Order this document

MOTOROLA as AN432/D

mm SEVMICONDUCTOR I
APPLICATION NOTE

ANA432

128K byte addressing with the M68HC11

By Ross Mitchell
MCU Applications Engineering
Motorola Ltd., East Kilbride, Scotland

OVERVIEW

The maximum direct addressing capability of the M68HC11
device is 64K bytes, but this can be insufficient for some
applications. This application note describes two methods of
memory paging that allow the MCU to fully address a single
1 megabit EPROM (128K bytes) by manipulation of the
address lines.

The two methods illustrate the concept of paging and the
inherent compromises. The technique may be expanded to
allow addressing of several EPROM, RAM or EEPROM
memories or several smaller memories by using both ad-
dress lines and chip enables.

PAGING SCHEME

The M68HC11 8-bit MCU is capable of addressing up to 64K
bytes of contiguous address space. Addressing greater than
64K bytes requires that a section of the memory be replaced
with another block of memory at the same address range.
This technique of swapping memory is known as paging and
is simply a method of overlaying blocks of data over each
other such that only one of the blocks or pages is visible to
the CPU at a given time.

In a system requiring more than 64K bytes of user code and
tables, it is possible to use the port lines to extend the
memory addressing range of the M68HC11 device. This has
certain restrictions but these can be minimised by careful
consideration of the user code implementation.

There are two basic configurations; method A uses only soft-
ware plus asingle portline to control the highaddress bit A16;
method Bisacombination of asmallamount of hardware and
software controllingthetop 3 address bits A14, A16and A16.

© MOTOROLA LTD., 1990

In the examples below, the MCB8HC11G5 device is used to
demonstrate the paging technigues since this device has a
non-multiplexed dataand address bus; any MB8HC11 device
may be used in a similar way.

Method A has the advantage of no additional hardware and
very fewlimitations in the software. The user code mainioop
can be up to 64K bytes long and remain in the same page but
this is at the expense of longer interrupt latency. The vector
table and a small amount of code must be present in both
pages of memory to allow correct swapping of the pages.

Method B has the advantage of not affecting the interrupt
latency and has just one copy of the vector table. The
maximum length of the user code main loop in this example
is 48K bytes with a further 5 paged areas of 16K bytes for
subroutines and tables.

MOTOROLA Il

AN432/D

METHOD A - SOFTWARE TECHNIQUE

Address A16 of the EPROM is directly controlled by port D(5}
of the M68HC11 as shown in figure 1. This port is automati-
cally configured tobe inthe input state following reset. |tis vital
that the state of the port line controlling address A16 is known
following reset and so there is a 10KQ pull-up resistor on this
port line to force the A16 address bit to a logic high state
following reset. This port bit is then made an output during the
set-up code execution but care must be taken in ensuring that
the data register is written to a logic one before the data
direction register is written with a one to make the port line
output a high state.

This port bit allows the MB8HC11 to access the 128K byte
EPROM as two memories of 64K bytes each which are paged
by changing the state of the address A16 line on the EPROM.
Itimportant to make sure that the port timing enables the port
line to change state at least the setup and hold time before the
address strobe (E clock rising edge on the MC68HC11G5),
otherwise there could be problems with address timing.

Figure 2 shows a schematic representation of the paging
technique for this method where there are two separate 64K
byte pages of memory which may only be addressed individu-
ally.

This paging scheme means that code cannot directly jump
from one 64K page to another without running scme common
areaof code during the page switch. This may be accomplished
in 2 basic ways. The user code could build a routine in RAM
(which is common to both pages since it is internal and
therefore unaffected by the port D{(5} line) or have the same
location in both pages devoted to a page change routine. The
example software listing in appendix A uses the latter ap-
proach.

Interrupt routines

The change of page routine stores the current page before
setting or clearing the port D(5) line and then has a jump
command which must be at exactly the same address in both
pages of memory. This is because the setting or clearing of the
port D{(5} line will immediately change the page of memory but
the program counter will increment normally. Thus a change
from page Oto page 1 wili resultin the BSET PORTD command
from page 0 followed by the JMP 0,X instruction from page 1
{the new page). To enable a jump to work, the X index register
has been loaded with the address of the routine tobe runin the
new page. Figure 3 shows the execution of code to perform
a change of page from page 1 to page 0.

Returning from the interrupt routine requires the RT! com-
mand to be replaced with a return from interrupt routine that
checks the RAM location containing the memory page num-
ber prior to the interrupt routine execution. The routine then
either performs an RT| command immediately if itis to remain
in the same page or otherwise changes the state of the port
D(5) line and then performs an RTI command in the correct
page. Note that as with the JMP 0,X command, the RTl must
be at the same address in both pages. It is important that the

MOTOROLA

2

I-bit in the CCR (interrupt inhibit) is set during this time for the
example code to run correctly, otherwise the return page may
be altered. This limitation can be overcome by using the stack
to maintain a copy of the last page prior to the currentinterrupt.

The latency for an interrupt routine in a different page from the
currently running user code is increased by 21 cycles on
entering the interrupt routine and 18 cycles on leaving the
interrupt routine. Anyinterruptcode that could nottolerate any
such latency could be repeated in both pages of memory.

Other routines

Jumping from one page to another may be done at any time
by using the same change of page routine but there is no need
to store the current page in RAM and so these two lines of code
become redundant. In the example, the change page routine
could be started at the BCLR or BSET command and save 4
cycles. This would therefore reduce the page change delay to
17 cycles. Note that it is not possible to perform a JSR
command to move into the other page with the method shown
in the example since the RTS would not return to the original
page, however, a modification to the return from interrupt
routine would allow an equivalent function for a return from
subroutine. In this case the stack should be used to maintain
the correct return page or the I-bitin the CCR should be set to
prevent interrupts.

Important conditions

The state of the port line controlling address A16 after reset is
very important. In the example, port D(5) is used which is an
input after reset and has a pull-up resistor to force a logic high
on A16. If an output only port line was used then it could be
reset such that A16is a logic zero (no pull-up resistor required)
which has animportant consequence. The initialisation routine
which sets up the ports must be in the default page dictated
by the state of address A16 following reset otherwise the user
code may notbe able to correctly configure the portsand hence
be unable to manipulate address A16. Similarly, a bidirectional
port line could have a pull-down resistor to determine the
address A16 line after reset with the same implications.

The assembler generates two blocks of code with identical
address ranges used by the user code. This could not be
programmed directly into an EPROM since the second page
would simply attempt to overwrite the first page. The code
must therefore be split into two blocks and programmed into
the correct half of the EPROM. Some linkers may be capable
of performing this function automatically. Figure 2 illustrates
the expansion of the pages into the 128K byte EPROM
memory.

