TE Connectivity. The Leader in Crimp Quality.

Anyone can make a tool to crimp terminals onto a wire. But not everyone can manufacture a tool to crimp the terminals properly. Crimp termination of wires isn’t easy. At least, doing it right isn’t easy. We know. We started it. TE Connectivity developed the technology of hand crimping over 70 years ago.

Why is this experience important to you? As the pioneer in crimping technology our highly trained engineers have studied how the forces of crimping can affect how a tool works, whether it meets specifications, and even whether it reaches its expected service life. As a result we have led the way, with tool frames and die sets that maintain their geometry and produce consistent crimps time after time after time. There are differences that aren’t readily apparent: the materials, the manufacturing processes, the designs to diverse requirements for different applications.

These are all part of what we’ve known and practiced for years.

The Secret to a Successful Crimp

Matching the Terminal to the Tooling - Among the many factors that are critical in producing a quality crimp, matching the terminal to the tooling is crucial. Unlike inferior tooling options, TE offers engineered solutions that are designed to match the exact crimp geometry of the terminal to be applied on the wire. To ensure a proper crimp you need to follow these important steps:

1. Wire Selection - AWG and wire insulation thickness varies from wire to wire. Just because two wires are listed at the same AWG, it doesn’t mean their insulation thickness is the same. If you don’t take into account both factors the copper or aluminum strands may not fit in the wire barrel correctly, or the terminal’s insulation support may be too large or small for the wire strand.
The Secret to a Successful Crimp

2. Wire Prep – In order to properly place a wire in a terminal, the wire insulation must first be stripped to the proper length based on the terminal specifications. If the insulation is cut too short or too long, the wire will not be seated properly into the wire barrel, causing terminal separations or shorting.

3. Crimp Specifications – To ensure a proper crimp for a TE connector or terminal you should be using a TE Connectivity tooling solution that is specifically engineered to the proper Crimp Height, Width and Crimp Geometry of the selected terminal or contact.

4. Selecting the Right Tool Based on Production Level – Are you in the prototype phase of your project? Will you soon be ramping up production? Do your tools need to be mobile, or is a bench top unit more applicable? Are you producing 100’s – 1,000’s of crimps per day?

Once you know the answers to these questions, selecting the right TE Connectivity tool to meet your needs is simple. (Please refer to page 7 for tooling options.)
Choices at Any Production Level

We can offer performance continuity in tools, so customers have the same crimp functionality and quality whether they are developing, building, or servicing a product. In many cases they can use the same die set in tooling that spans the range from hand operation through battery, pneumatic, and even electrically powered tools.

<table>
<thead>
<tr>
<th>LOW VOLUME: Prototype, Repair</th>
<th>LOW VOLUME: Small Production Quantities</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INTERMEDIATE: Small to Mid-Level Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Hand Tools and Benchtop Tooling — Battery, Hydraulic, Pneumatic Electric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERMEDIATE: Semi-Automatic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicators & Spare Tooling</td>
</tr>
<tr>
<td>Bench Terminators</td>
</tr>
<tr>
<td>AMPLIVAR Product Termination — Magnet Wire</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERMEDIATE: Semi-Automatic Volumes</th>
<th>INTERMEDIATE: Fully-Automatic Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Shrink Tubing Equipment</td>
<td>Single Crimp Wire Processor</td>
</tr>
</tbody>
</table>
Dangers of Improperly Crimped Terminals

From wasted time & scrap all the way up to product recalls and possible litigation, the cost of poor crimp quality can be expensive. If customers are not using the proper crimp tooling, i.e. incorrectly matching the terminal to the crimp tooling, the end results can be dramatic.
What You Need to Know About TE Hand Tools

Tool Grade

A prime consideration when choosing the appropriate tool for an application. Our hand tools are categorized into three levels; Service, Commercial and Premium. The higher the grade of the tool, less operator skill is needed in order to repeatedly meet the specified parameters of the crimp.

Premium (CERTI-CRIMP Tool)

Premium tools include the appropriate crimp die configuration, integral locating, and integral straightening features that permit terminals or contacts crimped in these tools, to meet all feature requirements in applicable TEC application (114-) specifications. Most premium tools include an adjustable insulation crimp height feature and the CERTI-CRIMP ratcheting feature, set at the factory, which ensures the ratchet will not release until the wire crimp jaws bottom within .001. This guarantees consistent repeatability of the crimp. Premium hand tools require the least amount of user dexterity.

