Product Manual
6337
2-wire HART transmitter

No. 6337V103-UK
From serial no.: 150950564
6 Product Pillars
to meet your every need

Individually outstanding, unrivalled in combination

With our innovative, patented technologies, we make signal conditioning smarter and simpler. Our portfolio is composed of six product areas, where we offer a wide range of analog and digital devices covering over a thousand applications in industrial and factory automation. All our products comply with or surpass the highest industry standards, ensuring reliability in even the harshest of environments and have a 5-year warranty for greater peace of mind.

Our range of temperature transmitters and sensors provides the highest level of signal integrity from the measurement point to your control system. You can convert industrial process temperature signals to analog, bus or digital communications using a highly reliable point-to-point solution with a fast response time, automatic self-calibration, sensor error detection, low drift, and top EMC performance in any environment.

We deliver the safest signals by validating our products against the toughest safety standards. Through our commitment to innovation, we have made pioneering achievements in developing I.S. interfaces with SIL 2 Full Assessment that are both efficient and cost-effective. Our comprehensive range of analog and digital intrinsically safe isolation barriers offers multifunctional inputs and outputs, making PR an easy-to-implement site standard. Our backplanes further simplify large installations and provide seamless integration to standard DCS systems.

We provide inexpensive, easy-to-use, future-ready communication interfaces that can access your PR installed base of products. The detachable 4501 Local Operator Interface (LOI) allows for local monitoring of process values, device configuration, error detection and signal simulation. The next generation, our 4511 Remote Operator Interface (ROI) does all that and more, adding remote digital communications via Modbus/RTU, while the analog output signals are still available for redundancy.

With the 4511 you can further expand connectivity with a PR gateway, which connects via industrial Ethernet, wirelessly through a Wi-Fi router or directly with the devices using our Portable Plant Supervisor (PPS) application. The PPS app is available for iOS, Android and Windows.

Our unique range of single devices covering multiple applications is easily deployable as your site standard. Having one variant that applies to a broad range of applications can reduce your installation time and training, and greatly simplify spare parts management at your facilities. Our devices are designed for long-term signal accuracy, low power consumption, immunity to electrical noise and simple programming.

Our compact, fast, high-quality 6 mm isolators are based on microprocessor technology to provide exceptional performance and EMC-immunity for dedicated applications at a very low total cost of ownership. They can be stacked both vertically and horizontally with no air gap separation between units required.

Our display range is characterized by its flexibility and stability. The devices meet nearly every demand for display readout of process signals, and have universal input and power supply capabilities. They provide a real-time measurement of your process value no matter the industry, and are engineered to provide a user-friendly and reliable relay of information, even in demanding environments.
2-wire HART transmitter 6337

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Mounting / installation</td>
<td>4</td>
</tr>
<tr>
<td>Applications</td>
<td>4</td>
</tr>
<tr>
<td>Order</td>
<td>5</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>5</td>
</tr>
<tr>
<td>Accessories</td>
<td>5</td>
</tr>
<tr>
<td>Changing the HART protocol version</td>
<td>8</td>
</tr>
<tr>
<td>Changing the HART protocol version using the PReset software and 5909 Loop Link or HART communication interface</td>
<td>8</td>
</tr>
<tr>
<td>Connections</td>
<td>11</td>
</tr>
<tr>
<td>Block diagram</td>
<td>12</td>
</tr>
<tr>
<td>Programming</td>
<td>12</td>
</tr>
<tr>
<td>Connection of transmitters in multidrop mode</td>
<td>14</td>
</tr>
<tr>
<td>ATEX Installation Drawing - 6337A</td>
<td>15</td>
</tr>
<tr>
<td>ATEX Installation Drawing - 6337D</td>
<td>17</td>
</tr>
<tr>
<td>IECEx Installation Drawing - 6337A</td>
<td>19</td>
</tr>
<tr>
<td>IECEx Installation Drawing - 6337D</td>
<td>21</td>
</tr>
<tr>
<td>CSA Installation Drawing - 6337D</td>
<td>23</td>
</tr>
<tr>
<td>FM Installation Drawing - 6337D</td>
<td>25</td>
</tr>
<tr>
<td>Document history</td>
<td>27</td>
</tr>
</tbody>
</table>
2-wire HART transmitter
6337