The RAM and registers, and internal EEPROM if available and
enabled, will all appear in the memory map in preference to
external memory so care must be taken to avoid these
addresses or move the RAM or registers away to different
addresses by writing to the INIT register.

AN432/D

AN432/D

vDD

68HC11 1M bit EPROM
10kQ
PD5 A16
A0 - A15 P A0 - A15
DO - D7 (- - DO - D7
E —_—
— OE
R/wW
CcsS

Figure 1. Software Paging Schematic Diagram

64K byte map

$0000

$0000

Page 0

$FFFF

$FFFF

Page 1

L\

128K byte EPROM

$00000

Page 0

$OFFFF

$10000

Page 1
Default Page

$1FFFF

Figure 2. Software Paging Representation

MOTOROLA
3

128K byte EPROM

$00000
TOGGLE PORT A-4
JUMP TO CHANGE PAGE ROUTINE
Page 0
3
$O0F800
VECTORS $OFFFF
2 $10000

TOGGLE PORT A-3
JUMP TO CHANGE PAGE ROUTINE

Page 1

$1F800

Default
page

VECTORS

$1FFFF

1 - Jump to change page routine
2 - Page changes to page 0
3 - Jump to address in X register (in page 0)

Figure 3. Flow of program changing from Page 1 to Page 0

MOTOROLA AN432/D
4

VDD

68HC11 10k 1M bit EPROM
74HC157
A14 P
l MUX Al4
PD3
A15 Y \‘
MUX > A15
PD4 ® |
jj_ D-e—»| A16
PD5 °
74HC27
A0 - A13 P AC-A13
DO - D7 g » DO-D7
74HC00

R/W

Figure 4. Hardware and Software Paging Schematic Diagram

AN432/D MOTOROLA
5

METHOD B - COMBINED HARDWARE AND SOFTWARE TECHNIQUE

The basic approach to this method is the same as above
except that hardware replaces some of the software. A port
line together with M68HC11 addresses A14 and A15 are
NOR'd to control the address A16 line of the EPROM. This
signalis alsousedto selectbetweenthe portlineandaddress
line for A14 and A15 (see figure 4). The hardware between
the portlines controlling the A14 and A15 addresses enables
64K bytes of user code to be addressed at all times with 48K
bytes common to all the pages and then selecting one of five
16K byte pages of EPROM memory.

In the example, port D(3) and address A14 are connected to
the input of a 2 channel multiplexer such that port D(5),
address A14 and address A15 control which of these two
signals reaches the A14 pin of the EPROM. If addresses A14
or A15 are logic 1, the NOR gate outputs a logic 0 state,
ensuring the A16 pin of the EPROM is a logic 0. In this case
address A14 controls the A14 pin of the EPROM and similarly
A15 and port D(4) are selected such that address A15
controls the A15 pin of the EPROM. Thus the main 48K byte
portionof the EPROM memory may be addressed at all times
ataddresses $4000 up to $FFFF. With Port D(5) and address
A14 and A15 all at logic 0 (address range $0000 to $3FFF),
the port lines Port D(3) and Port D{4) are selected in place of
address lines A14 and A15. Page 0 is always selected
whenever Port D(5)isalogic 1. Thismakes it possible to have
one of the five pages of 16 K bytes paged into the 64K
addressing range of the HC11 while always maintaining the
main 48K bytes of user code in the memory map.

There are few restrictions on the user code since the
hardware provides the switching logic. Code can be made to
run from one paged area to another by jumping to an
intermediate routine in the main page. Port D is configured
to be in the input state following reset which results in the
main page plus page 0 of the paged memory in the 64K byte
address map since the port D lines each have a pull-up
resistor to maintain a logic high state after reset. A simple
change memory map routine can then bring in the desired
page at any time. Appendix B shows the assembly code for
a program that toggles different port pins in each of the 5
pages controlled from a main routine in the main page.
Figure 5 shows the 5 overlaid pages expanded toa 128K map
with the flow of the program demonstrating a change from
page 0 to page 1 by running the change page subroutine
shown in bold type.

Implementation in ‘'C’ language

The demonstration code was originally written in assembly
language but it may also be implemented in 'C’ as shown in
appendix C. The change of page routines were writtenin 'C’

with the first part an example of using in-line code and the
second part calling a function. The short example shows the
assembly code on the left, generated by the ‘C’ code on the
right. This is very similar to the assembly code example in
appendix B and so it is possible to extend the memory
addressing beyond 64K bytes with the ‘C’ language just as
with assembly language.

Interrupt conditions

The interrupt routines have normal latency when they reside
in the main 48K bytes page since this is always visible to the
CPU. The 25 cycle delay for changing pages may cause
problems for interrupt routines in a paged area of memory.

Important conditions

There are few special conditions for this method. The vectors
must point to the main page of memory where the page
changing routine must also reside. Routines in a paged area
can only move to another page via the main 48K page unless
the technique in method Ais utilised {i.e. page change routine
duplicated at identical addresses in both pages).

As with method A, the RAM and registers, and internal
EEPROM if available and enabled, will all appear in the
memory map in preference to external memory so care must
be taken to avoid these addresses or move the RAM or
registers away to different addresses.

The assembler generates 5 blocks of code with identical
addressranges used by the user code plus the main 48K byte
section. This could not be programmed directly into an
EPROM since the second and subsequent pages would
simply attempt to overwrite the first page. The code must
therefore be splitintoblocks and programmedinto the correct
partof the EPROM. Some linkers may be capable of perform-
ing this function automatically.

Figure 6 illustrates the expansion of the pages into a single
128K byte EPROM memory.

Customisation

Clearly the size of the paged areas may be made to suit the
application with for example a 32K byte main page and three
32K bytes of paged memory simply by not implementing
control over the A14 address of the EPROM and not includ-
ing Port D(3) control. Similarly by adding another port line to
control address A13, the main program can be 56K bytes with
9 pages of 8K bytes each.

