .. 70
 8.10 Additional accuracy tests for protective electronic current transformers 72
 8.11 Verification of the protection ... 72
 8.12 Tightness tests ... 73
 8.13 Vibration tests ... 73
 8.14 Additional type test for digital output ... 74
9 Routine tests

9.1 Verification of terminal markings
9.2 Power-frequency withstand tests on primary terminals and partial discharge measurement
9.3 Power-frequency voltage withstand test for low-voltage components
9.4 Accuracy tests
9.5 Tightness tests
9.6 Additional routine tests for digital output
9.7 Additional routine tests for analogue output

10 Special tests

10.1 Chopped lightning-impulse test on primary terminals
10.2 Measurement of capacitance and dielectric dissipation factor
10.3 Mechanical tests
10.4 Tests for accuracy versus harmonics
10.5 Tests in accordance with the technology applied

11 Marking

11.1 Terminal marking – General rules
11.2 Rating plate markings

12 Additional requirements for measuring electronic current transformers

12.1 Accuracy class designation
12.2 Limits of current error and phase error at rated frequency
12.3 Accuracy requirements on harmonics

13 Additional requirements for protective electronic current transformers

13.1 Accuracy classes
13.2 Accuracy requirements on harmonics

14 Information to be given with enquiries, tenders and orders

14.1 Designation
14.2 Dependability

15 Rules for transport, storage and installation

15.1 Conditions during transport, storage and installation
15.2 Installation
15.3 Unpacking and lifting
15.4 Assembly
15.5 Operation
15.6 Maintenance

16 Safety

16.1 Electrical aspects
16.2 Mechanical aspects
16.3 Thermal aspects

Annex A (informative) Transient performances of ECTs

Annex B (informative) Technical information for electronic current transformers with digital output

Annex C (informative) Technical information for electronic current transformers with analogue output

Annex D (normative) Frequency response and accuracy requirements on harmonics for electronic current and voltage transformer

Annex E (informative) Graph explaining the accuracy requirements
Bibliography124

Figure 1 – General block diagram of a single-phase electronic current transformer 8
Figure 2 – Example of digital interface block diagram... 9
Figure 3 – Altitude correction factor .. 27
Figure 4 – Manchester coding.. 43
Figure 5 – Characteristics of the optical pulse ... 45
Figure 6 – Test circuit for the optical pulse .. 45
Figure 7 – Copper wire interface ... 47
Figure 8 – Eye diagram .. 48
Figure 9 – Daisy-chain architecture ... 49
Figure 10 – Frame format according to FT3 ... 51
Figure 11 – Status word #1 ... 56
Figure 12 – Status word #2 ... 57
Figure 13 – Universal frame .. 58
Figure 14 – Pulse shape for clock input ... 59
Figure 15 – Example of subassembly subjected to EMC tests .. 68
Figure 16 – Temperature cycle accuracy test .. 71
Figure A.1 – Equivalent electrical circuit of the network .. 91
Figure A.2 – More complex equivalent electrical circuit during short circuit 92
Figure A.3 – Equivalent electrical circuit of magnetic current transformer during short circuit. .93
Figure A.4 – Magnetic reactance of the a CT without remanence 93
Figure A.5 – Magnetic reactance of the CT with remanence ... 94
Figure A.6 – Example of magnetic reactance of the a CT for a TPZ class 95
Figure A.7 – Example of the magnetic reactance of a CT for a TPY class 96
Figure B.1 – Combination of ECTs and EVTs to form the digital output 98
Figure B.2 – Synchronized samples of current from bay 1 and bay 2 calculated from non-synchronized samples from bay 1 and bay 2 respectively.............................. 101
Figure B.3 – Samples from current in bay 1 and 2 sampled synchronized by a common clock .. 101
Figure B.4 – Phase error definition for the digital interface .. 102
Figure B.5 – Test set-up .. 103
Figure B.6 – Comparison of errors in conventional metering systems and systems based on ECTs and EVTs with digital output ... 107
Figure C.1 – Test circuit for accuracy measurements in steady state 109
Figure C.2 – Iron-core-coil transformer .. 110
Figure C.3 – Equivalent circuit of the iron-core current transformer with voltage output 111
Figure C.4 – Stand-alone air-core coil .. 112
Figure C.5 – Equivalent circuit of stand-alone air-core current transformer with voltage output ... 113
Figure C.6 – Phasor diagram – Stand-alone air-core coil .. 114
Figure D.1 – Digital data acquisition system ... 118
Figure E.1 – Accuracy limits of a multi-purpose ECT .. 123
Table 1 – Temperature categories ...25
Table 2 – Limits of temperature rise of the transformer30
Table 3 – DC voltage ..31
Table 4 – AC voltage ...31
Table 5 – Rated values for digital output ...32
Table 6 – Low-voltage withstand capability ...34
Table 7 – Creepage distances for given pollution levels35
Table 8 – Immunity requirements and tests ...37
Table 9 – Static withstand test loads ...39
Table 10 – The compatible fibre optic transmission system44
Table 11 – The compatible copper-wire transmission system for simplex point-to-point link46
Table 12 – Data channel mapping for DataSetName = 01, general application 53
Table 13 – Connectors ...60
Table 14 – Modalities of application of test loads to be applied to the primary terminals77
Table 15 – Markings of terminals ...78
Table 16 – Rating plate marking ...80
Table 17 – Limits of error ...82
Table 18 – Limits of error for current transformers for special application........82
Table 19 – Limits of error ...83
Table 20 – Limits of error ...84
Table 21 – Designation of an electronic current transformer85
Table B.1 – Sample application specific assignment of the data channels with DataSetName = FE H. Application for line protection and synchronization of 1½-beaker arrangements with combined ECTs/EVTs on both sides of the breakers99
INTERNATIONAL ELECTROTECHNICAL COMMISSION