- RTD, TC, Ohm, or mV input
- 2 analog inputs and 5 device variables with status available
- HART protocol revision selectable from HART 5 or HART 7
- Hardware assessed for use in SIL applications
- Mounting on a DIN rail in safe area or hazardous gas and dust area

Application
- Linearised temperature measurement with TC and RTD sensors e.g. Pt100 and Ni100.
- HART communication and 4...20 mA analog PV output for individual, difference or average temperature measurement of up to two RTD or TC input sensors.
- Conversion of linear resistance to a standard analog current signal, e.g. from valves or Ohmic level sensors.
- Amplification of bipolar mV signals to standard 4...20 mA current signals.
- Up to 63 transmitters (HART 7) can be connected in a multidrop communication setup.

Technical characteristics
- HART protocol revision can be changed by user configuration to either HART 5 or HART 7 protocol.
- The HART 7 protocol offers:
 - Long Tag numbers of up to 32 characters.
 - Enhanced Burst Mode and Event notification with time stamping.
 - Device variable and status mapping to any dynamic variable PV, SV, TV or QV.
 - Process signal trend measurement with logs and summary data.
 - Automatic event notification with time stamps.
 - Command aggregation for higher communication efficiency.
- 6337 is designed according to strict safety requirements and is therefore suitable for applications in SIL installations.
- Continuous check of vital stored data.
- Meeting the NAMUR NE 21 recommendations, the 6337 HART transmitter ensures top measurement performance in harsh EMC environments. Additionally, the 6337 meets NAMUR NE43 and NE89 recommendations.

Mounting / installation
- DIN rail mounting with up to 84 channels per metre.
- Configuration via standard HART communication interfaces or by PR 5909 Loop Link.
- The 6337D can be mounted in zone 0, 1, 2 and zone 20, 21, 22 including M1 / Class I/II/ III, Division 1, Groups A, B, C, D.
Electrical specifications

Environmental conditions:
- Specification range: -40°C to +85°C
- Storage temperature: -40°C to +85°C
- Calibration temperature: 20...28°C
- Humidity: < 95% RH (non-cond.)
- Protection degree: IP20

Mechanical specifications:
- Dimensions (H x W x D): 109 x 23.5 x 104 mm
- Weight (1 / 2 channels): 150 / 200 g
- DIN rail type: DIN EN/IEC 60715 - 35 mm
- Wire size: 0.13...2.08 mm² / AWG 26...14 stranded wire
- Screw terminal torque: 0.5 Nm

Common specifications:
- Supply voltage, DC:
 - Standard: 8.0...35 V
 - ATEX, CSA, FM & IECEx: 8.0...30 VDC
- Internal consumption: 0.19...0.8 W
- Voltage drop: 8.0 VDC
- Isolation voltage, test / operation: 1.5 kVAC / 50 VAC
- Warm-up time: 30 s
- Communications interface: Loop Link & HART
- Signal / noise ratio: > 60 dB
- Response time (programmable): 1...60 s
- EEPROM error check: < 10 s
- Signal dynamics, input: 22 bit
- Signal dynamics, output: 16 bit
- Effect of supply voltage variation: < 0.005% of span / VDC

Order

<table>
<thead>
<tr>
<th>Type</th>
<th>Version</th>
<th>Galvanic isolation</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>6337</td>
<td>Standard : A</td>
<td>1500 VAC : 2</td>
<td>Single : A</td>
</tr>
<tr>
<td></td>
<td>ATEX, CSA, FM & IECEx : D</td>
<td></td>
<td>Double : B</td>
</tr>
</tbody>
</table>