MOTOROLA AN432/D
6

$00000

AND RETURN TO MAIN PROGRAM Page 0
$04000
1 SET UP PORT D FOR PAGE CONTROL
JSR TO PAGE 0 CHANGE SUBROUTINE
JSR TO PAGE 0
SR TO PAGE 1 Main Page
SR TO PAGE 1
JSR TO PAGE 2 CHANGE SUBROUTINE
JSR TO PAGE 2
etc
» CHANGE TO PAGE 0 AND RETURN
CHANGE TO PAGE 1 AND RETURN
3 CHANGE TO PAGE 2 AND RETURN
etc
$10000
Page 1
$14000
TOGGLE PORT A-5
AND RETURN TO MAIN Page 2
PROGRAM
$18000
TOGGLE PORT A-6
AND RETURN TO MAIN Page 3
PROGRAM
$1C000
TOGGLE PORT A-7
AND RETURN TO MAIN Page 4
PROGRAM
$1FFFF

1 - Return from page 0
2 - Jump to page 1 routine
3 - Return from page 1 to main page

Figure 5. lllustration of changing from Page 0 to Page 1

AN432/D MOTOROLA
7

$00000
Page 0
$04000
$0000 Page 0 2
Page 1
Page 2 \
$3FFF 5 3 Main Page
age
$4000 9
Page 4
$10000
Page 1
Main Page
$14000
$FFFF Page 2
$18000
Page 3
$1C000
Page 4
$1FFFF

Figure 6. Hardware and software paging representation

MOTOROLA AN432/D
8

Method A

Method B
Page 1
Page 2
$3FFF gP
$4000 age 3
Page 4
Main Page
$FFFF

Figure 7. Comparison of paging schemes

Page 1
$FFFF
IN GENERAL

In both methods, the registers may be moved to more
appropriate addresses. If the usage of RAMis not critical the
registers may be moved to address $0000 by writing $00 to
the INIT register immediately after reset. For the
MCB8HC11G5 this means losing 128 bytes of RAM but
results in a clean memory map above $1FF. Inthe examples,
the registers and RAM remain at the default addresses and
so care must be taken not to have user code from address
$0000 to $01FF and $1000 to $107F for the MC68HC11Gb.

Note thatthe MC68HC11E9and MCB8HC11A8have slightly .

different RAM and register address ranges plus the internal
EEPROM which should be disabled if not used.

Figure 7 demonstrates the differences between the paging
techniques by showing the overlap of the pages. The num-
ber and size of the pages can easily be modified by small
changes to the page change routines and hardware.

Beyond 128K bytes

Both techniques may be scaled up with several port lines
controliing address lines beyond address A15 with the
addition of further change page routines and enhancing the
return from interrupt routine to allow a return to a specific
page in method A or the addition of further multiplexing logic
in method B.

IN CONCLUSION

The two methods described in detail are the basis for many
other ways of controlling paging on a single large EPROM
memory device or several smaller EPROMs. It is a simple
matter to scale up or modify the technigues to suit a particular
application or EPROM. The software approach is the cheap-
est and allows for a main program of up to the full size of the
EPROM while the combined hardware and software ap-
proach has a maximum main program size of 48K bytes (in
this example} and no additional interrupt latency.

1

AN432/D MOTOROLA
9

APPENDIX A - SOFTWARE PAGING SCHEME

1 * %k Kk EXTENDA_ASC Fh A A KKK E KA A A KA KA KA RN KA I A I AR I I A KA I AR I AR A A KA A A A AR AR KAk kK
2 *

3 * TESTS EXTENDED MEMORY CONTROL

4 *

5 * For a single 1M bit (128K byte) EPROM split into 2 x 64K byte pages.

6 * Al6 is connected to Port D(S5) which then selects which half of

7 * the EPROM is being accessed. PD5 = 1 after reset since it is in

8 * the input state with a pull-up resistor to vdd.

g9 *

10 * This code is written for the 68HC11G5 MCU but can be easily modified

11 * to run on any 68HCll device. The 68HC11G5 has a non-multiplexed

12 * address and data bus in expanded mode.

13 *

14 *

15 *

16 *

17 LSS OSSR S s sees R Rt R e e N R R R R R R R R
18 *
19 00000000 PORTA EQU $00
20 00000001 DDRA EQU 501
21 00000004 PORTB EQU $04
22 00000006 PORTC EQU 506
23 00000007 DDRC EQU $07
24 00000008 PORTD EQU 508
25 00000009 DDRD EQU $09
26 00000024 TMSK2 EQU $24

27 00000025 TFLG2 EQU $25

28 00000040 RTII EQU $40

29 00000040 RTIF EQU $40

30 00000026 PACTL EQU $26

31 00000080 DDRA7 EQU $80

32 00001000 REGS EQU $1000

33 *

34 LSRR S S RSt RsRs st SRR R 2 s RS ey e T
35 *
36 * RAM definitions (from $0000 to $O1FF)
37 *
38 KKK KKK K I KKK I A KKK KK I A A AR A A AT A AT AR I XA KT A ALK Ak kR A A A KA KRR AA A KK *hk kK
39 ORG $0000
40 00000000 PAGE RMB 1 page number prior to interrupt
41 00000001 ’ TIME RMB 2 counter value for real time interrupt routine
42 *

43 00000020 NPAGE EQU $20 PORT D-5 page control line

44 00000200 ROMBASE EQU $0200 Avoid RAM (from $0 to S$1FF)

45 0000£800 CHANGE EQU $F800

46 0000ffce VECTORS EQU SFFCC

47 *

48

49 KA KKK KK KR T KT A A A KRR A AR A A KE A A AT A A A A A AR KA A KRR A AR A AR AKRKR KRN KRR KRR KKK KKK
50 * START OF MAIN PROGRAM
51 B S S S o
52 *
53 * page 0 (lst half of EPROM)
54 *
55 *
56 Bl o a2 e O S ik o = T N A A A S Ay are
57 org ROMBASE
58 LRSS RS R SRSt Rt ss sttt st iR s e S e e ey P R RS TR RS R
59 *

60 * Redirect reset vector to page 1

61 *

62 LA RS A SRS R RS R RS RS R RS R s Rt R RRe REErE EEE EEE E ER R R RS

MOTOROLA AN432/D
10

63 00000200 ce0200 RESETO LDX #RESET

64 00000203 7ef800 JMP CHGPAGEOQ

65

66 **************‘k*******************'k‘k*******************************‘k‘k******
67 * .

