

Fault Protection, -0.4 pC Q_{INJ}, 8:1/Dual 4:1 Multiplexers

ADG5208F/ADG5209F

Data Sheet

FEATURES

Overvoltage protection up to -55 V and +55 V Power-off protection up to -55 V and +55 V Overvoltage detection on source pins Low charge injection (Q_{INJ}): -0.4 pC Low on capacitance

ADG5208F: 20 pF ADG5209F: 14 pF

Latch-up immune under any circumstance Known state without digital inputs present V_{SS} to V_{DD} analog signal range ± 5 V to ± 22 V dual supply operation 8 V to 44 V single-supply operation Fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V

APPLICATIONS

Analog input/output modules
Process control/distributed control systems
Data acquisition
Instrumentation
Avionics
Automatic test equipment
Communication systems
Relay replacement

GENERAL DESCRIPTION

The ADG5208F and ADG5209F are 8:1 and dual 4:1 analog multiplexers. The ADG5208F switches one of eight inputs to a common output, and the ADG5209F switches one of four differential inputs to a common differential output. An EN input on both devices enables or disables the device. Each channel conducts equally well in both directions when on, and each channel has an input signal range that extends to the supplies. The digital inputs are compatible with 3 V logic inputs over the full operating supply range.

When no power supplies are present, the channel remains in the off condition, and the switch inputs are high impedance. Under normal operating conditions, if the analog input signal levels on any Sx pin exceed $V_{\rm DD}$ or V_{SS} by a threshold voltage ($V_{\rm T}$) the channel turns off and the drain pin is pulled to the supply voltage that was exceeded. Input signal levels of up to -55 V or +55 V relative to ground are blocked, in both the powered and unpowered conditions.

Rev. 0

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

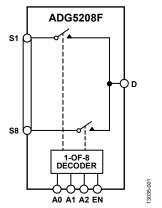


Figure 1. ADG5208F Functional Block Diagram

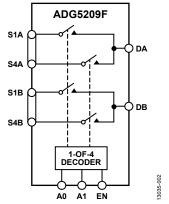


Figure 2. ADG5209F Functional Block Diagram

The low capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch switching and fast settling times are required.

PRODUCT HIGHLIGHTS

- 1. The source pins are protected against voltages greater than the supply rails, up to -55 V and +55 V.
- 2. The source pins are protected against voltages between –55 V and +55 V in an unpowered state.
- 3. Trench isolation guards against latch-up.
- 4. Optimized for low charge injection and on capacitance.
- The ADG5208F/ADG5209F can be operated from a dual supply of ±5 V up to ±22 V or a single power supply of 8 V up to 44 V.

ADG5208F/ADG5209F

Data Sheet

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagrams	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
±15 V Dual Supply	. 3
±20 V Dual Supply	. 5
12 V Single Supply	. 7
36 V Single Supply	. 9
Continuous Current per Channel, Sx, D, or Dx	11
Absolute Maximum Ratings	12
ESD Caution	12
Pin Configurations and Function Descriptions	13
Typical Performance Characteristics	15

Test Circuits
Terminology
Theory of Operation
Switch Architecture
Fault Protection
Applications Information
Power Supply Rails
Power Supply Sequencing Protection
Signal Range
Power Supply Recommendations
High Voltage Surge Suppression
Large Voltage, High Frequency Signals
Outline Dimensions
Ordering Guide 27

REVISION HISTORY

4/15—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, $C_{DECOUPLING}$ = 0.1 μF , unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, Ron	250			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	
	250			Ωtyp	$V_S = \pm 9 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	
On-Resistance Match Between Channels, ΔR _{ON}	2.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
	6	12	13	Ω max	
	2.5			Ωtyp	$V_S = \pm 9 \text{ V, } I_S = -1 \text{ mA}$
	6	12	13	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	6.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
, , , , , , , , , , , , , , , , , , , ,	8	9	9	Ω max	
	1.5			Ωtyp	$V_{S} = \pm 9 \text{ V, } I_{S} = -1 \text{ mA}$
	3.5	4	4	Ω max	13 17 17 18 1 11 11 11
Threshold Voltage, V _T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS	0.7			1 17 17	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 34}$
Source on Leakage, is (on)	±1	±2	±5	nA max	v ₃ = ±10 v, v ₀ = +10 v, see Figure 34
Drain Off Leakage, I _D (Off)	±0.1	12	1 13	nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}, \text{ see Figure 34}$
Dialii Oli Leakage, ib (Oli)	±0.1	±5	±10	nA max	vs - ±10 v, vb - +10 v, see i igule 34
Channel On Leakage, I _D (On), I _S (On)	±0.3	1 ±3	1 ±10		V - V - +10 V see Figure 25
Charmer On Leakage, ib (Oh), is (Oh)	±0.5	±20	±25	nA typ nA max	$V_S = V_D = \pm 10 \text{ V}$, see Figure 35
FAULT	11.5	120	123	IIA IIIax	
Source Leakage Current, Is With Overvoltage	±66		±78	µА typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}, \text{GND} = 0 \text{ V}, V_S = \pm 55 \text{ V},$ see Figure 33
Power Supplies Grounded or Floating	±25		±40	µА typ	$V_{DD} = 0$ V or floating, $V_{SS} = 0$ V or floating, GND = 0 V, Ax = 0 V or floating, $V_{S} = \pm 55$ V, see Figure 32
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}, \text{GND} = 0 \text{ V}, V_S = \pm 55 \text{ V},$ see Figure 33
	±50	±70	±90	nA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{Ax} = 0 \text{ V},$ see Figure 32
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	µА typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ±55 V, Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
	i	1	0.8	V max	
Low, V _{INL}					
	±0.7			μΑ typ	$V_{IN} = V_{GND}$ or V_{DD}
Low, V _{INL} Input Current, I _{INL} or I _{INH}	±0.7 ±1.1		±1.2	μΑ typ μΑ max	$V_{IN} = V_{GND} \text{ or } V_{DD}$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	180			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	230	245	260	ns max	$V_S = 8 \text{ V}$, see Figure 45
ton (EN)	180			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	235	250	260	ns max	$V_S = 10 \text{ V}$, see Figure 44
toff (EN)	95			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	125	145	145	ns max	$V_S = 10 \text{ V}$, see Figure 44
Break-Before-Make Time Delay, t _D	130			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
			90	ns min	$V_S = 10 \text{ V}$, see Figure 43
Overvoltage Response Time, tresponse	90			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
	115	130	130	ns max	
Overvoltage Recovery Time, t _{RECOVERY}	745			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
	945	965	970	ns max	
Charge Injection, Q _{INJ}	-0.4			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 46}$
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Channel-to-Channel Crosstalk				, , , , , , , , , , , , , , , , , , ,	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
Adjacent Channels	-75			dB typ	
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise,	0.005			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 15 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, see
THD + N	0.000			, , , , ,	Figure 37
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
ADG5208F	190			MHz typ	
ADG5209F	290			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39
C _s (Off)	4			pF typ	$V_s = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)				F - 27 F	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
ADG5208F	13			pF typ	
ADG5209F	8			pF typ	
C_D (On), C_S (On)				p. 1) p	$V_S = 0 V, f = 1 MHz$
ADG5208F	20			pF typ	V3 V71 111112
ADG5209F	14			pF typ	
POWER REQUIREMENTS	17			рг сур	$V_{DD} = +16.5 \text{ V}; V_{SS} = -16.5 \text{ V}; \text{GND} = 0 \text{ V}; \text{ digital}$
FOWER REQUIREMENTS					inputs = 0 V, 5 V, or V _{DD}
Normal Mode					
IDD	1.3			mA typ	
100	2		2	mA max	
Ignd	0.75		_	mA typ	
IGNU	1.25		1.25	mA max	
Iss	0.65		1.23	mA typ	
122	0.8		0.85	mA max	
Fault Mode	0.8		0.83	IIIA IIIax	$V_S = \pm 55 \text{ V}$
	1.6			m A tun	VS - ±33 V
I_{DD}	2.2		2.3	mA typ mA max	
I			2.3		
I_{GND}	0.9		1.7	mA typ	
	1.6		1.7	mA max	
I_{SS}	0.65			mA typ	
V 4/	1.0		1.1	mA max	CND OV
V_{DD}/V_{SS}			±5	V min	GND = 0 V
			±22	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

