VARIMETER
 Level Sensing Relay

IL 9151, SL 9151, MK 9151N

Function Diagrams

seperate control of output relay

- According to IEC/EN 60 255-1
- 3 probe connections for 2-point and 1-point level control
- Also for use as moisture detector
- High interference resistance of the Measuring Circuit, which is isolated from the mains
- Max. wire length to the probes: 1500 m
- Large setting range: $2 \ldots 450 \mathrm{k} \Omega$
this permits differentiation between fluid and foam
- Separately adjustable response and release time delay $0.2 \ldots 20$ s for MIN- and MAX-level
- Programmable for:
- 2 separate controllable output relays for MIN and MAX level
- common controlled output relays for 2-point hysteresis level control
- open circuit operation
- closed circuit operation
- Measuring Circuit for probes works with internally generated AC voltage (approx. 30 Hz), electrolytic behaviour does not occur in the liquid
- For auxiliary voltages of 24 ... 415 V AC or 24 V DC
- LEDs for operation and state of contact
- 2 changeover relays with 1 changeover contact each
- IL 9151 and SL 9151 with safe separation according to IEC/EN 61 140, IEC/EN 60 947-1
- Devices available in 3 enclosure versions:

IL 9151: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9151,
MK 9151N: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct

- IL/SL 9151: 35 mm width

MK 9151N: 22.5 mm width
Approvals and Markings
\square (c)

A025518
${ }^{\text {1) }}$ only IL 9151, MK 9151N

Application

- Level monitoring and control for conductive liquids and powders, e.g. maximum and minimum filling levels, overfilling and protection against dry running
- Monitoring and control of the mixing ratio of conductive liquids
- General resistance monitoring tasks, e.g. limit temperature detection with PTC
- Contact protection relay with time delay

IL 9151.12, SL 9151.12

MK 9151N. 12

Connection Terminals
Terminal designation Signal description A1, A2 Auxiliary voltage AC oder DC MIN, MAX, COM Electrode connection X1 - COM Selection operating mode via bridge X2 - COM Selection de-energized or energized via bridge $11,12,14$ Contacts Rel. 1 $21,22,24$ Contacts Rel. 2

Indicators

IL/SL 9151

green LED:
yellow LED:
red LED:
on, when auxiliary supply connected
on, when relay MAX

MK 9151N
green LED: yellow LED "MIN":
red LED "MAX":
on, when auxiliary supply connected
on, when relay MIN active
on, when relay MAX active

Notes

All commercially available probes are suitable.
The reference probe for level measurement is generally located at the lowest point of the container and must always be connected to the "COM" terminal. The container itself can be used as a reference probe if it consists of conductive material.

On the level "MIN" and "MAX" the other probes are installed and connected to the corresponding inputs of IL 9151. It is also possible to connect only one probe.

2-point level control

The 2-point control is selected when a liquid should be kept between "MIN" and "MAX" level. 2 operation modes can be selected:
without bridge X 1 - COM: separate control of output relays for "MIN" and "MAX" level
with bridge $\mathrm{X} 1-\mathrm{COM}: \quad$ common control of both output relays
When the relays are separately controlled each output relay is operated by the corresponding probe circuit. For each level the time delay can be set separately (tv MIN and $\mathrm{tv}_{\text {MAX }}$).

When the relays are controlled together, these work like a relay with 2 changeover contacts as follows:

If the liquid rises above the "MAX" level the output relays switch over after the delay time of $\mathrm{tv}_{\text {mAX }}$ and start e.g. a pumpt to sink the liquid. If the level goes under the "MAX" level the output relays remain activated until the "MIN" level is reached. Now the output relays switch back after the time delay of $t v_{\text {MiN }}$ and stop the pump. The whole process starts again when the level reaches the "MAX" probe.

Notes

1-point level control

1-point level control (see Figure) is especially suitable for protection against overfilling and dry running on containers with a free inlet/outlet. In this configuration, all that is required besides the reference probe "COM" is the "MAX", which must be located at the desired limit level. The output relay switches over after the set delay time if the fluid level exceeds or falls below the limit level, which permits fluid to be pumped out or added.