68 * 2nd half of page 0 loop running in page 1

69 *)

70 ******************‘k***************************‘k***‘k************************
71 00000206 181c0010 LOOPP0O BSET PORTA, Y, #$10 Toggle bit 4

72 0000020a 181d0010 BCLR PORTA, Y, #510

73 0000020e ceb216 LDX #LO0OPP1 get return address in page 1

74 00000211 7ef800 JMP CHGPAGEO jump to change page routine

75 *

76 ***************‘k****************‘k*********‘k********************************
77 *

78 * Real time interrupt service routine

79 *

80 ***k*********‘k**********************
81 00000214 181e254001 RTISRV BRSET TFLG2, Y, #RTIF, RTISERV

82 00000219 3b RTI return if not correct interrupt source
83 * This is an RTI because interrupt vector
84 * only points here when in page 1

85 *

86 0000021a RTISERV

87 0000021a 8640 LDAA #%01000000 page O interrupt starts here

88 0000021c 18a725 STAA TFLG2,Y clear RTI flag

89 0000021f 9602 LDAA TIME+1 get the time counter

90 00000221 4c INCA increment counter

91 00000222 b71004 STAA PCRTB+REGS store time in port B

92 00000225 de0Ol LDX TIME

93 00000227 08 INX

94 00000228 dfO01 STX TIME and copy back into RAM

95 0000022a 7ef80a JMP RETRTIO jump to RTI routine

96 *

97

98 ***k‘k***********************
99 *
100 * CHANGE PAGE ROUTINE
101 *
102 * This code must be executed with the I-bit set to prevent interrupts
103 * during the change if it is a jump for an interrupt routine.
104 * Otherwise PAGE could be updated and then another interrupt could
105 * occur before the PAGE was changed causing the first interrupt
106 * routine to return to the wrong page.
107 * The PAGE variable is not required for a normal jump and so it does

108 * not require the I-bit to be set (only the BSET is important) .
109 *
110 * This code is repeated for the same position in both pages

lll ***********‘k************‘k**
112 * jump routine

113 ORG CHANGE Bddress for this routine is fixed

114 * cycles

115 0000£800 CHGPAGEO

116 0000f800 8600 LDAA #0 2 set current page number = 0

117 0000f802 9700 STAA PAGE 2 store page page number

118 0000£804 181c0820 BSET PORTD, Y, #NPAGE 8 change page by setting PD-5

119 0000£808 6e00 JMP 0,X 3 This code is the same in both pages

120 *

121 *‘k**************************‘k*****‘k**
122 * return from interrupt routine running in page 0

123 *

124 *

125 * check if interrupt occurred while code was running in page 1

126 * and return to page 1 before the RTI command is performed

127 *

128 ******’k****************‘k*********‘k*****‘k****************‘k******************

I

ANA432/D MOTOROLA
i1

129 * cycles

130 0000f80a RETRTIO

131 0000f80a 9600 LDAA PAGE 2 get page the interrupt occured in
132 0000f80c 8101 CMPA #1 2 is it page 1

133 0000f80e 2701 BEQ RTIPAGEO 3 if yes then change page

134 0000f810 3b RTI 12 otherwise, return from interrupt

135 0000f811 RTIPAGEO

136 0000£f811 181c0820 BSET PORTD, Y, #NPAGE 8 change page and return from interrupt
137 0000£815 3b RTI 12 This codes is the same in both pages
138 *

139

140 L2 222222 RS R RS R R RS R RS SS SRS R R S R S R RS R RS Rt s Rttt R RS
141 * VECTORS

142 L2222 222282222228ttt it s sttt sss sttt st ottt sttt R n e S
143 *

144 ORG VECTORS

145 0000ffcc 0200 FDB RESETO EVENT 2

146 0000ffce 0200 FDB RESETO EVENT 1

147 0000ffd0 0200 FDB RESETO TIMER OVERFLOW 2

148 0000ffd2 0200 FDB RESETO INPUT CAPTURE 6 / OUTPUT COMPARE 7
149 0000ffd4 0200 FDB RESETO INPUT CAPTURE 5 / OUTPUT COMPARE 6
150 0000ffd6 0200 FDB RESETO SCI

151 0000ffd8 0200 FDB RESETO SPI

152 0000ffda 0200 FDB RESETO PULSE ACC INPUT

153 0000ffdc 0200 FDB RESETO PULSE ACC OVERFLOW

154 0000ffde 0200 FDB RESETO TIMER OVERFLOW 1

155 0000ffe0 0200 FDB RESETO INPUT CAPTURE 4 / OUTPUT COMPARE 5
156 0000ffe2 0200 FDB RESETO OUTPUT COMPARE 4

157 0000ffed 0200 FDB RESETO QUTPUT COMPARE 3

158 0000ffe6 0200 FDB RESETO OUTPUT COMPARE 2

159 0000ffe8 0200 FDB RESETO OUTPUT COMPARE 1

160 0000ffea 0200 FDB RESETO INPUT CAPTURE 3

161 0000ffec 0200 FDB RESETO INPUT CAPTURE 2

162 0000ffee 0200 FDB RESETO INPUT CAPTURE 1

163 000Cfff0 0214 FDB RTISRV REAL TIME INTRRUPT

164 0000fff2 0200 FDB RESETO IRQ

165 0000fff4 0200 FDB RESETO XIRQ

166 0000fff6 0200 FDB RESETO SWI

167 0000fff8 0200 FDB RESETO ILLEGAL OPCODE

168 0000fffa 0200 FDB RESETO COoP

169 0000fffc 0200 FDB RESETO CLOCK MONITOR

170 0000fffe 0200 FDB RESETO RESET

171 KK AKK A ALK KA KK I KKKk kkok ok kkkokokde sk kkk ko k ok &k k ok dok k& k& Kk k k% k ok kkk ko ko & ok ok & kok
172

173 B o 2 o B it SR IE S h Sl 0l ot i 0 o o o o B
174 *

175 * page 1 (2nd half of EPROM)

176 *)

177 *

178 B s e R o 2 o o S B B T o o 10 0 o A o 2 o o
179 % % ok v kK Kk Kk k ke ek ok ok ke ok ok e ke ok ok e ok kR ke ke ok gk e K ok ke ok ok ok Sk kR R R Rk Rk ok ke ok ke kR R R R kR Kk ok ok ok ke ke ok
180 *

181 * MAIN ROUTINE NOT UNDER INTERRUPT CONTROL

182 *

183 KA KA KA R A KA A K KA AR A A A A A AT I A KA I A KRR KK AR AR KA AT EAARKAARRKRAAAAKR AR RA ARk kkkkkkkk
184 *

185 ORG ROMBASE

186 00000200 B8eOlff RESET LDS #S$01FF

187 00000203 bd021b JSR SETUP initialise RTI interrupt and DDRs

188 00000206 86ff LOOP1 LDAA #SFF

189 00000208 181c0008 LOOP BSET PORTA, Y, #508 Toggle bit 3

190 0000020c 18140008 BCLR PORTA, Y, #3508

191 00000210 «ce0206 LDX #LOOPPO set up jump to other page

192 00000213 7ef800 JMP CHGPAGE1 go to other page

193 00000216 LOQPP1

194 00000216 4a DECA return point from other page

195 00000217 2eef BNE LOOP toggle port A

196 00000219 20eb BRA LOOP1- start loop again

197 *

MOTOROLA AN432/D
12

198 *************************‘k***

199 * INITIALISATION ROUTINE

200 *‘k**’k**‘k*****‘kﬁ***************‘k****‘k***‘k’(***‘k‘k*********‘k******’k********
201 *