±20 V DUAL SUPPLY

 $V_{\text{DD}} = 20 \text{ V} \pm 10\%, V_{\text{SS}} = -20 \text{ V} \pm 10\%, GND = 0 \text{ V}, C_{\text{DECOUPLING}} = 0.1 \text{ \muF, unless otherwise noted.}$

Table 2.

Parameter	+25°C	-40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, R _{ON}	260			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$
	280	345	405	Ω max	
	250			Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	, s
On-Resistance Match Between Channels, ARon	2.5		323	Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$
	6	12	13	Ω max	
	2.5			Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	6	12	13	Ω max	, .
On-Resistance Flatness, R _{FLAT(ON)}	12.5			Ωtyp	$V_{S} = \pm 15 \text{ V}, I_{S} = -1 \text{ mA}$
OT THE SISTEMICE FIGURESS, THEAT(ON)	14	15	15	Ω max	V3 - ±13 V,13 - 111111
	1.5	13	'3	Ωtyp	$V_S = \pm 13.5 \text{ V}, I_S = -1 \text{ mA}$
	3.5	4	4	Ω max	v3 - ± 13.3 v, 15 - − 1 11117
Throshold Voltago V		4	4		Con Eiguro 39
Threshold Voltage, V _T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.1	_	_	nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 34}$
	±1	±2	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	
Channel On Leakage, ID (On), Is (On)	±0.3			nA typ	$V_S = V_D = \pm 15 \text{ V}$, see Figure 35
	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, Is					
With Overvoltage	±66			μA typ	$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}$ see Figure 33
Power Supplies Grounded or Floating	±25			μA typ	$V_{DD} = 0$ V or floating, $V_{SS} = 0$ V or floating, GND = 0 V, Ax = 0 V or floating, $V_{S} = \pm 55$ V, see Figure 32
Drain Leakage Current, ID					
With Overvoltage	±10			nA typ	$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}$ see Figure 33
	±2	±2	±2	μA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{ Ax} = 0 \text{ V}, \text{ see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ± 55 V, Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
•	±1.1		±1.2	μA max	
	5.0	1		pF typ	

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	190			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	245	270	285	ns max	$V_S = 10 \text{ V}$, see Figure 45
ton (EN)	185			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	250	270	280	ns max	$V_S = 10 \text{ V}$, see Figure 44
t _{OFF} (EN)	95			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	120	145	145	ns max	$V_S = 10 \text{ V}$, see Figure 44
Break-Before-Make Time Delay, t _D	140			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
			90	ns min	$V_S = 10 \text{ V}$, see Figure 43
Overvoltage Response Time, tresponse	75			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
3 , , , , , , , , , , , , , , , , , , ,	105	105	105	ns max	
Overvoltage Recovery Time, trecovery	820			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
o ververage necessary mile, which were	1100	1250	1400	ns max	,, et a p., see ga. e
Charge Injection, Q _{INJ}	-0.8	1230	1100	pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 46
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Channel-to-Channel Crosstalk	_,0			ab typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 40
	–75			dD tur	N _L = 30 12, C _L = 3 pr, r = 1 Min2, see rigure 40
Adjacent Channels Nonadjacent Channels				dB typ	
•	-88			dB typ	B 1010 V 20V (20U (20U
Total Harmonic Distortion Plus Noise, THD + N	0.005			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 20 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$, see Figure 37
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
	100			MHztym	N _L = 30 12, C _L = 3 pr, see rigule 39
ADG5208F	190			MHz typ	
ADG5209F	290			MHz typ	D 500 C 5 5 5 1 MHz 5: 20
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39
C _s (Off)	4			pF typ	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)	1				$V_S = 0 V, f = 1 MHz$
ADG5208F	12			pF typ	
ADG5209F	8			pF typ	
C_D (On), C_S (On)					$V_S = 0 V, f = 1 MHz$
ADG5208F	19			pF typ	
ADG5209F	14			pF typ	
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}; V_{SS} = -22 \text{ V}; GND = 0 \text{ V}; digital$
					inputs = 0 V , 5 V , or V_{DD}
Normal Mode					
I _{DD}	1.3			mA typ	
	2		2	mA max	
I _{GND}	0.75			mA typ	
	1.25		1.25	mA max	
Iss	0.65			mA typ	
	0.8		0.85	mA max	
Fault Mode	1				$V_S = \pm 55 \text{ V}$
I_{DD}	1.6			mA typ	
	2.2		2.3	mA max	
I_{GND}	0.9			mA typ	
	1.6		1.7	mA max	
I _{SS}	0.65			mA typ	
٠	1.0		1.1	mA max	
V_{DD}/V_{SS}	1.5		±5	V min	GND = 0 V
v vu v v v v v v v v v v v v v v v v v	1		±22	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, $C_{\text{DECOUPLING}}$ = 0.1 μF , unless otherwise noted.

Table 3.