Commercial (PRO-CRIMPER III Tool)

Commercial die assemblies are designed to meet the wire crimp height requirements per the applicable TEC application (114-) specifications. Other feature requirements may or may not be met. Commercial handle assemblies permit the interchange of die assemblies and an adjustable ratcheting feature. Users are responsible for adjusting the ratchet to obtain the correct crimp height. Commercial tools require a greater amount of user dexterity than Premium crimp tools.

Service

Service tools are generally single thickness, stamped tools. They are not intended to meet any specifications and require exceptional user dexterity to obtain acceptable results.

Tool Type

Choosing a tool type may be driven by several factors; simply by type preference, or by the application needs itself, ie. heavy duty crimp, industry specification requirements, etc. The overall wire range is also a prime consideration when choosing the appropriate tool for an application. Often there will be several tools referenced to the same product but having different wire ranges.

www.tooling.te.com
Fast Facts

- Designed to exacting specifications
- Ratchet control provides complete crimping cycle
- For most military, UL and CSA applications
- Manufactured using the highest quality materials
- Requires minimum skill
- Repairable
- Calibrated; recalibration recommended every 6 months or 5,000 cycles
- Many SAHT and DAHT crimping heads, and many die sets, can be adapted for use with the 626 pneumatic tool system (Request catalog 124208)
- Produced under a quality management system certified to ISO 9001. (A copy of the certificate is available upon request.)

Consistent High Quality Terminations

CERTI-CRIMP hand tools are top-of-the-line, premium, hand-operated tools for crimping a broad array of terminals, contacts and special wiring devices. They are designed to exacting specifications to produce consistent, high-quality terminations. A potential service life of over 50,000 cycles is possible, depending on operator care.

CERTI-CRIMP Tooling Options

There are currently seven basic styles of CERTI-CRIMP hand tools. The choice depends on the product being applied and/or your preferred method of application. For example, open barrel contacts typically require straight-action die movement to minimize possible rotation during crimping. Or, if your application requires crimping different sizes of terminals, you may prefer using a single tool with a combination of crimping nests, rather than two or three separate tools.

Other options include insulation crimp adjustment for different insulation thicknesses, a locator for properly positioning and supporting the terminal or contact in the tool, a wire stop, and color-coding and/or wire size information on the head of the tool or on the handles.

Ratchet Control

All CERTI-CRIMP hand tools feature our reliable ratchet control system. The ratchet will not release until the handles are fully closed and the dies bottomed. This helps eliminate partial crimps.

CERTI-CRIMP hand tools are well suited for low production runs, prototype work, and repairs—almost any application requiring consistent, highly-reliable terminations.
Characteristics of a Premium Crimping Tool

Every CERTI-CRIMP II hand tool incorporates features for optimum performance. They include locating, straightening, and insulation crimp adjustment features—quality options that set us apart from our competitors.

Crimp Designs—Optimum Performance
It’s more than squeezing a terminal over a wire. Our crimp designs incorporate percent of compression that optimizes electrical and mechanical performance.

Bottoming Dies—An Assurance of Repeatability
Repeatability in consistently reducing Circular Mil Area is the real measure of a crimp tool. The entire design of the tool—crimp form, force application, materials, and manufacturing tolerances—ensures that dies fully bottom, independent of operator technique or fatigue, or tool wear.

Applying the Crimp Force
Handle force is a key factor for any combination of hand tool, crimp die, terminal, and wire to crimp successfully. The design of the tool must take into account the crimp force requirement, as well as friction in the linkage and the need to bottom the dies. CERTI-CRIMP II tools are set to specific handle pressures at our factory; a Certificate of Calibration allows tracking and performance verification.

Ratchet System to Improve Repeatability
The reliable ratchet system in all the CERTI-CRIMP II tools is an aid to the operator, making sure the die bottoms before the tool opens. It complements the actual tool and die design in ensuring crimp repeatability.
CERTI-CRIMP Tooling Options

Straight Action Hand Tool (SAHT)
- Dies close in a straight line
- Contact locator and support
- Wire stop
- Insulation crimp adjustment (4 positions)
- Ejects crimped contact
- Approx. weight 1.3 lb [0.59 kg]

Double Action Hand Tool (DAHT)
- Dies travel in arc-like path
- Locator on tools for FASTON, MATE-N-LOK, PIDG and PLASTI-GRIP terminals
- Insulation adjustment on tools for FASTON, MATE-N-LOK, PIDG and PLASTI-GRIP terminals
- Approx. weight 1.2 lb [0.54 kg]

T-HEAD Hand Tool (T-HEAD)
- Dies close in a straight line
- Locator
- Quick take-up on handle for holding terminal or splice in place
- Adjust insulation crimp with a 4-position screw
- Color-coded
- Approx. weight 1.3 lb [0.59 kg]