Without bridge X1-COM only relay "MAX" (contacts 21-22-24) switch, with bridge X1 - COM both relays switch together. If for each output relay a separate time delay is necessary, the unit has to be set to separate control of the outputs and the "MIN" and "MAX" inputs are connected to the same probe. Please note that the resistance of the liquid is divided up on both input circuits. Therefore the response value must be setted to the double value.

If separate output control is selected with 1-point control for each output relay the time delay can be setted separately.

Because of the settable time delay of 0.2 to 20 sec for each probe circuit, it is possible to suppress early switching caused by waves on the liquid. Also time depending level control can be realised. The delay works integrating and is active when the liquid goes over as well as under the probe level.

The wide setting range allows easily an optimum setting so that the unit can differentiate between foam and liquid. The response value must be set to a value high enough, that the unit reacts when the liquid, but not when the foam reaches the probe (for setting procedure the time delay is set to min. value).

Technical Data	
Input	
Setting range of the	
Setting:	on logarithmically divided absolute scale
Switching point hysteresis:	approx. 4% (at $450 \mathrm{k} \Omega$) ... 15% (at $2 \mathrm{k} \Omega$) of the set value
Voltage and temperature influence: $<2 \%$ of the set value	
Max. cable length to the probes:	Set value Cable length (at $100 \mathrm{nF} / \mathrm{km})$
	$450 \mathrm{k} \Omega \quad 50 \mathrm{~m}$
	$100 \mathrm{k} \Omega \quad 200 \mathrm{~m}$
	$35 \mathrm{k} \Omega \quad 500 \mathrm{~m}$
	$10 \mathrm{k} \Omega \quad 1500 \mathrm{~m}$
	$5 \mathrm{k} \Omega \quad 3000 \mathrm{~m}$
Max. sensing voltage:	approx. AC 10 V (internally generated)
Max. sensing current:	approx. AC 1.5 mA (internally generated)
Response and release times	
$\mathrm{tv}_{\text {Min }}, \mathrm{tv}_{\text {MAX }}$:	$0.2 \ldots 20 \mathrm{~s}$ for both output relays separate settable
	Setting on logarithmically-divided absolute scale
Auxiliary Circuit	
Auxiliary voltage $\mathrm{U}_{\mathbf{H}}$:	AC 24, 42, 110, 230 V DC 24 V
Voltage range of $\mathbf{U}_{\mathbf{H}}$	
	$0.8 \ldots 1.1 U_{\text {N }}$
DC:	$0.85 \ldots 1.25 \mathrm{U}_{\mathrm{N}}$
Nominal power consumption	
AC:	approx. 2 VA
DC:	approx. 1 W
Frequency range:	$45 . .400 \mathrm{~Hz}$
Output	
Contacts	
IL/SL 9151.12, MK 9151N.12:	2×1 changeover contact
Thermal current $\mathrm{I}_{\text {th }}$:	4 A
Switching capacity	
IL/SL 9151:	
to AC 15	
NO contact:	$5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
NC contact:	2 A / AC 230 V IEC/EN 60 947-5-1
to DC 13:	$2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1
MK 9151N:	
NO contact:	$3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
NC contact:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1
Electrical life	
IL/SL 9151:to AC 15at 1 A, AC 230 V :	IEC/EN 60 947-5-1
	2×10^{5} switching cycles
MK 9151N: to $A C 15$ at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
	1.5×10^{5} switching cycles
Short circuit strength	
Mechanical life:	$\geq 30 \times 10^{6}$ switching cycles