202 0000021b Of SETUP SEI

203 0000021c 18cel000 LDY #$1000 Register address offset

204 00000220 86ff LDAR #SFF

205 00000222 b71001 STAA DDRA+REGS make port A all outputs

206 00000225 b71008 STAA PORTD+REGS make sure port D-5 is written a 1

207 00000228 b71009 STAA DDRD+REGS and only then make all outputs

208 0000022b 8640 LDAA #%$01000000

2092 0000022d b71025 STAA TFLG2+REGS clear RTI flag

210 00000230 b71024 STAA TMSK2+REGS enable RTI interrupt

211 00000233 Oe CLI

212 00000234 39 RTS

213 ****i*****‘k***************‘k***********i********************************
214 *

215 * Redirect to the Real time interrupt service routine

216 * Page 1 routine for service routine located in page 0

217 *********************‘k*********‘k***********************’k*******‘k*******
218 *

219 00000235 181e254001 INTRTI BRSET 1TFLG2,Y, #RTIF,GOODINT

220 0000023a 3b RTI return if not correct interrupt source
221 * This is an RTI because interrupt vector
222 * only points here when in page 1

223 *

224 0000023b GOODINT cycles

225 0000023k cel2la LDX $RTISERV 3 get the interrupt entry point in page 0
226 0000023e 7ef800C JMP CHGPAGE1 3 jump to change page routine

2217 *

228

229 *******‘k****‘k**************‘k*******************‘k‘k*********‘k*********‘k**
230 *

231 * CHANGE PAGE ROUTINE

232 *

233 * This code must be executed with the I-bit set to prevent interrupts
234 * during the change if it is a jump for an interrupt routine.

235 * Otherwise PAGE could be updated and then another interrupt could
236 * occur before the PAGE was changed causing the first interrupt

237 * routine to return to the wrong page.

238 * The PAGE variable is not required for a normal jump and so it does
239 * not require the I-bit to be set (only the BCLR is important) .

240 *

241 * This code is repeated for the same position in both pages

242 ***************************‘k**********‘k********************************
243 * jump routine

244 ORG CHANGE Address for this routine is fixed

245 * cycles

246 0000£800 CHGPAGE1

247 0000f800 8601 LDAA #51 2 set current page number = 1

248 0000£802 9700 STAA PAGE 2 store page page number

249 0000£804 181d0820 BCLR PORTD, Y, #NPAGE 8 change page by clearing PD-5

250 0000£808 6e00 JMP 0,X 3 This code is the same in both pages
251 *

252 *‘k******‘k‘k****‘k********‘k*************************************‘k*‘k‘k******
253 * return from interrupt routine running in page 0

254 *

255 *

256 * check if interrupt occurred while code was running in page 1
257 * and return to page 0 before the RTI command is performed

258 *

259 ‘k*****************k*k***************************************‘k***********‘k

1

AN432/D MOTOROLA
13

260 * cycles

261 0000f80a RETRTI1

262 0000f80a 9600 LDAA PAGE 2 get page the interrupt occured in
263 0000f80c 8100 CMPA %0 2 is it page 0

264 0000£f80e 2701 BEQ RTIPAGE1 3 if yes then change page

265 0000£810 3b RTI 12 otherwise, return from interrupt

266 0000f811 RTIPAGE1l

267 0000£811 181d0820 BCLR PORTD, Y, #NPAGE 8 change page and return from interrupt
268 0000f815 3b RTI 12 This codes is the same in both pages
269 *

270

271 *************‘k'k**
272 * VECTORS

273 **'k****************************
274 *

275 ORG VECTORS

276 0000ffce 0200 FDB RESET EVENT 2

277 0000ffce 0200 FDB RESET EVENT 1

278 0000ffd0 0200 FDB RESET TIMER OVERFLOW 2

279 0000f£fd2 0200 FDB RESET INPUT CAPTURE 6 / OUTPUT COMPARE 7
280 0000ffd4 0200 FDB RESET INPUT CAPTURE 5 / OUTPUT COMPARE 6
281 0000ffde 0200 FDB RESET SCI

282 0000ffd8 0200 FDB RESET SPI

283 0000ffda 0200 FDB RESET PULSE ACC INPUT

284 0000ffde 0200 FDB RESET PULSE ACC OVERFLOW

285 0000ffde 0200 FDB RESET TIMER OVERFLOW 1

286 0000ffe0 0200 FDB RESET INPUT CAPTURE 4 / OUTPUT COMPARE 5
287 0000ffe2 0200 FDB RESET QUTPUT COMPARE 4

288 0000ffed 0200 FDB RESET OUTPUT COMPARE 3

289 0000ffe6 0200 FDB RESET OUTPUT COMPARE 2

290 0000ffe8 0200 FDB RESET OUTPUT COMPARE 1

291 0000ffea 0200 FDB RESET INPUT CAPTURE 3

292 0000ffec 0200 FDB RESET INPUT CAPTURE 2

293 0000ffee 0200 FDB RESET INPUT CAPTURE 1

294 0Q00fff0 0235 FDB INTRTI REAL TIME INTRRUPT

295 0000fff2 0200 FDB RESET IRQ

296 0000fff4 0200 FDB RESET XIRQ

297 0000fffe 0200 FDB RESET SWI

298 0000fff8 0200 FDB RESET ILLEGAL OPCODE

299 0000fffa 0200 FDB RESET copP

300 0000fffc 0200 FDB RESET CLOCK MONITOR

301 0000fffe 0200 FDB RESET RESET

302 **************'k**
303 END

I

MOTOROLA ANA432/D
14

APPENDIX B - HARDWARE AND SOFTWARE PAGING SCHEME

l * % Kk kK kK k EXTENDB.ASC KA KK KKK A A KA A KA I A AR A KA KA IR KRAAKRNKIAKA AR ANk ko k ok hk ko xhkhkk
2 x

3 * TESTS EXTENDED MEMORY CONTROL

4 *

5 * for a single 1M bit (128K byte) EEPROM split into 48KB + 5 x 16KB
6 * $4000 - SFFFF 48K COMMON PAGE

7 * $0200 - S$3FFF 16K PAGES 0,1,2,3,4

8 *

9 * A multiplexer is used to switch between address and port D lines
10 * controlled by PD5 and Al6 is controlled by /(PD5+A14+Al5)

11 * This ensures that Address Alé is a logic 1 whenever Al4 or AlS are
12 * high and that all three lines must be low for the paged memory between
13 * addresses $00000 and $OFFFF.