INSTRUMENT TRANSFORMERS –

Part 8: Electronic current transformers

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60044-8 has been prepared by IEC technical committee 38: Instrument transformers.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>38/280/FDIS</td>
<td>38/282/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

Annexes A, B, C and E are for information only.

Annex D forms an integral part of this standard.

The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
1 Scope

1.1 General

This part of IEC 60044 applies to newly manufactured electronic current transformers having an analogue voltage output or a digital output, for use with electrical measuring instruments and electrical protective devices at nominal frequencies from 15 Hz to 100 Hz.

NOTE Additional requirements due to the bandwidth are considered. The accuracy requirements on harmonics are given in annex D.

Clause 12 covers the accuracy requirements that are necessary for electronic current transformers for use with electrical measuring instruments.

Clause 13 covers the accuracy requirements that are necessary for electronic current transformers for use with electrical protective relays, and particularly for forms of protection in which the prime requirement is to maintain the accuracy up to several times the rated current. If required, the transient accuracy of an electronic current transformer during fault is also given in this clause.

Electronic current transformers intended for both measurement and protection should comply with all the clauses of this standard and are called multipurpose electronic current transformers.

The transformer technology can be based on optical arrangements equipped with electrical components, on air-core coils (with or without a built-in integrator), or on iron-core coils with integrated shunt used as a current-to-voltage converter, alone or equipped with electronic components.

For analogue output, the electronic current transformer may include the secondary signal cable. Examples of electronic current transformer technologies using air-core coils and iron-core coils with integrated shunt are given in annex C.

For digital output, this standard takes into account a point-to-point connection from the electronic transformer to electrical measuring instruments and electrical devices (see annex B).

Some information has been added in order to ensure the compatibility of this point-to-point link with the overall system of communication in the substation, thus allowing data exchange between all kinds of substation devices. This information builds what is called the mapping of the link layer of the point-to-point serial link. Processbus communication is under consideration.

This mapping allows interoperability between devices from different manufacturers.

This standard does not specify individual implementations or products, nor does it constrain the implementation of entities and interfaces within a computer system. This standard specifies the externally visible functionality of implementations together with conformance requirements for such functionalities.

NOTE 1 Translation of the analogue requirements on CT and VT into digital parameters, such as the number of bits and the sampling speed, has been carried out as far as was reasonable, since the requirements on the conventional CT and VT are expressed according to the actual technologies used and their shortcomings, rather than on needs from the equipment using the information on current and voltage.
NOTE 2 The approach chosen is to concentrate on what is needed by the secondary equipment and how the performance can be calibrated. The concept is compatible with a processbus.

1.2 General block diagram of electronic current transformers

The applied technology decides which parts are necessary for the realization of an electronic current transformer, i.e. it is not absolutely necessary that all the parts described in figures 1 and 2 be included in the transformer.

Key
IV Output invalid
EF Equipment failure
MR Maintenance request

Figure 1 – General block diagram of a single-phase electronic current transformer
1.3 General block diagram of electronic transformers with a digital output

![Diagram of a block diagram with various components and connections labeled as SC of ECTa (meas.), SC of ECTb (meas.), SC of ECTc (meas.), SC of EVTb (meas.), and others, connected to a merging unit with digital output.](image)

NOTE SC of EVTc is the secondary converter of the electronic voltage transformer of phase c (see IEC 60044-7). SC of ECTa is the secondary converter of the electronic current transformer of phase a. Other data channel mappings are possible (see 6.2.3).