TETRA-CRIMP Hand Tool (TETRA) Part No. 59824-1
- Dies travel in arc-like path
- Multiple color-coded crimping cavities
- Terminal locator and wire stop
- Ratchet control release
- Approx. weight 1.4 lb [0.64 kg]

Platform Die Hand Tool (UFHT) Part No. 58078-3
- Same frame configuration as TETRA-CRIMP hand tool
- Dies are interchangeable
- Adjustable terminal locator
- Approx. weight 1.4 lb [0.64 kg]

Heavy Head Hand Tool (HHHT)
- Terminates most large coaxial cable and heavy-gage wire
- Dies close in a straight line
- Locator and wire stop when applicable
- Insulation adjustment on tools for AMPLI-BOND, PIDG and PLASTI-GRIP terminals
- Approx. weight 2.1 lb [0.95 kg]

C Head Straight Action Hand Tool Part No. 69710-1
- Dies close in a straight line
- Dies are interchangeable
- Locators and other applicable features included with dies
- Approx. weight 1.9 lb [0.86 kg]
Flip Locator for Premium CERTI-CRIMP II Hand Tools

FAST FACTS
- Configured for CERTI-CRIMP II heads
- Accurately locates the terminal for a more consistent crimp termination
- Highly visible, easy to load terminal into locator
- Spring loaded retention feature
- Available with short and long handle tools

The flip locator on our CERTI-CRIMP II hand tool is designed to provide the ultimate in terminal placement accuracy, increased efficiency and ease of use.

Function
The new wire size trends have translated into new operator, tooling, and application challenges. Small terminal handling is a particular challenge as terminals continue to miniaturize. To help with the problem, the TE flip locator system allows the operator to flip the locator approx. 150 degrees, which provides exact placement of small terminals. After loading, the locator is flipped back into position and the terminal is properly located automatically. Now, with the terminal held in place, the operator can concentrate on proper wire placement and complete the termination process.

Step-by-Step

LightKnack Accessory for CERTI-CRIMP II Hand Tools

FAST FACTS
- High-intensity, long-life LED bulb
- Eases the termination process
- Magnetic for a secure placement while maintaining flexibility
- Applicable for any metallic tool surface
- Available separately in packs of 3
- Up to 8 hours of battery life
- Replaceable CR12166 batteries

This portable, magnetic accessory is designed to provide light anywhere you need it.

How it works
Simply place the light on any magnetic surface, point the light to where light is needed and turn on the switch. The high-intensity LED provides hours of bright light onto the work surface. The magnets provide hands-free use.
Tooling-to-Terminal Cross Reference

UNINSULATED TERMINALS

<table>
<thead>
<tr>
<th>Wire Range</th>
<th>Max Insul. Dia.</th>
<th>Premium</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-16</td>
<td>0.3-1.25</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>12-10</td>
<td>3-5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

INSULATED TERMINALS

<table>
<thead>
<tr>
<th>Wire Range</th>
<th>Max Insul. Dia.</th>
<th>Premium</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-16</td>
<td>0.3-0.8</td>
<td>300</td>
<td>2.54</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>370</td>
<td>4.32</td>
</tr>
<tr>
<td>12-10</td>
<td>3-5</td>
<td>250</td>
<td>6.35</td>
</tr>
<tr>
<td>26-22</td>
<td>0.12-0.3</td>
<td>882</td>
<td>2.08</td>
</tr>
<tr>
<td>22-16</td>
<td>0.3-1.25</td>
<td>325</td>
<td>3.81</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>350</td>
<td>5.64</td>
</tr>
<tr>
<td>12-10</td>
<td>3-5</td>
<td>230</td>
<td>8.94</td>
</tr>
<tr>
<td>26-22</td>
<td>0.12-0.3</td>
<td>880</td>
<td>2.03</td>
</tr>
<tr>
<td>22-16</td>
<td>0.3-1.25</td>
<td>370</td>
<td>4.56</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>215</td>
<td>5.46</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>377</td>
<td>9.58</td>
</tr>
</tbody>
</table>

FULLY-INSULATED TERMINALS

<table>
<thead>
<tr>
<th>Wire Range</th>
<th>Max Insul. Dia.</th>
<th>Premium</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-16</td>
<td>0.3-0.8</td>
<td>335</td>
<td>3.43</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>360</td>
<td>4.06</td>
</tr>
<tr>
<td>22-16</td>
<td>0.3-0.8</td>
<td>230</td>
<td>5.84</td>
</tr>
<tr>
<td>16-14</td>
<td>1.25-2</td>
<td>260</td>
<td>6.60</td>
</tr>
</tbody>
</table>