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			0 V to V _{DD}	V	_
On Resistance, R _{ON}	630			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
	690	710	730	Ω max	
	270			Ωtyp	$V_S = 3.5 \text{ V to } 8.5 \text{ V, } I_S = -1 \text{ mA}$
	290	355	410	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	6			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$
•	17	19	19	Ω max	
	3			Ωtyp	$V_S = 3.5 \text{ V to } 8.5 \text{ V, } I_S = -1 \text{ mA}$
	6.5	11	12	Ω max	13 0.0 1 0.0 1, 3
On-Resistance Flatness, R _{FLAT(ON)}	380			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$
On hesistance hadress, head (ON)	440	460	460	Ω max	73 07 10 17 15 1 11111
	25	100		Ωtyp	$V_s = 3.5 \text{ V to } 8.5 \text{ V}, I_s = -1 \text{ mA}$
	27	28	28	Ω max	13 3.5 7 10 3.5 77.5
Threshold Voltage, V_T	0.7	20	20	V typ	See Figure 28
LEAKAGE CURRENTS	0.7			Vtyp	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{SD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$ $V_{S} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
Source Off Leakage, is (Off)	±0.1	±2	±5	nA max	vs = 1 v/10 v, vb = 10 v/1 v, see Figure 34
Drain Off Leakage, I _D (Off)		工工	Ξ5		V 1V/10V V 10V/1V 200 Figure 24
Drain Oil Leakage, ib (Oil)	±0.1		.10	nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	V V 1V/10V Figure 25
Channel On Leakage, I_D (On), I_S (On)	±0.3	. 20	. 25	nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$, see Figure 35
FALUE	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, I _S					N 42 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
With Overvoltage	±63			μA typ	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
Power Supplies Grounded or Floating	±25			μA typ	$V_{DD} = 0$ V or floating, $V_{SS} = 0$ V or floating, GND = 0 V, $Ax = 0$ V or floating, $V_S = \pm 55$ V, see Figure 32
Drain Leakage Current, I _D					
With Overvoltage	±10			nA typ	$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V},$ see Figure 33
	±50	±70	±90	nA max	
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{ Ax} = 0 \text{ V}, \text{ see Figure 32}$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ± 55 V, Ax = 0 V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
•	±1.1		±1.2	μA max	
Digital Input Capacitance, C _{IN}	5.0			pF typ	

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	160			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	200	215	230	ns max	$V_S = 8 \text{ V}$, see Figure 45
ton (EN)	160			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	200	220	235	ns max	$V_S = 8 V$, see Figure 44
toff (EN)	130			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	155	160	160	ns max	V _s = 8 V, see Figure 44
Break-Before-Make Time Delay, t _D	95			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
			65	ns min	$V_S = 8 V$, see Figure 43
Overvoltage Response Time, tresponse	110			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
	145	145	145	ns max	
Overvoltage Recovery Time, trecovery	500			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
, , ,	655	720	765	ns max	
Charge Injection, Q _{INJ}	0.9		1	pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 46}$
Off Isolation	-74			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Channel-to-Channel Crosstalk	' '			', P	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 40
Adjacent Channels	-75			dB typ	11 3012/ CL 3 p1/1 1 1 1 1 1 2/3 CC 1 1 gare 10
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise,	0.044			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 6 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$,
THD + N	0.044			70 typ	see Figure 37
–3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
ADG5208F	175			MHz typ	3012, c. 3 p., 3001.ga. 039
ADG5209F	270			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39
C _s (Off)	4			pF typ	$V_s = 6 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)	7			pi typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
ADG5208F	14			pF typ	VS = 0 V, I = 1 IVII IZ
ADG5200F	8			pF typ	
C _D (On), C _s (On)	0			pi typ	$V_{s} = 6 V, f = 1 MHz$
ADG5208F	21			pF typ	V S = 0 V, I = 1 IVII IZ
	14				
ADG5209F	14			pF typ	$V_{DD} = 13.2 \text{ V}; V_{SS} = 0 \text{ V}; \text{ GND} = 0 \text{ V}; \text{ digital}$
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$; $V_{SS} = 0 \text{ V}$; $GND = 0 \text{ V}$; $GIGITAI$ inputs = 0 V, 5 V, or V_{DD}
Normal Mode					inputs = 0 v, 5 v, or v _{DD}
	1.3			mA typ	
IDD	2		2	mA max	
1	0.75		2		
Ignd			1.4	mA typ	
	1.4		1.4	mA max	
Iss	0.5		0.7	mA typ	
E IVAA I	0.65		0.7	mA max	V .55V
Fault Mode					$V_S = \pm 55 \text{ V}$
I _{DD}	1.6			mA typ	
	2.2		2.3	mA max	
I _{GND}	0.9		1	mA typ	
	1.6		1.7	mA max	
I _{SS}	0.65			mA typ	Digital inputs = 5 V
	1.0		1.1	mA max	$V_S = \pm 55 \text{ V}, V_D = 0 \text{ V}$
V_{DD}			8	V min	GND = 0 V
		1	44	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, $C_{\text{DECOUPLING}}$ = 0.1 μF , unless otherwise noted.

Table 4.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}, \text{ see Figure 36}$
Analog Signal Range			0 V to V _{DD}	٧	_
On Resistance, R _{ON}	310			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
,	335	415	480	Ω max	, ,
	250			Ωtyp	$V_S = 4.5 \text{ V to } 28 \text{ V}, I_S = -1 \text{ mA}$
	270	335	395	Ω max	
On-Resistance Match Between	3	333	333	Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
Channels, ΔR _{ON}					VS = 0 V to 30 V, IS = -1 IIIA
	7	16	18	Ω max	
	3			Ω typ	$V_S = 4.5 \text{ V to } 28 \text{ V, } I_S = -1 \text{ mA}$
	6.5	11	12	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	62			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	70	85	100	Ωmax	
	1.5			Ωtyp	$V_s = 4.5 \text{ V to } 28 \text{ V}, I_s = -1 \text{ mA}$
	3.5	4	4	Ωmax	
Threshold Voltage, V _T	0.7			V typ	See Figure 28
LEAKAGE CURRENTS	1			,,,,	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{S} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$ $V_{S} = 1 \text{ V} / 30 \text{ V}, V_{D} = 30 \text{ V} / 1 \text{ V}, \text{ see Figure 34}$
Source Off Leakage, is (Off)				1 ''	VS = 1 V/ 30 V, VD = 30 V/ 1 V, see Figure 34
D : 0(() 1 (0(()	±1	±2	±5	nA max	V 41//201/1/ 201//41/ F: 24
Drain Off Leakage, I _D (Off)	±0.1	_		nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V}, \text{ see Figure 34}$
	±1	±5	±10	nA max	
Channel On Leakage, I_D (On), I_S (On)	±0.3			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V}$, see Figure 35
	±1.5	±20	±25	nA max	
FAULT					
Source Leakage Current, I _s					
With Overvoltage	±58			μA typ	$V_{DD} = +39.6 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = +55 \text{ V}, -40 \text{ V}, \text{see Figure 33}$
Power Supplies Grounded or Floating	±25			μA typ	$V_{DD} = 0 \text{ V}$ or floating, $V_{SS} = 0 \text{ V}$ or floating, GND = 0 V , $Ax = 0 \text{ V}$ or floating, $V_S = \pm 55 \text{ V}$, see Figure 32
Drain Leakage Current, I _D					0 V, TIX = 0 V OI Houting, V3 = ±35 V, 3cc Figure 32
With Overvoltage	±10			nA typ	$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, V_{S} = \pm 55 \text{ V}, \text{ see}$
	±50	±70	±90	nA max	Figure 33
Power Supplies Grounded	±500			nA typ	$V_{DD} = 0 \text{ V}, V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}, V_{S} = +55 \text{ V}, -40 \text{ V}, Ax = 0 \text{ V}, see Figure 32$
	±700	±700	±700	nA max	
Power Supplies Floating	±50	±50	±50	μA typ	V_{DD} = floating, V_{SS} = floating, GND = 0 V, V_{S} = ± 55 V, $Ax = 0$ V, see Figure 32
DIGITAL INPUTS					
Input Voltage					
High, V _{INH}			2.0	V min	
Low, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.7			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
•	±1.1		±1.2	μA max	
	T1.1				