Technical Data

General Data

Operating mode:
Temperature range:
Operation: $-20 \ldots+60^{\circ} \mathrm{C}$
Storage: $\quad-25 \ldots+70^{\circ} \mathrm{C}$
Altitude: $<2.000 \mathrm{~m}$
Clearance and creepage
distances
rated rated impulse voltage voltage /
pollution degree
IEC 60 664-1
IL/SL 9151:
input / Auxiliary Circuit: $\quad 6 \mathrm{kV} / 2$ (at $\mathrm{U}_{\mathrm{H}}=\mathrm{DC} 24 \mathrm{~V}: 1 \mathrm{kV}$)
input / output circuit:
MK 9151N:
input / Auxiliary Circuit: $\quad 4 \mathrm{kV} / 2$ (at $\mathrm{U}_{\mathrm{H}}=\mathrm{DC} 24 \mathrm{~V}: 1 \mathrm{kV}$)
input / output circuit:
auxiliary / output circuit
A1-A2 (AC):
EMC
Electrostatic discharge:
HF irradiation
$80 \mathrm{MHz} . . .1 \mathrm{GHz}:$
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between

wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
HF wire guided:	10 V	IEC/EN 61 000-4-6
Interference suppression:	Limit value class B	EN 55 011
Degree of protection Housing: IP 40		
Terminals: IP 20	IEC/EN 60 529	
IEC/EN 60 529		

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
IL/SL 9151:

Min. cross section:
Insulation of wires
or sleeve length:
MK 9151N:

Min. cross section:
Abisolierlänge der Leiter:
Wire fixing:
IL/SL 9151:
MK 9151:
Fixing torque:
Mounting:
Weight
IL 9151:
SL 9151:
MK 9151N:
Dimensions
Width x height x depth
IL 9151:
SL 9151:
MK 9151N:
$35 \times 90 \times 59 \mathrm{~mm}$
$35 \times 90 \times 98 \mathrm{~mm}$
$22.5 \times 90 \times 98 \mathrm{~mm}$

CCC-Data

Nominal voltage U_{N} :
MK 9151N:
AC 24, 42, 110, 230 V
DC 24 V
Switching capacity
to AC 15
NO contact:

Standard Type

IL $9151.122 \ldots 450 \mathrm{k} \Omega$ AC $230 \mathrm{~V} 0.2 \ldots 20 \mathrm{~s}$

Article number:
0049135

- Settable response value: 2 ... $450 \mathrm{k} \Omega$
- Auxiliary voltage U_{H} :

AC 230 V

- Response and release delay: $0.2 \ldots 20 \mathrm{~s}$
- 2 output relays with 1 changeover contact each
- With safe separation
- Width: 35 mm

SL $9151.122 \ldots 450 \mathrm{k} \Omega$ AC $230 \mathrm{~V} 0.2 \ldots 20 \mathrm{~s}$

Article number:
0051552

- Settable response value: 2 ... $450 \mathrm{k} \Omega$
- Auxiliary voltage U_{H} :

AC 230 V

- Response and release delay: 0.2 ... 20 s
- 2 output relays with 1 changeover contact each
- With safe separation
- Width:

35 mm

MK 9151N. 12 2 ... $450 \mathrm{k} \Omega$ AC $230 \mathrm{~V} \quad 0.2 \ldots 20 \mathrm{~s}$
Article number:

- Settable response value: $2 \ldots 450 \mathrm{k} \Omega$
- Auxiliary voltage U_{H} : AC 230 V
- Response and release delay: 0.2 ... 20 s
- 2 output relays with 1 changeover contact each
- Width: 22.5 mm

Variants

MK 9151N.12/001:

MK 9151N.12/002:
time delay, when level drops under setting value time delay, when level rises over setting value

Ordering example for variants

Accessories

OA 5640:
Standard probe
Article number: 0016045

Probe made of stainless steel,
Cable entry PG 9,
Temperature range $0 \ldots+60^{\circ} \mathrm{C}$,
Weight approx. 0.1 kg
Wire connection $2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve

Application Example

IL 9151, SL 9151 with safe separation according to IEC/EN 61 140, IEC/EN 60 947-1

Application as contact protection relay, e.g. for two reed contact switches (K1, K2).