* Die sets for Ultra-Fast hand tool frame P/N 58078-5.
Tooling-to-Terminal Cross Reference

OPEN BARREL TERMINALS

<table>
<thead>
<tr>
<th>Style</th>
<th>Wire Range</th>
<th>Max Insul. Dia.</th>
<th>Hand Tools</th>
<th>Tool Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPMODU Connectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size 20 DF Contacts</td>
<td>28-24</td>
<td>0.08-0.2</td>
<td>1.02</td>
<td>91505-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.5</td>
<td>1.52</td>
<td>91520-1</td>
</tr>
<tr>
<td>Size 22 DF Contacts</td>
<td>28-22</td>
<td>0.08-0.3</td>
<td>1.02</td>
<td>91520-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.5</td>
<td>1.52</td>
<td>91520-1</td>
</tr>
<tr>
<td>AMPLEmite D-Sub. Connectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med. IV Contacts</td>
<td>26-22</td>
<td>0.12-0.3</td>
<td>1.55</td>
<td>91517-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.5</td>
<td>1.75</td>
<td>91516-1</td>
</tr>
<tr>
<td>Locking Clip Contacts</td>
<td>26-22</td>
<td>0.12-0.3</td>
<td>1.58</td>
<td>91555-1</td>
</tr>
<tr>
<td>MTE & Tandem Spring Contacts</td>
<td>32-28</td>
<td>0.05-0.08</td>
<td>1.57</td>
<td>9107086-1</td>
</tr>
<tr>
<td></td>
<td>26-22</td>
<td>0.12-0.3</td>
<td>1.65</td>
<td>91531-1</td>
</tr>
<tr>
<td>Short Point Contacts</td>
<td>32-22</td>
<td>0.05-0.3</td>
<td>1.52</td>
<td>91518-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.5</td>
<td>1.52</td>
<td>91555-1</td>
</tr>
<tr>
<td>CPC Connectors, M Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II Contacts</td>
<td>28-24</td>
<td>0.08-0.2</td>
<td>1.40</td>
<td>91538-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.6</td>
<td>1.57</td>
<td>91538-1</td>
</tr>
<tr>
<td></td>
<td>18-16</td>
<td>0.8-1.4</td>
<td>—</td>
<td>91538-1</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2</td>
<td>—</td>
<td>91539-1</td>
</tr>
<tr>
<td>Type III+ Contacts</td>
<td>30-26</td>
<td>0.05-0.15</td>
<td>1.52</td>
<td>91515-1</td>
</tr>
<tr>
<td></td>
<td>26-24</td>
<td>0.12-0.2</td>
<td>1.40</td>
<td>91515-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.6</td>
<td>2.03</td>
<td>91515-1</td>
</tr>
<tr>
<td></td>
<td>24-20</td>
<td>0.2-0.6</td>
<td>3.05</td>
<td>91542-1</td>
</tr>
<tr>
<td></td>
<td>18-16</td>
<td>0.8-1.25</td>
<td>2.54</td>
<td>91565-1</td>
</tr>
<tr>
<td></td>
<td>18-14</td>
<td>0.8-2</td>
<td>2.54</td>
<td>91591-1</td>
</tr>
<tr>
<td>Type XII Contacts</td>
<td>16</td>
<td>1.25</td>
<td>4.06</td>
<td>90382-2</td>
</tr>
<tr>
<td></td>
<td>14-12</td>
<td>2.3</td>
<td>4.06</td>
<td>90382-2</td>
</tr>
<tr>
<td></td>
<td>10-8</td>
<td>5.7</td>
<td>5.99</td>
<td>90384-1</td>
</tr>
<tr>
<td>FASTON Straight Receptacles</td>
<td>22-18</td>
<td>0.3-0.8</td>
<td>3.30</td>
<td>90166-1</td>
</tr>
<tr>
<td>(Premier Line Only)</td>
<td>18-14</td>
<td>0.8-2</td>
<td>4.32</td>
<td>90065-1</td>
</tr>
<tr>
<td></td>
<td>14-10</td>
<td>2.5</td>
<td>5.08</td>
<td>90202-1</td>
</tr>
<tr>
<td>250 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Contacts</td>
<td>30-22</td>
<td>0.05-0.3</td>
<td>1.91</td>
<td>91515-1</td>
</tr>
<tr>
<td></td>
<td>24-18</td>
<td>0.2-0.8</td>
<td>2.54</td>
<td>91512-1</td>
</tr>
<tr>
<td></td>
<td>20-14</td>
<td>0.5-2</td>
<td>3.30</td>
<td>91504-1</td>
</tr>
<tr>
<td>Universal & Universal II</td>
<td>24-18</td>
<td>0.2-0.8</td>
<td>2.54</td>
<td>91508-1</td>
</tr>
<tr>
<td>Contacts</td>
<td>20-14</td>
<td>0.5-2</td>
<td>3.30</td>
<td>91500-1</td>
</tr>
<tr>
<td></td>
<td>20-18</td>
<td>0.5-0.8</td>
<td>5.08</td>
<td>91560-1</td>
</tr>
<tr>
<td></td>
<td>16-14</td>
<td>1.25-2</td>
<td>5.08</td>
<td>91560-1</td>
</tr>
<tr>
<td>Mini-Universal</td>
<td>20-16</td>
<td>0.5-1.25</td>
<td>3.20</td>
<td>91536-1</td>
</tr>
<tr>
<td></td>
<td>26-22</td>
<td>0.12-0.3</td>
<td>1.75</td>
<td>91529-1</td>
</tr>
<tr>
<td></td>
<td>22-18</td>
<td>0.3-0.8</td>
<td>2.39</td>
<td>91522-1</td>
</tr>
<tr>
<td></td>
<td>20-16</td>
<td>0.5-1.25</td>
<td>3.20</td>
<td>91594-1</td>
</tr>
<tr>
<td>MATE-N-LOK Connectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.tooling.te.com
Want to know more about proper crimp techniques? View our Crimp Theory Fundamentals videos on our website at tooling.te.com or find them on our YouTube channel.