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, ttransition	180			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	230	245	255	ns max	$V_S = 18 \text{ V}$, see Figure 45
t _{ON} (EN)	175			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
	225	245	260	ns max	V _s = 18 V, see Figure 44
t _{OFF} (EN)	105			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$
	135	150	150	ns max	V _s = 18 V, see Figure 44
Break-Before-Make Time Delay, t _D	105			ns typ	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$
			65	ns min	V _s = 18 V, see Figure 43
Overvoltage Response Time, t _{RESPONSE}	60			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 41
	80	85	85	ns max	
Overvoltage Recovery Time, trecovery	1400			ns typ	$R_L = 1 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, see Figure 42
, , ,	1900	2100	2200	ns max	
Charge Injection, Q _{INJ}	-0.9			pC typ	$V_{S} = 18 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF, see Figure 46}$
Off Isolation	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 38
Channel-to-Channel Crosstalk				71	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 40
Adjacent Channels	-75			dB typ	, , , , , , , , , , , , , , , , , , ,
Nonadjacent Channels	-88			dB typ	
Total Harmonic Distortion Plus Noise,	0.007			% typ	$R_L = 10 \text{ k}\Omega$, $V_S = 18 \text{ V p-p}$, $f = 20 \text{ Hz to } 20 \text{ kHz}$,
THD + N	0.007			70 () [see Figure 37
−3 dB Bandwidth					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 39
ADG5208F	200			MHz typ	
ADG5209F	300			MHz typ	
Insertion Loss	10.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 39
C _s (Off)	3			pF typ	$V_{S} = 18 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)				1 71	$V_{S} = 18 \text{ V}, f = 1 \text{ MHz}$
ADG5208F	12			pF typ	
ADG5209F	7			pF typ	
C _D (On), C _s (On)	'			p. 1) p	$V_{s} = 18 V, f = 1 MHz$
ADG5208F	19			pF typ	
ADG5209F	12			pF typ	
POWER REQUIREMENTS	12			pi typ	$V_{DD} = 39.6 \text{ V}$; $V_{SS} = 0 \text{ V}$; V
OWERREGOINEMENTS					0V, 5V, or V _{DD}
Normal Mode					
IDD	1.3			mA typ	
	2		2	mA max	
Ignd	0.75		_	mA typ	
	1.4		1.4	mA max	
lss	0.5			mA typ	
	0.65		0.7	mA max	
Fault Mode	3.03		J.,	tilax	$V_S = +55 V, -40 V$
I _{DD}	1.6			mA typ	13 133 1, 13 1
טטי	2.2		2.3	mA max	
I_{GND}	0.9		2.3	mA typ	
IGND	1.6		1.7	mA max	
I	0.65		1.7		
I _{SS}	1.0		1.1	mA typ mA max	
V	1.0			V min	GND = 0 V
V_{DD}			8		
	1		44	V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx, D, OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
ADG5208F, θ _{JA} = 112.6°C/W	27	16	8	mA max	$V_S = V_{SS}$ to $V_{DD} - 4.5$ V
	16	11	7	mA max	$V_S = V_{SS}$ to V_{DD}
ADG5209F, θ _{JA} = 112.6°C/W	20	13	8	mA max	$V_S = V_{SS}$ to $V_{DD} - 4.5$ V
	12	8	6	mA max	$V_S = V_{SS}$ to V_{DD}

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 6.

Table 0.	
Parameter	Rating
V_{DD} to V_{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	-48 V to +0.3 V
Sx Pins	−55 V to +55 V
Sx to V_{DD} or V_{SS}	80 V
V_S to V_D	80 V
D or Dx Pins ¹	$V_{SS} = 0.7 \text{ V to } V_{DD} + 0.7 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ²	GND – 0.7 V to 48 V or 30 mA, whichever occurs first
Peak Current, Sx, D, or Dx Pins	72.5 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx, D, or Dx Pins	Data ³ + 15%
D or Dx Pins, Overvoltage State, Load Current	1 mA
Operating Temperature Range	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ _{JA} (4-Layer Board)	112.6°C/W
Reflow Soldering Peak Temperature, Pb-Free	As per JEDEC J-STD-020

¹ Overvoltages at the D or Dx pins are clamped by internal diodes. Limit the current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² The digital inputs are the EN and Ax pins.

³ See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

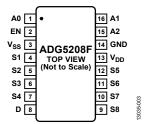


Figure 3. ADG5208F Pin Configuration

Table 7. ADG5208F Pin Function Descriptions

Pin No.	Mnemonic	Description		
1	A0	Logic Control Input.		
2	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high the Ax logic inputs determine the on switches.		
3	Vss	Most Negative Power Supply Potential.		
4	S1	Overvoltage Protected Source Terminal 1. This pin can be an input or an output.		
5	S2	Overvoltage Protected Source Terminal 2. This pin can be an input or an output.		
6	S3	Overvoltage Protected Source Terminal 3. This pin can be an input or an output.		
7	S4	Overvoltage Protected Source Terminal 4. This pin can be an input or an output.		
8	D	Drain Terminal. This pin can be an input or an output.		
9	S8	Overvoltage Protected Source Terminal 8. This pin can be an input or an output.		
10	S7	Overvoltage Protected Source Terminal 7. This pin can be an input or an output.		
11	S6	Overvoltage Protected Source Terminal 6. This pin can be an input or an output.		
12	S5	Overvoltage Protected Source Terminal 5. This pin can be an input or an output.		
13	V_{DD}	Most Positive Power Supply Potential.		
14	GND	Ground (0 V) Reference.		
15	A2	Logic Control Input.		
16	A1	Logic Control Input.		

