

Display Screens
Each screen is displayed by pressing its appropriate button, (I for Current, V/Hz for Voltage and Frequency, P for Power and E for Energy). Further presses of a screen's button will scroll through the available measurements associated with that button. Each button's state is stored in memory.

Line Currents	Phase Voltages	Power $W / V A r / V A$	Import kW.h
Ad, Max Ad Neutral I	Line Voltages	Wd, Max Wd Avg P.F.	Export kW.h
Line THD \%	Frequency	$\begin{gathered} -W d, \operatorname{Max}-W d \\ A v g \text { P.F. } \end{gathered}$	Import kVAr.h
	Line THD \%	VAd Max VAd Avg P.F.	Export kVAr.h
		Line Power	kVA.h
			A.h

3

Settings Menu

The main menu is entered by holding buttons ' I ' and ' E ' down for approximately 5 seconds. The main menu and all sub-menus are scrolled through using the 'E' button. Any selection is made using the 'I' button.

The LCD back-light brightness is adjusted by holding down the two centre buttons. The LCD's back-light colour can be changed by holding the 'I' and 'P' buttons down for 6-8 seconds.

If no buttons are pressed for 6 minutes the unit will exit the Settings Menu.
The Settings Menu structure is defined below:

E				
$I S$	$\begin{aligned} & \hline \text { SUPPLY } \\ & \text { [SUPP] } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { COMMS } \\ \text { [485] } \\ \hline \end{gathered}$	$\begin{gathered} \text { DEMAND } \\ {[d t]} \\ \hline \hline \end{gathered}$	$\begin{aligned} & \text { ENERGY } \\ & \text { [ENGY] } \\ & \hline \end{aligned}$
E E	System Current	Address	Reset	Adjust Pulses (W.h)
	Primary Voltage Secondary Voltage System Type	Baud Rate	Demand Time	$\begin{aligned} & \text { Adjust Pulses } \\ & \text { (Var.h) } \end{aligned}$
		Stop Bits	Cancel	Adjust Pulses (VA.h)
		Parity	Confirm	Adjust Pulses (A.h)
	Cancel	Endian		Reset
	Confirm	Lock		Cancel
		Cancel		Confirm
		Confirm		
		5		

$\begin{aligned} & \hline \text { RELAY } \\ & {[\text { RLAY }} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { CODE } \\ {[\text { CODE }]} \\ \hline \end{gathered}$	$\begin{gathered} \text { EEPROM } \\ \text { [STOR] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { END } \\ \text { [END] } \end{gathered}$
Relay Type	Edit	Cancel	\ldots
Pulse Length	Set	Confirm	
Pulses per Hour	Cancel		
Cancel	Confirm		
Confirm			

Supply [SUPP]	The VT ratio and the system current are entered using this sub-menu. The secondary
$\begin{gathered} \text { SYSTEM CURRENT } \\ \text { [SYSA] } \\ \hline \end{gathered}$	voltage (meter input) is optimised at 280 V L-N. Decimal point Un-Balanced Load
PRIMARY VOLTAGE [UPRI]	
SECONDARYVO [USEC]	[3P4] 3 phase 4 wire
$\underset{\substack{\text { SYSTEM TYPE } \\ \text { [TYPE] }}}{\text { IUSE }}$	The system's type is selected from the list on the right:
Comms [485]	Network settings can be detected and the unit configured automatically. If manual configuration is preferred, the meter can be set up as follows:
ADDRESS [ADDR]	
BAUD RATE	The unit's baud rate, number of stop bits and parity can be selected from the lists on the right:
[BAUD]	
STOP BITS	Floating point numbers can be transmitted in Big Endian or Little
$\begin{gathered} \text { PARITY } \\ {[P A R]} \end{gathered}$	Endian BYTE order and can be selected using the ENDIAN item. (word-swap option selectable for both)
[ENDI]	Locking prevents the unit hunting for a valid network if communication
LOCK	a valid network if communication [O] odd parity bit errors are occurring and can be set $[E]$ even parity bit
	errors are occurring and can be set using the LOCK item.

Demand [dt]
RESET
[RSET]
DEMAND TIME
[DTST]

Energy [ENGY]
ADJUST PULSES [ADJ] (W.h)
ADJUST PUSES [ADJJ] (Var:h)
ADJUST PULES
[ADJ] (VA.h)
ADJUST PULSES
[ADJ] (A.h)
RESET
[RSET]

Relay [RLAY]

RELAY TYPE [TYPE]
PULSE LENGTH [PULS LNTH]
PULSES per HOUR [PPH]

Code [CODE]

EDIT PASS CODE
[EDIT]
SET PASS CODE
[SET]

EEPROM [STOR]

The EEPROM sub-menu allows the user to save all settings into the unit's non-volatile memory. It is recommended that this option is used whenever settings have been updated. However, the unit will save all settings on a power down or brown out condition.