14 *

15 *

16 * SOURCE CODE EPROM

17 * ADDRESS ADDRESS

18 * 0000 . —+ 00000

19 * | PAGE 0
20 * 4000 + - - - - - - - - - - - + 04000
21 * [|
22 * | MAIN PAGE
23 * ! !
24 * i |
25 * 0000 - + 10000

26 * | PAGE 1 |

27 * 0000 - + 14000

28 * | PAGE 2 |
29 * 0000 e ————— - + 18000

30 * | PAGE 3 |

31 * 0000 e et el + 1C000

32 * | PAGE 4 |

33 * 3FFF ———————————— + 1FFFF

34 *

{Continued overleaf)

ANA432/D MOTOROLA
15

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 —--—-—1 B

*
* po
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
58 * | -
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Al4 | ey
——--—1 A

AlS | et
—=-=-—1 A I
I I

| MUX |————=--——===m=== —_—
PD4 ! I
!

|

|

o | EPROM

59 +=mn | |
60 |
61 +
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

|
l
i
|
+
|
| 1M BIT
|
|
|
|
I
|
i

PD3,PD4 AND PD5 = 1 AFTER RESET
STNCE PULL-UP RESISTORS FORCE HIGH STATE WITH PORT D AS INPUTS
WHICH DEFAULTS TO MAIN PROGRAM PLUS PAGE 0

'k******************************k****‘k********************************

X

MOTOROLA AN432/D
16

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

00000000
00000001
00000004
00000006
00000007
00000008
00000009
00000024
00000025
00000040
00000040
00000026
00000080
00001000

00000000

00000200
00004000
0000ffcc

00000000
00000020
00000000
00000008
00000010
00000018

*

PORTA EQU 500

DDRA EQU $01 68HC11G5 only
PORTB EQU $04

PORTC EQU $06

DDRC EQU $07

PORTD EQU $08

DDRD EQU $09

TMSK2 EQU $24

TFLG2 EQU $25

RTII EQU $40

RTIF EQU $40

PACTL EQU $26

DDRA7 EQU 580 68HC11EQ only
REGS EQU $1000

*

Yok ke kK K K KR K K Kk K Kk Kk Kk kK K Kk sk kR ek kR ok Kk kR ok ok ok ke ke ke ke vk gk ok ok sk ke ok ok R kR R R Kk Rk ki k ok ki ke ko ok ok
*

* RAM definitions

*

W ok K ke v ek T ok ke ke ok sk ek ke ke kK vk e sk ke kK R e ok kR K Ok ke ko ke ke ke ek ke kK ok sk ke ok ke K e sk ok ok ke ke ok ke ok ok ke ok ok ok Rk

ORG 30000
TIME RMB 2 Real time interrupt routine counter
*
ROMBASEQ EQU 50200 Avoid RAM (from $0 to S$1FF)

ROMBASE1 EQU $4000
VECTORS EQU $SFFCC

*

AR A A KA IR I A A A AT A KA A KR I EIKK AT A K AAKKRR AT I AR RAKA R AR R hhk kA ko ko k ok dkdk ok dkkkk

* PAGE 0 = $00000 - SC3FFF (Al6=0,Al15=0,Al14=0) => PAGE0=%00100000
* MAIN = $04000 - $OFFFF (Al6=0) => START=%001XX000
* PAGE 1 = $10000 - $13FFF (Al6=1,A15=0,Al14=0) => PAGE1=%00000000
* PAGE 2 = $14000 - $17FFF (Al6=1,A15=0,Al14=1) => PAGE2=%00001000
* PAGE 3 = $18000 - $1BFFF (Al6=1,A15=1,Al14=0) => PAGE3=%00010000
* PAGE 4 = $1C000 - S$1FFFF (Al6=1,Al5=1,Al4=1) => PAGE4=%00011000
*

* PAGEn is added to %xx000xxx to give the state of port

* D(3), D(4) and D(5).

*

START EQU $00

PAGEQ EQU $20

PAGE1l EQU $00

PAGE2 EQU $08

PAGE3 EQU $10

PAGE4 EQU $18

*

Kk kA Kk kK k ok kA kA A kAR Ak ko kA A A KA KA A A A A KA KX IR IR I I AR I AR KA I LKA Kk K h ok kk ok kkkokk ok

AN432/D

MOTOROLA
17

128 PO ORI RIS ST STRTRr RIS O S SRR EE S S S ES S U kst e

129 *

130 * page 0 (lst half of EPROM)

131 *

132 *

133 PO T S SR SR S SR R SRRkt St
134 org ROMBASEQ

135 00000200 181c0008 LOOPPO BSET PORTA, Y, #5308

136 00000204 181d0008 BCLR PORTA, Y, #508 Toggle Port A-3

137 00000208 7e4014 JMP MAINO return to main page

138 *

139 IR PN TSR NSRS SR S S LSS S S S S S S S A
140 * START OF MAIN PROGRAM

141 ***‘k********‘k***********
142 *

143 * MAIN ROUTINE NOT UNDER INTERRUPT CONTROL

144 *

145 *********************************‘k**
146 *

147 ORG ROMBASE1

148 00004000 8ellff RESET LDS #S01FF

149 00004003 bd402e JSR SETUP initialise RTI interrupt and DDRs
150 00004006 181c0840 LOOP BSET PORTD, Y, #$40

151 0000400a 181d0840 BCLR PORTD, Y, #540 main routine toggles port D-2

152 0000400e bd4062 JSR CHGPAGEO select page 0

153 00004011 7e0200 JMP LOOPPO Toggle Port A-3

154 00004014 bd40ed MAING JSR CHGPAGE1 select page 1

155 00004017 1»d0200 JSR LOOPP1 Toggle Port A-4

156 0000401a bd4078 JSR CHGPAGEZ2 select page 2

157 0000401d bd0200 JSR LOOPP2 Toggle Port A-5

158 00004020 bd4083 JSR CHGPAGE3 select page 3

159 00004023 70200 JMP LOOPP3 Toggle Port A-6

160 00004026 bd408e MAIN3 JSR CHGPAGE4 select page 4

161 00004029 7e0200 JMP LOOPP4 Toggle Port A-7

162 0000402¢c 20d8 MAIN4 BRA LOOP start loop again

163 *

164 *‘k******t*********************‘k***‘k***************************************
165 * INITIALISATION ROUTINE

166 ********************************k‘k***‘k********‘k*'k********************‘k*****
167 *