Table 8. ADG5208F Truth Table

A2	A1	A0	EN	On Switch
X ¹	X ¹	X ¹	0	None
0	0	0	1	S1
0	0	1	1	S2
0	1	0	1	S3
0	1	1	1	S4
1	0	0	1	S5
1	0	1	1	S6
1	1	0	1	S7
1	1	1	1	S8

¹ X is don't care.

ADG5208F/ADG5209F

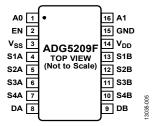


Figure 4. ADG5209F Pin Configuration

Table 9. ADG5209F Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	A0	Logic Control Input.			
2	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.			
3	V_{SS}	Most Negative Power Supply Potential.			
4	S1A	Overvoltage Protected Source Terminal 1A. This pin can be an input or an output.			
5	S2A	Overvoltage Protected Source Terminal 2A. This pin can be an input or an output.			
6	S3A	Overvoltage Protected Source Terminal 3A. This pin can be an input or an output.			
7	S4A	Overvoltage Protected Source Terminal 4A. This pin can be an input or an output.			
8	DA	Drain Terminal A. This pin can be an input or an output.			
9	DB	Drain Terminal B. This pin can be an input or an output.			
10	S4B	Overvoltage Protected Source Terminal 4B. This pin can be an input or an output.			
11	S3B	Overvoltage Protected Source Terminal 3B. This pin can be an input or an output.			
12	S2B	Overvoltage Protected Source Terminal 2B. This pin can be an input or an output.			
13	S1B	Overvoltage Protected Source Terminal 1B. This pin can be an input or an output.			
14	V_{DD}	Most Positive Power Supply Potential.			
15	GND	Ground (0 V) Reference.			
16	A1	Logic Control Input.			

Table 10. ADG5209F Truth Table

A1	A0	EN	On Switch Pair
X ¹	X ¹	0	None
0	0	1	S1x
0	1	1	S2x
1	0	1	S3x
1	1	1	S4x

¹ X is don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

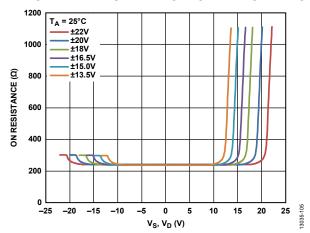


Figure 5. R_{ON} as a Function of V_S , V_D , Dual Supply

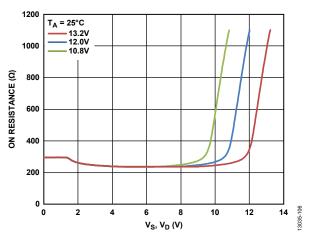


Figure 6. R_{ON} as a Function of V_S , V_D , 12 V Single Supply

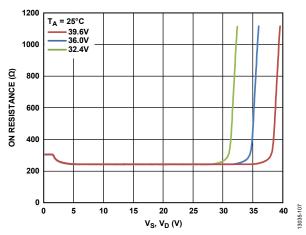


Figure 7. R_{ON} as a Function of V_S , V_D , 36 V Single Supply

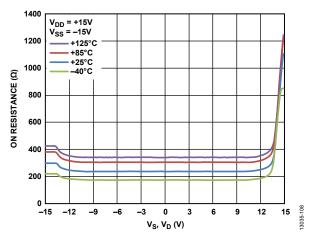


Figure 8. R_{ON} as a Function of V_5 , V_5 for Different Temperatures, ± 15 V Dual Supply

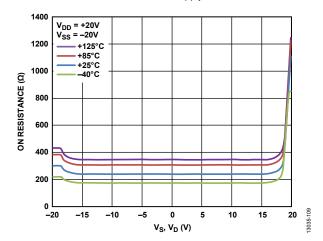


Figure 9. R_{ON} as a Function of V_{S_r} V_D for Different Temperatures, ± 20 V Dual Supply

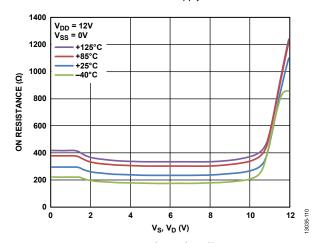


Figure 10. R_{ON} as a Function of V_{S_r} V_D for Different Temperatures, 12 V Single Supply

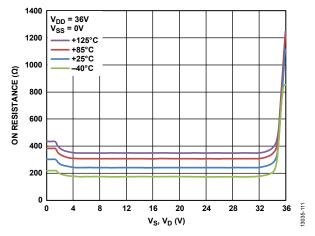


Figure 11. R_{ON} as a Function of V_S , V_D for Different Temperatures, 36 V Single Supply