Figure 2 – Example of digital interface block diagram

Up to 12 secondary converter data channels are grouped together (merged) using a merging unit (MU). A data channel carries a single stream of sampled measurement values from an electronic current transformer or an electronic voltage transformer (see figure 2). Several data channels may be transmitted via one physical interface from the secondary converter to the merging unit in case of multiphase or combined units. The merging unit supplies the secondary equipment with a time-coherent set of current and voltage samples. A secondary converter can be used also for the acquisition of signals coming from conventional voltage instrument transformers or current instrument transformers and may be integrated into the merging unit.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60028:1925, *International standard of resistance for copper*

IEC 60044-1, *Instrument transformers – Part 1: Current transformers*

IEC 60044-6, *Instrument transformers – Part 6: Requirements for protective current transformers for transient performance*

IEC 60044-7: *Instrument transformers – Part 7: Electronic voltage transformers*

IEC 60056, High voltage alternating current circuit-breakers

IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60068-2-17: Environmental testing – Part 2: Tests – Test Q: Sealing

IEC 60068-2-75: Environmental testing – Part 2: Tests – Test Eh: Hammer test

IEC 60085:1984, Thermal evaluation and classification of electrical insulation

IEC 60121, Recommendation for commercial annealed aluminium electrical conductor wire

IEC 60296:1982, Specification for unused mineral insulating oils for transformers and switchgear

IEC 60304:1982, Standard colours for insulation for low-frequency cables and wires

IEC 60376:1971, Specification and acceptance of new sulphur hexafluoride

IEC 60376B:1974, Specification and acceptance of new sulphur hexafluoride – Second supplement – Clause 26

IEC 60417 (all parts), Graphical symbols for use on equipment

IEC 60480:1974, Guide to the checking of sulphur hexafluoride (SF6) taken from electrical equipment

IEC 60529, Degrees of protection provided by enclosures (IP code)

IEC 60664-1:1992, Insulation co-ordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60694, Common specifications for high-voltage switchgear and controlgear standards

IEC 60707:1999, Flammability of solid non-metallic materials when exposed to flame sources – List of test methods

IEC 60721-3-3:1994, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 3: Stationary use at weather-protected locations

IEC 60721-3-4:1995, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 4: Stationary use at non-weather-protected locations
IEC 60794 (all parts), Optical fibre cables

IEC 60812:1985, Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA)

IEC 60815:1986, Guide for the selection of insulators in respect of polluted conditions

IEC 60870-5-1:1990, Telecontrol equipment and systems – Part 5: Transmission protocols – Section One: Transmission frame formats

IEC 61000-4-1:2000, Electromagnetic compatibility (EMC) – Part 4-1: Testing and measurement techniques – Overview of IEC 61000-4 series

IEC 61000-4-2: Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test

IEC 61000-4-3: Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio-frequency, electromagnetic field immunity test

IEC 61000-4-4:1995, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 4: Electrical fast transient/burst immunity test – Basic EMC publication

IEC 61000-4-5: Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61000-4-7:1991, Electromagnetic compatibility (EMC) – Part 4; Testing and measurement techniques – Section 7: General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

IEC 61000-4-8: Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test

IEC 61000-4-9: Electromagnetic compatibility (EMC) – Part 4-9: Testing and measurement techniques – Pulse magnetic field immunity test

IEC 61000-4-10: Electromagnetic compatibility (EMC) – Part 4-10: Testing and measurement techniques – Damped oscillatory magnetic field immunity test

IEC 61000-4-11: Electromagnetic compatibility (EMC) – Part 4-11: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations immunity tests

IEC 61000-4-12: Electromagnetic compatibility (EMC) – Part 4:12: Testing and measurement techniques – Oscillatory waves immunity test

IEC 61000-4-13: Electromagnetic compatibility (EMC) – Part 4-13: Testing and measurement techniques – Harmonics and interharmonics including mains signalling at a.c. power port, low frequency immunity tests

IEC 61000-4-29:2000, Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests

IEC 61025:1990, Fault tree analysis (FTA)

IEC 61166:1993, High-voltage alternating circuit-breakers – Guide for seismic qualification of high-voltage alternating current

IEC 61850-3: Communication networks and systems in substations – Part 3: General requirements

IEC 61850-9-1: Communication networks and systems in substations – Part 9-1: Specific communication system mappings (SCSM) – Serial unidirectional multidrop point-to-point link ¹

CISPR 11:1999, Industrial scientific and medical (ISM) radio-frequency equipment – Electromagnetic disturbance characteristics – Limits and methods of measurement

EIA RS-485: Standard for electrical characteristics of generators and receivers for use in balanced digital multipoint systems

EN 50160:2000, Voltage characteristics of electricity supplied by public distribution system

¹ To be published.