Crimp Theory Fundamentals Video. https://www.youtube.com/watch?v=foFgl8c17so
CRIMP QUALITY GUIDELINES

Incorrect

Terminal damaged
Cut off tab too long
Crimp barrel distorted
Terminal twisted
Cut off tab deformed
Crimp height too tight
Insulation inside the wire crimp
Conductor Brush protruding into terminal body
Bellmouth on wrong end
Terminal bend

Test

WIRE CRIMP

Crimp height measurement
Crimp heights and tolerances

For crimp height tolerances for any given contact, please refer to the relevant application specification.

Examples:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Pin</th>
<th>Wire Range</th>
<th>Tolerance</th>
<th>Application Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQS</td>
<td>962885</td>
<td>0.20 - 0.50 mm²</td>
<td>± 0.03 mm</td>
<td>114-18025</td>
</tr>
<tr>
<td>MQS</td>
<td>962886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPT</td>
<td>927775</td>
<td>0.50 - 1.00 mm²</td>
<td>± 0.05 mm</td>
<td>114-18050</td>
</tr>
<tr>
<td>JPT</td>
<td>927773</td>
<td>1.50 - 2.50 mm²</td>
<td>± 0.05 mm</td>
<td>114-18060</td>
</tr>
</tbody>
</table>

Digital crimp height micrometer (0.001mm increments) according to DIN ISO 9001
Part Number 547203-1

WIRE CRIMP

Incorrect crimp height adjustment
Asymmetric crimp
Unacceptable formation of excessive flash and/or cracks
Terminal feed incorrectly adjusted
Anvil and crimper not aligned or worn

Incorrect terminal / wire selection
Wire size too large
Wire size too small
Crimp barrel does not close
Legs too close to bottom of crimper
Insufficient deformation of strands, showing voids.

Incorrect crimp height adjustment
Crimp height too loose
Crimp height too tight
Insufficient deformation, showing voids
Flash at under side of crimp, due to over crimping

INSULATION CRIMP

Wire crimp without conductor
Insulation must be securely held after bend test

TRAINING & SERVICES

Please contact our service hotline for information.
Tel: 1-800-722-1111

www.tooling.te.com
ACTIO N PIN Contact: Manufactured exclusively by TE Connectivity, having a split pin to provide gas tight retention in a printed circuit board plated-thru hole without solder.

Anvil (tooling): Most commonly used to identify that part of the crimping die — normally stationary — which positions and supports the terminal during crimping. Sometimes referred to as nest.

Arc Voltage: Voltage that continues to pass through a surge protector during activation of GDT (approx. 20 volts).

ASTM (American Society for Testing and Materials): A nonprofit industry-wide organization thatformulates test methods and material specifications, and publishes standards, testing methods, recommended practices, definitions and other materials.

AWG (American Wire Gauge): The recognized method (in the United States) of specifying conductor size. The higher the gauge number, the smaller the conductor size.

Bare Conductor: A conductor not covered with insulting material.

Barrel: 1.) Connector Barrel: The section of the terminal, splice, or contact that accommodates the stripped conductor. 2.) Insulation Barrel: The section of the terminal, splice, or contact that accommodates the conductor insulation. 3.) Open Barrel: The section of a cap that accommodates the conductor.