168 0000402e Of SETUP SEI

169 0000402f 18cel000 LDY #$1000 Register address offset

170 00004033 86ff LDAA #SFF

171 00004035 b71001 STAR DDRA+REGS make port A all outputs (68HC11GS5)
172 00004038 b71009 STAA DDRD+REGS make port D all outputs

173 0000403b 7£0000 CLR TIME

174 0000403e 7£0001 CLR TIME+1

175 00004041 4f CLRA

176 00004042 b71000 STAA PORTA+REGS

177 00004045 b71008 STAA PORTD+REGS

178 00004048 8640 LDAA #%01000000

179 0000404a b71025 STAA TFLG2+REGS clear the RTI flag

180 0000404d b71024 STAA TMSK2+REGS enable RTI interrupt

181 00004050 Oe CLI

182 00004051 39 RTS

183 *

T

MOTOROLA ANA432/D
18

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
211
218
219
220
221
222
223
224
225
226
227
228

00004052
00004054
00004057
00004059
0000405¢
0000405e
0000405f
00004061

8640
b71025
9601
b71004
de00
08
dfoo
3b

Kk A AR Ak kAR A A A KA A A R AT A A A I IR AAAR KRR K AAIAIARKR A A KRA A A AKX KK KA KA KKK K, ok Kk

*

*

*

Real time interrupt service routine

KA I KA KKK A K I I KA AR A KA IR KA I I AAAKRKR KR I KA TAA KR I KA LARNA KKK Kk ko ok kA& K KRk kkkokok ke kkok ok

#%01000000
TFLG2+REGS
TIME+1
PORTB+REGS
TIME

RTISRV

*

LDAA
STAA
LDAA
STAA
LDX
INX
STX
RTI

TIME

clear RTI flag

store counter in port B
get time counter
increment counter

save counter value in RAM
Return from interrupt

(222 RSS2 2222222222822 2022222ttt R sttt sttt e St S

* CHANGE PAGE

contains the 1’s complement of new page number address

PAGE0=%00100000
START=%001XXC00
PAGE1=%00000000
PAGE2=%00001000
PAGE3=%00010000
PAGE4=%00011000

* acc B (bits 3-5)

*

* SOURCE CODE EPROM

* ADDRESS ADDRESS

* 0000 T mtatetettelete bty —+ 00000

* | PAGE 0 !

* 4000 - - - - - - - - - - - + 04000

* | |

* I MAIN PAGE [

* | I

* ! !

* 0000 - —+ 10000

* I PAGE 1 [

* 0000 — - ——+ 14000

* | PAGE 2 |

* 0000 - + 18000

* f PAGE 3 |

* 0000 F—— e mmmm—mm o + 1C000

* I PAGE 4 [

* 3FFF e + 1FFFF

*

* PAGE 0 = $00000 - $O3FFF (Al16=0,A15=0,A14=0)
* MAIN = $04000 - SOFFFF (Al6=0)

* PAGE 1 = $10000 - $13FFF (Al6=1,A15=0,A14=0)
* PAGE 2 = $14000 - $17FFF (Alé6=1,215=0,Al4=1)
* PAGE 3 = $18000 - $1BFFF (Alé=1,A15=1,A14=0)
* PAGE 4 = $1C000 - $1FFFF (Al6=1,Al15=1,Al4=1)
*

22222228220 RRR RS st REE RS SS R EREEEEEEREEE LSRR EREEES LSRR R RS

AN432/D

MOTOROLA
19

229

*

230 00004062 CHGPAGED

231 00004062 b61008 LDAA PORTD+REGS get port D data

232 00004065 84c? ANDA #%11000111 make middle 3 bits low state

233 00004067 8b20 ADDA #PAGEO add PAGE descriptor to this

234 00004069 b71008 STAA PORTD+REGS write back to port D

235 0000406¢c 3% RTS {only bits 3, 4 and 5 are changed)
236 *

237 0000406d CHGPAGE1l

238 0000406d b61008 LDAA PORTD+REGS get port D data

239 00004070 84c7 ANDA $#%11000111 make middle 3 bits low state

240 00004072 8b0O ADDA #PAGE1l add PAGE descriptoer to this

241 00004074 b71008 STAA PORTD+REGS write back to port D

242 00004077 39 RTS (only bits 3, 4 and 5 are changed)
243 *

244 00004078 CHGPAGE?2

245 00004078 61008 LDAA PORTD+REGS get port D data

246 0000407b 84c7 ANDA $#%11000111 make middle 3 bits low state

247 00004074 8b08 ADDA #PAGE2 add PAGE descriptor to this

248 0000407f Db71008 STAA PORTD+REGS write back to port D

249 00004082 39 RTS (only bits 3, 4 and 5 are changed)
250 *

251 00004083 CHGPAGE3

252 00004083 b61008 LDAA PORTD+REGS get port D data

253 00004086 84c7 ANDA $#%11000111 make middle 3 bits low state

254 00004088 8bl0 ADDA #PAGE3 add PAGE descriptor to this

255 0000408a b»71008 STAA PORTD+REGS write back to port D

256 0000408d 39 RTS (only bits 3, 4 and 5 are changed)
257 *

258 0000408e CHGPAGE4

259 0000408e b61008 LDAA PORTD+REGS get port D data

260 00004091 84c7 ANDA #%11000111 make middle 3 bits low state

261 00004093 8bls8 ADDA #PAGE4 add PAGE descriptor to this

262 00004095 b71008 STAA PORTD+REGS write back to port D

263 00004098 39 RTS (only bits 3, 4 and 5 are changed)
264 *

265 *********‘k‘k************‘k***‘k***********‘k**********************************
266 * VECTORS

267 **
268 *

269 ORG VECTORS

270 0000ffcc 4000 FDB RESET EVENT 2

271 0000ffce 4000 FDB RESET EVENT 1

272 0000ffd40 4000 FDB RESET TIMER OVERFLOW 2

273 0000ffd2 4000 FDB RESET INPUT CAPTURE 6 / OUTPUT COMPARE 7
274 Q000ffd4 4000 FDB RESET INPUT CAPTURE S / OUTPUT COMPARE 6
275 0000f£fdé 4000 FDB RESET sSCI