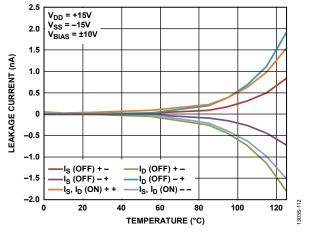


Figure 12. Leakage Current vs. Temperature, ±15 V Dual Supply

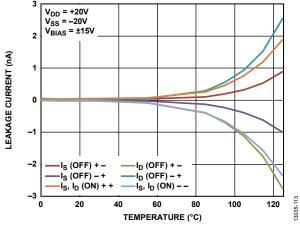


Figure 13. Leakage Current vs. Temperature, ±20 V Dual Supply

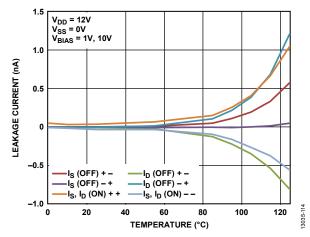


Figure 14. Leakage Current vs. Temperature, 12 V Single Supply

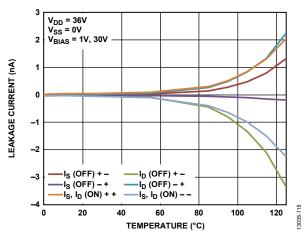


Figure 15. Leakage Current vs. Temperature, 36 V Single Supply

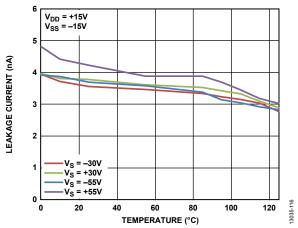


Figure 16. Overvoltage Leakage Current vs. Temperature, ± 15 V Dual Supply

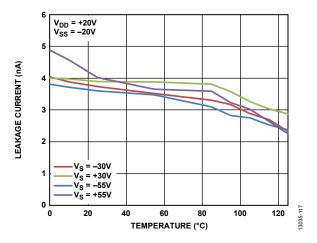


Figure 17. Overvoltage Leakage Current vs. Temperature, ±20 V Dual Supply

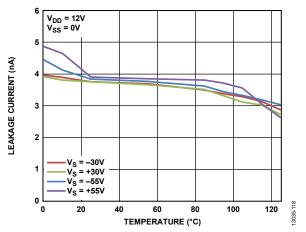


Figure 18. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply

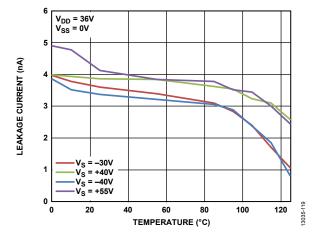


Figure 19. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply

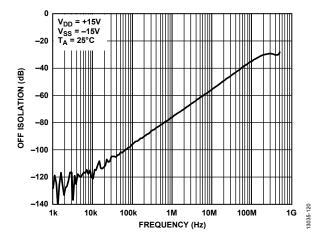


Figure 20. Off Isolation vs. Frequency, ±15 V Dual Supply

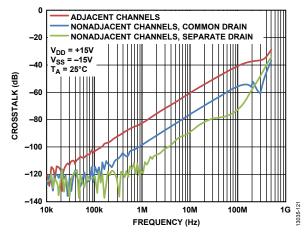


Figure 21. Crosstalk vs. Frequency, ±15 V Dual Supply

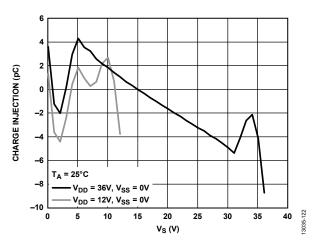


Figure 22. Charge Injection vs. Source Voltage (V_S), Single Supply

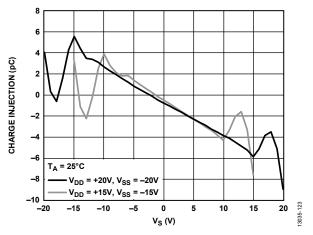


Figure 23. Charge Injection vs. Source Voltage (Vs), Dual Supply

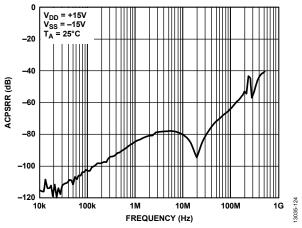


Figure 24. ACPSRR vs. Frequency, ±15 V Dual Supply

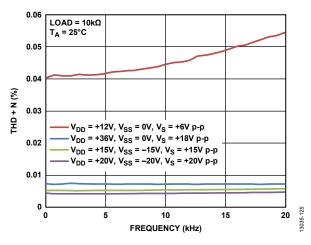


Figure 25. THD + N vs. Frequency

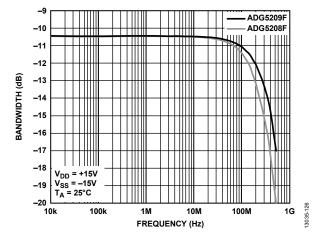


Figure 26. Bandwidth vs. Frequency

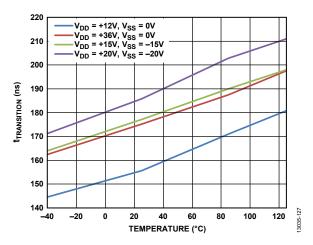


Figure 27. t_{TRANSITION} vs. Temperature

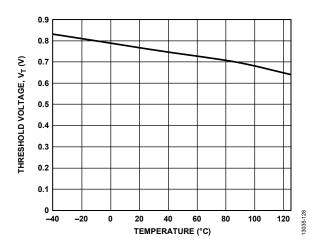


Figure 28. Threshold Voltage (V_T) vs. Temperature

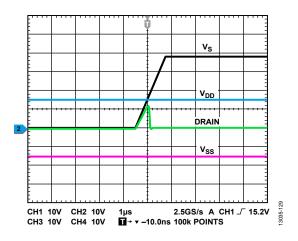


Figure 29. Drain Output Response to Positive Overvoltage

Figure 30. Drain Output Response to Negative Overvoltage

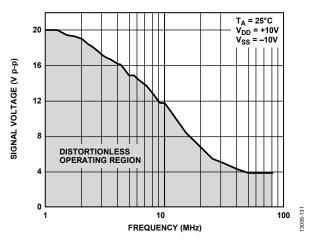


Figure 31. Large Voltage Signal Tracking vs. Frequency

TEST CIRCUITS

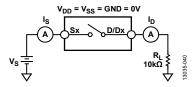


Figure 32. Switch Unpowered Leakage

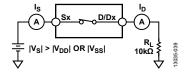


Figure 33. Switch Overvoltage Leakage

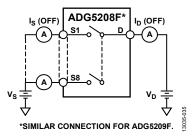
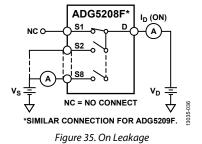



Figure 34. Off Leakage

Vs = V/l_{DS}

Figure 36. On Resistance

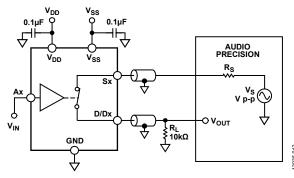


Figure 37. THD + N

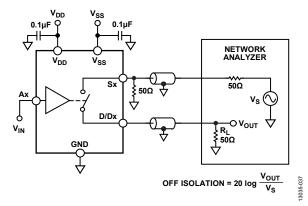


Figure 38. Off Isolation

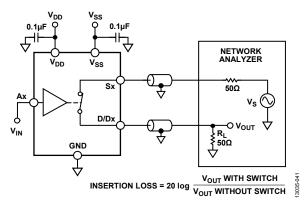


Figure 39. Bandwidth

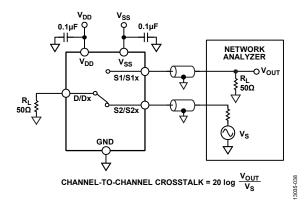


Figure 40. Channel-to-Channel Crosstalk

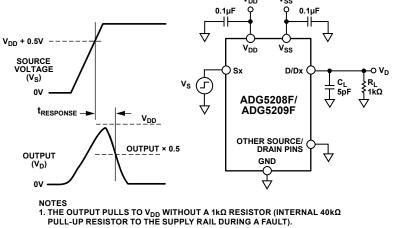
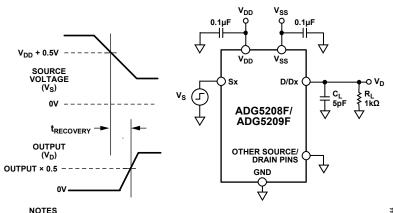



Figure 41. Overvoltage Response Time, tresponse

1. THE OUTPUT STARTS FROM THE V_D CLAMP LEVEL WITHOUT A 1k Ω RESISTOR (INTERNAL 40k Ω PULL-UP RESISTOR TO THE SUPPLY RAIL DURING A FAULT).