Bellmouth: Flared at the mouth. The rear of a properly crimped wire barrel will have a slight flare (bellmouth) to relieve the strain on the wire strands as they leave the area of high compression and take their natural lay. A bellmouth may also be present in front of the wire barrel.

Breakdown Voltage: The voltage at which an insulator or dielectric fails to maintain the applied voltage.

Breakout: A region in a harness assembly where a wire or a group of wires is detached to form a separate, terminated branch. Also known as a transition.

Bunch Stranding: A method of twisting individual strands to form a finished stranded conductor. Specifically, a number of strands twisted together in a common direction and with a uniform pitch (or twist) per inch.

Butt Splice (electrical): A splice wherein two wires from opposite ends butt against each other, or against a stop, in the center of the splice.

Cable: Two or more wires in a twisted or parallel configuration. Also, a shielded wire.

Cabinet: A machine that mechanically assembles a group of insulated wires.

Cabling: The act of twisting together two or more insulated components to form a cable.

Capacitance: The property of an electrical conductor (dielectric in a capacitor) that permits the storage of energy as a result of electrical displacement. The basic unit of capacitance is the farad, however, measurement is more commonly in microfarads or picofarads.

Carrier: A group of strands or ends used to form a finished braid.

Circular Mil Area (CMA): A unit of area equal to the area of a circle whose diameter is 1 mil (0.001 inch). Used chiefly in specifying cross-sectional areas of conductors.

Closed Entry Contact: Female contact designed to prevent entry of a pin or probing device having a cross-sectional dimension (diameter) greater than the mating pin.

Component: A wire or cable that is combined with other wires or cables to make a multi-component cable.

Concentric Stranding: A method of strandng conductor. Specifically, the final conductor is built up in layers so that the inner diameter of a succeeding layer is always equal to the outer diameter of the underlying layer.

Conductivity: The capability of a material to carry electrical current, usually expressed as a percentage of copper conductivity (copper being 100%). Specifically, the ratio of the current flow to the potential difference causing the flow. The reciprocal of resistance.

Conductor: The metallic strand or strands used to carry an electric current.

Conductor Resistance: The resistance to flow of the electrical current along a conductor. Expressed in ohms/1,000 feet (usually referenced to 20°C).

Conduit: A tubular raceway for holding wires or cables.

Connector: A device used to physically and electrically connect two or more conductors.

Contact: The element in a connector that makes the actual electrical connection. Also the parts of a connector that actually carry the electrical current, and are touched together or separated to control the flow.

Contact Crimp: A contact whose rear portion is a hollow cylinder that accepts the conductor. A crimping tool is applied to swage or form the contact metal firmly against the conductor. Sometimes referred to as a solderless contact.

Contact Engaging and Separating Force: Force required to either engage or separate contacts. Values are generally established for maximum and minimum forces.

Contact Resistance: Measurement of electrical resistance of mated contacts when assembled in a connector under typical service use. Electrical resistance is determined by measuring from the rear of the electrical area of one contact to the rear of the contact area of the mating contact (excluding both crimps) while carrying a specified test current.

Contact Size: The diameter of the engagement end of a pin contact; also related to the current carrying capacity of a contact.

Continuity: A continuous path for the flow of current in an electrical circuit.

Core: 1.) In cables, a component or assembly of components over which additional components, such as a shield or a sheath, are applied. 2.) Inner wall of dual-wall heat-shrinkable tubing.

Crimp: The final configuration of a terminal barrel after the necessary compression forces have been applied to cause a functional union between the terminal barrel and the wire.

Crimper (tooling): Often used to identify that part of the crimping die — usually the moving part — which indents or compresses the terminal barrel. Also called indenter.

Crimp Height: A top to bottom measurement of the crimped barrel, using a crimp height comparator in the prescribed manner.

Crimping Chamber: Area of a crimping tool in which a contact or terminal is crimped; the crimping enclosure formed by the mating of the anvil (nest) and crimper (indenter). When the dies or jaws are fully open, it is the crimping chamber that is checked with a go-no go plug gauge to confirm that the crimp produced by the tooling satisfies the crimp height specification.

Crimping Dies: A term used to identify the shaping tools that, when moved toward each other, produce a certain desirable shape to the barrel of the terminal or contact that has been placed between them. Crimping dies are often referred to as die sets or as die inserts.

Crimping Head: Tooling containing jaws and linkage for use in pneumatic or hydraulic powered units to crimp loose-piece contacts/terminals that may be too large for hand tool applications.

Crimping Tool: A term commonly used to identify a hand held mechanical device that is used to crimp a contact, terminal or splice.