276 0000ffd8 4000 FDB RESET SPI

277 0000ffda 4000 FDB RESET PULSE ACC INPUT

278 0000ffdc 4000 FDB RESET PULSE ACC OVERFLOW

279 0000ffde 4000 FDB RESET TIMER OVERFLOW 1

280 0000ffe0 4000 FDB RESET INPUT CAPTURE 4 / OUTPUT COMPARE 5
281 0000ffe2 4000 FDB RESET OUTPUT COMPARE 4

282 0000ffed 4000 FDB RESET OUTPUT COMPARE 3

283 0000ffe6 4000 FDB RESET OUTPUT COMPARE 2

15—

MOTOROLA AN432/D
20

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

0000ffe8
0000ffea
0000ffec
0000ffee
0000fff0
0000fff2
0000fff4
0000fffé6
00Q0fff8
0000fffa
0000fffc
0000fffe

00000200
00000204
00000208

00000200
00000204
00000208

00000200
00000204
00000208

00000200
00000204
00000208

4000
4000
4000
4000
4052
4000
4000
4000
4000
4000
4000
4000

181¢0010
18140010
39

181c0020
18140020
39

181c0040
18140040
7ed4026

181c0080
18140080
Ted02c

FDB RESET OUTPUT COMPARE 1
FDB RESET INPUT CAPTURE 3
FDB RESET INPUT CAPTURE 2
FDB RESET INPUT CAPTURE 1
FDB RTISRV REAL TIME INTRRUPT
FDB RESET IRQ

FDB RESET XIRQ

FDB RESET SWI

FDB RESET ILLEGAL OPCODE
FDB RESET COP

FDB RESET CLOCK MONITOR
FDB RESET RESET

*
‘k***********‘k***************‘k*****i*****‘k**'k*****‘k*******************‘k****
L R e St o S Lo o ol o o o St S Sttt st
*

* page 1 (2nd half of EPROM)

*

*

L U I AT U U TR ARV R S A R S S il I Rt b 0 o o o etk ks i

org ROMBASED

LOOPP1 BSET PORTA, Y, #510
BCLR PORTA, Y, #5$10 Toggle Port A-4
RTS

L SRR RS RrU A ST R BT R SR IR ST N Rttt b bk b b
*

* page 2 (2nd half of EPROM)
*

*

R ST RIS UTUTEE UV R R SN U ST AR N S A A R Rt i s bk b bt b b S

org ROMBASEQ

LOOPP2 BSET PORTA, Y, #$20
BCLR PORTA, Y, #$20 Toggle Port A-5
RTS

O R R I G S Sr T TIPSO ST R R ST SRR LA kit i bl S s
*

* page 3 (2nd half of EPRCM)
*

*

S S AR 2tk b bt il ot o

org ROMBASEOQ
LOOPP3 BSET PORTA, Y, #$40
BCLR PORTA, Y, #540 Toggle Port A-6
JMP MAIN3 return to main page
L b 20 o 20 e A0 A aats a0 2 LS LU S A s o o e e 21 s e e e e et e
*
* page 4 (2nd half of EPROM)
*
*
T R T T o e s o 2T o2 S 2 o o o o o o e S e
org ROMBASEO
LOOPP4 BSET PORTA, Y, #580
BCLR PORTA, Y, #5380 Toggle Port A-7
JMP MAIN4 return to main page
*‘k*******************************‘k'k***********‘k***********************‘k***
END

ANA432/D

MOTOROLA

21

APPENDIX C - ‘C' LANGUAGE ROUTINES FOR METHOD B

/* CHGPAGE.C
C coded extended memory control for 68HC11

* % A X

*/
*
[E2E2 2222 S s 2 X 2SS 22 eSSt st ississssss ittt st ottt sl

/* HC1ll structure - I/0 registers for MC68HCll */

struct HC1l1lIO

unsigned char PORTA; /* Port A - 3 input only, 5 output only */
unsigned char Reserved; /* Motorola’s unknown register */
unsigned char PIOC; /* Parallel I/0 control */

unsigned char PORTC; /* Port C */

unsigned char PORTB; /* Port B - Output only */

unsigned char PORTCL; /* Alternate port C latch */
unsigned char Reservedl; /* Motorola’s unknown register 2 */
unsigned char DDRC; /* Data direction for port C */
unsigned char PORTD; /* Port D */

unsigned char DDRD; /* Data direction for port D */
unsigned char PORTE; /* Port E */

}i
/¥ End of structure HC1l1lIO */

% % % % K K K Kk KKk ko ko %k ok sk ok ok s ek e ok ok sk e e e e gk ok ke ko kR ok kK R R R R Rk kR Kk kR Rk ke ke k ok ke kR ok ok

*

* #define regbase (*(struct HC11IO *) 0x1000)

* typedef unsigned char byte;

*

* /* Some arbitrary user defined values */

* #define page0 0x20

* #define pagel 0x00

* #define page2 0x08

* #define pagemask 0Oxc?

*

* /* Macro to generate in line code */

* #define chgpage (a) regbase.PORTD = (regbase.PORTD & pagemask) + a
*

* /* Function prototype */

* void func_chgpage (byte p):;

* /* Externally defined functions in separate pages */

* extern void func_in_page0O(); /* Dummy function in page 0 */
* extern void func_in_page2(); /* Dummy function in page 2 */
*

*

MOTOROLA ANA432/D
22

main ()
6 0000 main: fbegin
{
chgpage (page?2) ;
/* Change page using inline code */

8 0000 f61008 ldab $1008
9 0003 cdc7 andb #199
10 0005 chO8 addb #8
11 0007 £71008 stab $1008
* func_in_page2();
/* Call function in page 2 */
13 000a >bd0000 jsr func_in_page2
func_chgpage (page0) ;
/* Change page using function call */
15 000d «<¢c0020 ldd #32
16 0010 8do4 bsr func_chgpage
* func_in_pageO();
/* Call function in page 0 */
18 0012 >bd0000 Jjsr func_in_page0
* }
20 0015 3¢ rts
21 0016 fend
*
void func chgpage (p)
* byte p;
24 0016 func_chgpage: fbegin
25 0016 37 pshb
* {
* chgpage (p) ;
27 0017 £61008 ldab $1008
28 00la c4c7 andb #199
29 001lc 30 tsx
30 001d ebOO addb 0,x
31 001f £71008 stab $1008
* }
33 0022 31 ins
34 0023 39 rts
35 0024 fend
36 import func_in_page?2
37 import func_in_page0
38 end

AN432/D MOTOROLA
23

Motorola reserves the right to make changes without further notice to any products herein toimprove reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its products for the
use intended. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Literature Distribution Centres:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

ASIA PACIFIC: Motorola Semiconductors (H.K.) Ltd.; Silicon Harbour Center, No. 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawaku, Tokyo 141, Japan.

L MOTOROLA

Printed in Great Britain by Tavistock Press (Bedford) Ltd. 4500 7/90

ANA432/D