Figure 42. Overvoltage Recovery Time, trecovery

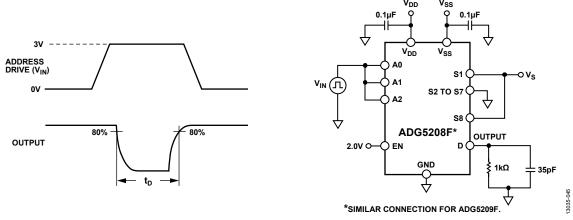


Figure 43. Break-Before-Make Time Delay, t_D

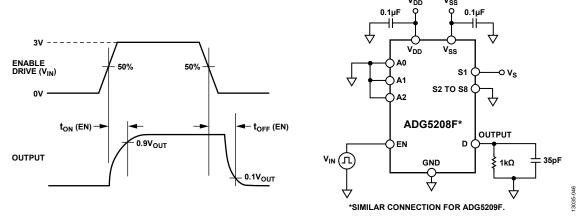


Figure 44. Enable Delay, ton (EN), toff (EN)

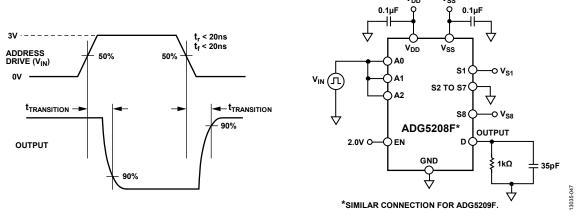


Figure 45.Address to Output Switching Time, ttransition

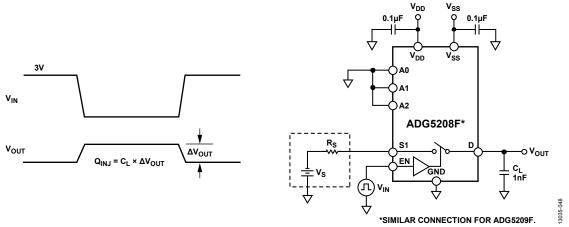


Figure 46. Charge Injection, QINJ

TERMINOLOGY

I_{DD}

IDD represents the positive supply current.

Iss

Iss represents the negative supply current.

V_D, V_S

 V_D and V_S represent the analog voltage on the D or Dx pins and the Sx pins, respectively.

Ron

 $R_{\mbox{\scriptsize ON}}$ represents the ohmic resistance between the D or Dx pins and the Sx pins.

ΔR_{ON}

 ΔR_{ON} represents the difference between the R_{ON} of any two channels.

R_{FLAT(ON)}

 $R_{\text{FLAT(ON)}}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

I_S (off) is the source leakage current with the switch off.

I_D (Off)

ID (off) is the drain leakage current with the switch off.

$I_D(On), I_S(On)$

 I_{D} (on) and I_{S} (on) represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (off) represents the off switch drain capacitance, which is measured with reference to ground.

C_s (Off)

C_s (off) represents the off switch source capacitance, which is measured with reference to ground.

$C_D(On), C_S(On)$

 C_D (on) and C_S (on) represent the on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} is the digital input capacitance.

ton (EN)

t_{on} (EN) represents the delay between applying the digital control input and the output switching on (see Figure 44).

toff (EN)

 t_{OFF} (EN) represents the delay between applying the digital control input and the output switching off (see Figure 44).

tTRANSITION

ttransition represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\rm D}$

 t_{D} represents the off time measured between the 90% points of both switches when switching from one address state to another.

TRESPONSE

 $t_{RESPONSE}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 50% of its peak voltage.

trecovery

 t_{RECOVERY} represents the delay between an overvoltage on the Sx pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 50% of its peak voltage.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62~\mathrm{V}$ p-p.

On Response

On response is the frequency response of the on switch.

V_{T}

 V_T is the voltage threshold at which the overvoltage protection circuitry engages (see Figure 28).

Total Harmonic Distortion Plus Noise (THD + N)

THD + N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

THEORY OF OPERATION

SWITCH ARCHITECTURE

Each channel of the ADG5208F/ADG5209F consists of a parallel pair of NDMOS and PDMOS transistors. This construction provides excellent performance across the signal range. The ADG5208F/ADG5209F channels operate as standard switches when input signals with a voltage between V_{SS} and V_{DD} are applied. For example, the on resistance is 250 Ω typically and opening or closing the switch is controlled using the appropriate address pins.

Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on a source pin with $V_{\rm DD}$ and $V_{\rm SS}.$ A signal is considered overvoltage if it exceeds the supply voltages by the voltage threshold, $V_{\rm T}.$ The threshold voltage is typically 0.7 V, but can range from 0.8 V at -40°C down to 0.6 V at $+125^{\circ}\text{C}.$ See Figure 28 to see the change in $V_{\rm T}$ with operating temperature.

The voltage range that can be applied to any source input is +55 V to -55 V. When the device is powered using a single supply of 25 V or greater, the minimum signal level increases from -55 V to -40 V at $V_{\rm DD}$ = +40 V to remain within the 80 V maximum rating. Construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.

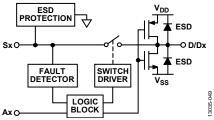


Figure 47. Switch Channel and Control Function

Overvoltage Reaction

When an overvoltage condition is detected on a source pin, the switch automatically opens regardless of the digital logic state. The source pin becomes high impedance and, if that source pin is selected, the drain pin is pulled to the supply that was exceeded. For example, if the source voltage exceeds $V_{\rm DD}$, then the drain output pulls to $V_{\rm DD}$, similarly for V_{SS} . In Figure 29, the voltage on the drain pin can be seen to follow the voltage on the source pin until the switch turns off completely. The drain pin then pulls to GND due to the 1 $k\Omega$ load resistor; otherwise, it pulls to the $V_{\rm DD}$ supply. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the pin.