Cross Crimp: A crimp that deforms the terminal by exerting on the top and bottom of the terminal barrel without confining the sides. Usually identified by a raised crescent (moon) shaped form on the surface of the crimp.

Current: A movement or flow of electrons. Also, the measure of this flow, expressed in amperes.

Current-carrying Capacity: The maximum current an insulated conductor is capable of carrying without exceeding its insulation- and/or jacket temperature limitations under specified ambient conditions.

Current Rating: The maximum continuous electrical flow of current recommended for a given situation. It is expressed in amperes.

Die: See crimping dies.

Die Closure: Term used to designate a crimping area (crimping chamber) when the dies are fully closed or bottomed. Die closure is checked with go/no go plug gauge to confirm that the crimp produced by the tooling satisfies the crimp height specification.

Dielectric: A material that serves as an insulator. The amount of resistance to voltage in a given insulation.

Dielectric Isolation (IC): Most silicon integrated circuits depend on back biased semiconductor junctions to provide isolation between components on the chip. Dielectric isolation involves a number of additional process steps, which result in silicon dioxide rather than a junction surrounding each component to be isolated. The silicon dioxide, a dielectric, provides the necessary isolation.

Dielectric Strength: Maximum voltage a dielectric can withstand without rupture. Expressed as volts per mil.

Discontinuity: Rated interconnection: broken connection (open circuit) or loss of a specified connection characteristic. Transient phenomena: Short-term interruption or unacceptable variation in current or voltage.

Drain Wire: In a cable, an un-insulated conductor laid over the component, or components, in a foil-shield cable. Used as a ground connection.

Electromagnetic Compatibility (EMC): The ability of an electronic device to operate in its intended environment without its performance being affected by EMI and without generating EMI that will affect other tooling.
Electromagnetic Interference (EMI): Unwanted electrical or electromagnetic energy that causes undesirable responses, degrading performance or complete malfunctions in electronic tooling.

Electromotive Force (emf): See voltage.

EMI: Abbreviation for electro magnetic interference.

Extraction Tool: A tool used for removing contacts from a connector body.

F Crimp: A crimp that brings the center of the barrel along an open seam downward into a V.

Ferrule: A short tube used to make solderless connections to shielded or coaxial cable. Also molded into the plastic inserts of multiple contact connectors to provide strong, wear-resistant shoulders on which contact retaining springs can bear.

FFC: Flexible flat cable; flat flexible cable; or flexible flat conductor. A form of multiple conductor cable consisting of parallel flat metal strips imbedded in a flat flexible insulating material.

Flat Braid: A braided shield composed of flatstrands.

Flat Cable: A cable with each component in a single, flat plane.

Flat Conductor: A conductor having a rectangular cross section, as opposed to a round or square cross section.

Fretting Corrosion: A form of accelerated oxidation that appears at the interface of contacting materials undergoing slight cyclic relative motion. All non-noble metals (tin) are susceptible to some degree of fretting corrosion and will suffer contact resistance increases.

Gauge: A term used to denote the physical size of a wire. See also AWG.

Ground: A connection, intentional or accidental, between an electrical circuit and the earth or some conducting body (e.g. chassis) serving as a neutral point.

Grounding Conductor: A conductor that provides a current return path from an electrical device to ground.

Hardness: A general term that correlates with strength, rigidity, and resistance to abrasion or penetration. Measured on Shore or Rockwell scales.

Harness: A system providing electrical connection between two or more points.

Hertz (Hz): International standard term for cycles per second. Named after the German physicist Heinrich R. Hertz (e.g. 60 cycles per second is equal to 60 hertz or 60 Hz).

Inductance: One cause of reactance. An electromagnetic phenomenon in which the expanding and collapsing of a magnetic field surrounding a conductor or device tends to impede changes in current. The effects of inductance become greater as frequencies increase. The basic unit for inductance is the henry.

Insertion Tool: A tool used to insert removable contacts into a connector.

Insulation Barrel: See barrel.

Insulation Crimp: The area of a terminal splice or contact that has been formed around the insulation of a wire.

Insulation Displacement: A terminating technique whereby an insulated wire is forced into a restrictive slot in a terminal, during which time the wire insulation is displaced, and the bare wire engages the sides of the slot.

Insulation Grip: The ability of certain crimped terminals to hold firmly in place both the conductor and a small portion of insulation. This prevents the conductor from being exposed due to insulation receding away from the terminal.

Insulation Resistance: The electrical resistance between two conductors separated by an insulating material.

Interference: Electrical or electromagnetic disturbance causing undesirable response in electronic tooling.