END [END]
This selection leaves the main menu and resumes displaying measurements.

CANCEL

[CNCL]

CONFIRM

 [CONF]The unit integrates all Current, Power and VA measurements within a variable time-length, sliding window.
The reset option will reset all demand and maximum demand measurements.
The demand time (window) can be set to a value of between 3 and 60 minutes inclusive.

There are six energy accumulators in the unit; import and export power, import and export VAr, VA and current. Modifications to the pulses per hour rate can be 1000 done through this sub-тепи.

Adjust pulses ($W, V A r, V A$ and A) allows the selection of a DIVISOR from the list on the right: Caution: Changing the divisor and confirming the selection will reset ALL energy readings
The reset option resets ALL energy readings.
The solid-state relay can be programmed to operate as an import/export W.h, import/export VAr.h, VA.h or A.h type. The relay's parameters can be set up in this sub-menu.
The pulse length of the relay(s) can be set from the list on the right (0-200ms). PPH are modified using the decimal point positioning method.

The Pass Code is used to help prevent unauthorised tampering with the unit's settings.
The Pass Code can be changed using the EDIT facility in the sub-menu.

It is activated using the SET option.
changes made in that sub-menu.
Confirmation is required before any changes are implemented. The changes are effective as soon as they are confirmed.

Entering Data
When required, numbers can be entered into the unit in the following way:

To increment a column - press 'E'
To confirm or move - press 'I'

Select decimal point position with ' E '
Select exponent with 'E'

8

Lists
When only fixed data can be entered, selection is made from a list:

To scroll through a list - press ' E '
To select the displayed item - press 'I'
When a decision has to be made the Yes

- No screen is displayed

Entering Data - Summary

Pressing the 'I' button accepts the currently selected item and moves on to the next. Pressing the ' E ' button either changes the item's option or increments a column. Other menu items that may be displayed are all treated in the same manner.

press 'I' for Yes press 'E' for No

10

Input (accuracy range)	
Un 28V to 330V L-N (48V to 570V L-L)	
Burden	$<0.5 \mathrm{VA}$
In (5A specified)	0.5A to 6 A via CT
In (1A specified)	0.1A to 1.2A via CT
Burden	$<0.5 \mathrm{VA}$
Frequency	45 Hz to 65 Hz
Secondary of CTs mu	st be connected to earth
Input (working range)	
Voltage and Current 1.7%-100\%	
Overload	
800 V L-L indefinitely, In x 10 for 1 sec	
Accuracy (8.4\%-100\% of range)	
Voltage	0.5\% +/- 2 digits
Current	$0.5 \%+/-2$ digits
Power (W,VAr,VA)	$1.0 \%+/-2$ digits
Power Factor	1\% of range
Frequency	0.1 Hz
Energy	IEC 1036 Class 1
Auxiliary Voltage	
100 V to 440 V ac (45 Hz to 65 Hz)	
100 V to 420 V dc	
Burden: <10VA	
Display	
Digits	3 lines 9999
Digit size	7 mm 7 segment
Update time	1 second
Relay	
Solid-State	1-Form-A
Switching	100Vpk@120mA
On Resistance	$<8 \Omega$

Insulation
Installation Category III (480V ph/ph)
Degree of Pollution 2
Rated Impulse Voltage IEC 60947-1-V
imp $4 k V$
Meter Front Class II
Electrical Security IEC 61010-1
Electromagnetic Compatibility
Immunity:
ESD IEC 61000-4-2-Level III Radiated IEC 61000-4-3-Level III Fast Transient IEC 61000-4-4-Level III Impulse Waves IEC 61000-4-5-Level III Conducted IEC 61000-4-6-Level III
Voltage Dips/
Short Interruptions IEC 61000-4-11-Level II Emissions:
Conducted and
Radiated
CISPR11-Class A

Environment

Working Temperature -20 to $70 \mathrm{deg} C$
Storage Temperature -30 to $80 \mathrm{deg} C$
Relative Humidity $0-95 \%$ non
0-95\% non
condensing
$30 G$ in 2 planes
Enclosure
Panel mounting
$\begin{array}{ll}\text { IP Rating - Front } & \text { IP52 / Nema } \\ \text { IP Rating - Case } & \text { IP30 / Nema }\end{array}$