During overvoltage conditions, the leakage current into and out of the source pins is limited to tens of microamperes. If the source pin is unselected, only nanoamperes of leakage appear on the drain pin. However, if the source is selected, the pin is pulled to the supply rail. The device that pulls the drain pin to the rail has an impedance of approximately 40 k Ω ; thus, the D or Dx pin current is limited to approximately 1 mA during a shorted load condition. This internal impedance also determines the minimum external load resistance required to ensure that the drain pin is pulled to the desired voltage level during a fault. When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

ESD Performance

The drain pins have ESD protection diodes to the rails and the voltage at these pins must not exceed the supply voltage. The source pins have specialized ESD protection that allows the signal voltage to reach ±55 V regardless of supply voltage level. See Figure 47 for an overview of the switch channel function.

Trench Isolation

In the ADG5208F and ADG5209F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances.

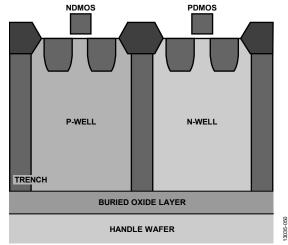


Figure 48. Trench Isolation

FAULT PROTECTION

When the voltages at the source inputs exceed $V_{\rm DD}$ or V_{SS} by $V_{\rm T}$, the switch turns off or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state and if it is selected, the drain pulls to either $V_{\rm DD}$ or V_{SS} . Signal levels up to +55 V and –55 V are blocked in both the powered and unpowered condition as long as the 80 V limitation between the source and supply pins is met.

Power-On Protection

The following three conditions must be satisfied for the switch to be in the on condition:

- V_{DD} to $V_{SS} \ge 8 \text{ V}$
- The input signal is between $V_{SS} V_T$ and $V_{DD} + V_T$
- The digital logic control input is active

When the switch is turned on, signal levels up to the supply rails are passed.

The switch responds to an analog input that exceeds $V_{\rm DD}$ or $V_{\rm SS}$ by a threshold voltage, $V_{\rm T}$, by turning off. The absolute input voltage limits are -55 V and +55 V, while maintaining an 80 V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between $V_{\rm DD}$ and $V_{\rm SS}$.

The fault response time ($t_{RESPONSE}$) when powered by a $\pm 15~V$ dual supply is typically 90 ns and the fault recovery time ($t_{RECOVERY}$) is 745 ns. These vary with supply voltages and output load conditions.

Exceeding ±55 V on any source input may damage the ESD protection circuitry on the device.

The maximum stress across the switch channel is 80 V, therefore, the user must pay close attention to this limit under a fault condition.

For example, consider the case where the device is set up as shown in Figure 49.

- $V_{DD}/V_{SS} = \pm 22 \text{ V}$, S1 = +22 V, S1 is selected
- S2 has a −55 V fault and S3 has a +55 V fault
- The voltage between S2 and D = +22 V (-55 V) = +77 V
- The voltage between S3 and D = 55 V 22 V = 33 V

These calculations are all within device specifications: a 55 V maximum fault on the source inputs and a maximum of 80 V across the off switch channel.

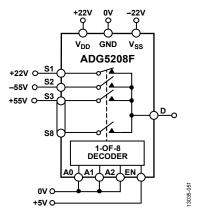


Figure 49. ADG5208F in an Overvoltage Condition

Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.

The switch remains off regardless of whether the V_{DD} and V_{SS} supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to ± 55 V are blocked in the unpowered condition.

Digital Input Protection

The ADG5208F and the ADG5209F can tolerate digital input signals being present on the device without power. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.

The digital inputs are protected against positive faults of up to 44 V. The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provides robust solutions for instrumentation, industrial, automotive, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

POWER SUPPLY RAILS

To guarantee correct operation of the device, 0.1 μF decoupling capacitors are required.

The ADG5208F and the ADG5209F can operate with bipolar supplies between ± 5 V and ± 22 V. The supplies on V_{DD} and V_{SS} need not be symmetrical, but the V_{DD} to V_{SS} range must not exceed 44 V. The ADG5208F and the ADG5209F can also operate with single supplies between 8 V and 44 V with V_{SS} connected to GND.

These devices are fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V supply ranges.

POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the devices are unpowered and signals from -55 V to +55 V can be applied without damaging the devices. The switch channel closes only when the supplies are connected, a suitable digital control signal is placed on the address pins, and the signal is within normal operating range. Placing the ADG5208F/ADG5209F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

SIGNAL RANGE

The ADG5208F/ADG5209F switches have overvoltage detection circuitry on their inputs that compares the voltage levels at the source terminals with $V_{\rm DD}$ and $V_{\rm SS}$. To protect downstream circuitry from overvoltages, supply the ADG5208F/ADG5209F with voltages that match the intended signal range. The additional protection architecture allows the signals up to the supply rails to be passed and only a signal that exceeds the supply rail by the threshold voltage is then blocked. This signal block offers protection to both the device and any downstream circuitry.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a bipolar power solution is shown in Figure 50. The ADP7118 and ADP7182 can be used to generate clean positive and negative rails from the ADP5070 (dual switching regulator) output. These rails can be used to power the ADG5208F/ADG5209F amplifier, and/or a precision converter in a typical signal chain.

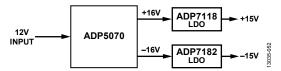
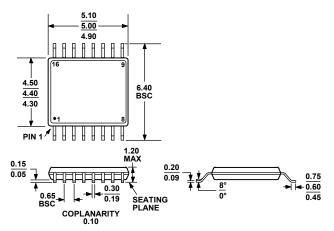


Figure 50. Bipolar Power Solution

Table 11. Recommended Power Management Devices

Product	Description	
ADP5070	1 A/0.6 A, dc-to-dc switching regulator with	
	independent positive and negative outputs	
ADP7118	20 V, 200 mA, low noise, CMOS LDO	
ADP7142	40 V, 200 mA, low noise, CMOS LDO	
ADP7182	–28 V, –200 mA, low noise, linear regulator	


HIGH VOLTAGE SURGE SUPPRESSION

The ADG5208F/ADG5209F are not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V. In applications where the inputs are likely to be subject to overvoltages exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar devices.

LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 31 illustrates the voltage range and frequencies that the ADG5208F/ADG5209F can reliably convey. For signals that extend across the full signal range from V_{SS} to V_{DD} , keep the frequency below 1 MHz. If the required frequency is greater than 1 MHz, decrease the signal range appropriately to ensure signal integrity.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 51. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG5208FBRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5208FBRUZ-RL7	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5209FBRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5209FBRUZ-RL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

¹ Z = RoHS Compliant Part.