Jack: A connecting device into which a plug can be inserted to make circuit connections. The jack may also have contacts which open or close to perform switching functions when the plug is inserted or removed. See also: receptacle.

Jacket: 1.) A material covering over a wire or cable assembly. 2.) Outer covering of a dual-wall heat-shrinkable tubing.

Jackscrew: A screw attached to one half of a two-piece, multiple-contact connector and used to draw both halves together and to separate them.

kJ (kilovolt): A unit equal to 1,000 volts.

Mega (M): A prefix meaning one million (10^6).

Multiconductor: More than one component within a single-cable complex.

Nominal: A descriptor applied to a dimension representing the center of range of tolerance or a value if no tolerance is applied.

O Crimp: An insulation support crimp for open barrel terminals and contacts. In its crimped form it resembles an O and conforms to the shape of the round wire insulation. O crimp is also used to describe the circumferential crimps used on COAXICON ferrules.

Open Barrel: See barrel.

Peripheral Seal: A seal provided around the periphery of connector inserts to prevent the ingress of fluids or contaminants at the periphery of mated connectors.

Pin Contact: Electrical terminal, usually in a connector. Normally smaller termination than a lug.

Pretinned: Description of an electrical component to which solder has been applied prior to soldering.

Primary Insulation: The inner member of a dual wall wire insulation. The insulation applied directly on the conductor.

Printed Circuit Board (PCB): An insulating board serving as a base for a printed circuit. When the printing process is completed, the board may include printed components and printed wiring.

Rated Voltage: The maximum voltage at which an electric component can operate for extended periods without undue degradation.

Receptacle: Usually the fixed or stationary half of a two-piece multiple contact connector. Also the connector half usually mounted on a panel and containing spring socket contacts.

Removable Contact: A contact that can be mechanically joined to or removed from an insert. Usually special tools are required to lock the contact in place or remove it for repair or replacement.

Resistance: A measure of the difficulty in moving electric current through a conductor or insulation when voltage is applied. Measured in ohms.

Resonance: A frequency at which captive reactance and inductive reactance

Ribbon Cable: Flat cable with conductors that have been individually insulated together. Its structure is usually characterized by individual colors of insulation for each conductor, although a single color may be used for all conductors.

Serrations: Small grooves or indentations within a terminal wire barrel. The serrations increase the tensile strength and improve the electrical conductivity of the crimped termination.

Sleeve: The insulated or metallic covering over the barrel of a terminal through a cable assembly.

Solid Conductor: A conductor composed of one single strand.

Splice: A joint connecting conductors with good mechanical strength and conductivity; a terminal that permanently joins two or more wires.

Strand: A single unit of a conductor.

Strip: To remove insulation from a wire or cable.

Surface Resistance: The ratio of the direct current applied to an insulation system to the current that passes across the surface of the system.

Surface Resistance: Ratio of the direct current applied to an insulation system to the current that passes across the surface of the system.

Tab: Used to scribe the flat blade portion of certain terminals (e.g. FASTON tab, taper tab, solder tab).

Tab-lok Crimp: A type of crimp used on FASTON flag terminals whereby a tab on the wire barrel is inserted through a slot in the terminal. The crimping action flattens the tab between two lances, which in turn are locked over the tab.

Terminal: An electrically conductive item designed to be attached to a circuit or device for convenience in making electrical connections.

Terminal Area: The portion of a printed circuit – usually along the edge – used for making the input-output connections. Sometimes this term is used synonymously with pad.

Terminal Barrel: See barrel.

Trimming: The adjustment of resistor or capacitor values in thick or thin film circuits by pattern changes, irreversible thermally induced changes, or removal of portions of material by laser or abrasive techniques. Dynamic trim is unique to these technologies, and of great value to circuit design and manufacture.

Volt (V): The unit of measurement for electro motive force (emf). It is equivalent to the force required to produce 1 ampere through a resistance of 1 ohm.

Voltage (E): The term most often used to designate electrical pressure that exists between two points and is capable of producing a flow of current when a closed circuit is connected between the two points. Voltage is measured in volts, millivolts, microvolts and kilovolts. The terms electromotive force (emf), potential, potential difference and voltage drop are often referred to as voltage.

Voltage Drop: The voltage developed across a component or conductor by the flow of current through the resistance or impedance of that component or conductor.

Voltage Rating: The voltage that may be continuously applied to wire.

W Crimp: A confined type of crimp that makes two longitudinal indentations which form a W cross section. Used on SOLISTRAND terminals.

Wall Thickness: The thickness of the applied insulation or jacket.

Wire: A single conductor covered with insulation.

Wire Barrel: See barrel.

Wire Crimp: See crimp.