Accessories

- 5909 = Loop Link USB interface
- 5910 / 5910Ex = CJC connector for channel 1
- 5913 / 5913Ex = CJC connector for channel 2
Accuracy, the greater of general and basic values:

<table>
<thead>
<tr>
<th>General values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input type</td>
</tr>
<tr>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input type</td>
</tr>
<tr>
<td>Pt50 - Pt1000</td>
</tr>
<tr>
<td>Ni50 - Ni1000</td>
</tr>
<tr>
<td>Lin. R</td>
</tr>
<tr>
<td>Volt</td>
</tr>
<tr>
<td>TC type: E, J, K, L, N, T, U</td>
</tr>
<tr>
<td>TC type: B, Lr, R, S, W3, W5</td>
</tr>
<tr>
<td>TC type: B²</td>
</tr>
<tr>
<td>TC type: B³</td>
</tr>
<tr>
<td>TC type: B⁴</td>
</tr>
</tbody>
</table>

TC B¹ accuracy specification range ... > 400°C
TC B² accuracy specification range ... > 160°C < 400°C
TC B³ accuracy specification range ... > 85°C < 160°C
TC B⁴ accuracy specification range ... < 85°C

TC cold junction compensation. ... < ±1.0°C
Max. offset on input signal. ... 50% of selec. max. value

EMC - immunity influence. .. < ±0.1% of span
Extended EMC immunity:
NAMUR NE 21, A criterion, burst < ±1% of span

Input specifications:

RTD input types:

<table>
<thead>
<tr>
<th>RTD type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Min. span</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>-200°C</td>
<td>+850°C</td>
<td>10°C</td>
<td>IEC 60751</td>
</tr>
<tr>
<td>Ni100</td>
<td>-60°C</td>
<td>+250°C</td>
<td>10°C</td>
<td>DIN 43760</td>
</tr>
<tr>
<td>Lin. R</td>
<td>0 Ω</td>
<td>7000 Ω</td>
<td>25 Ω</td>
<td>......</td>
</tr>
</tbody>
</table>

Pt50, Pt100, Pt200, Pt500, Pt1000, Ni50, Ni100, Ni120, Ni1000
Cable resistance per wire (max.) ... 5 Ω
(up to 50 Ω per wire is possible with reduced measurement accuracy)
Sensor current ... Nom. 0.2 mA
TC input types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. temperature</th>
<th>Max. temperature</th>
<th>Min. span</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0°C</td>
<td>+1820°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>E</td>
<td>-100°C</td>
<td>+1000°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>J</td>
<td>-100°C</td>
<td>+1200°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>K</td>
<td>-180°C</td>
<td>+1372°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>L</td>
<td>-200°C</td>
<td>+900°C</td>
<td>50°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>Lr</td>
<td>-200°C</td>
<td>+800°C</td>
<td>50°C</td>
<td>GOST 3044-84</td>
</tr>
<tr>
<td>N</td>
<td>-180°C</td>
<td>+1300°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>R</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>S</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>100°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>T</td>
<td>-200°C</td>
<td>+400°C</td>
<td>50°C</td>
<td>IEC584</td>
</tr>
<tr>
<td>U</td>
<td>-200°C</td>
<td>+600°C</td>
<td>50°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>W3</td>
<td>0°C</td>
<td>+2300°C</td>
<td>100°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>W5</td>
<td>0°C</td>
<td>+2300°C</td>
<td>100°C</td>
<td>ASTM E988-90</td>
</tr>
</tbody>
</table>

Cold junction compensation (CJC):
Constant, internal or external via a Pt100 or Ni100 sensor

mV input:
- Measurement range: -800...+800 mV
- Min. span: 2.5 mV
- Input resistance: 10 MΩ

Output specifications and HART:
- Signal range: 4...20 mA
- Min. signal range: 16 mA
- Updating time: 440 ms
- Load resistance: ≤ (V_supply - 8) / 0.023 [Ω]
- Sensor error detection, programmable: 3.5...23 mA
 (shorted sensor error detection is ignored at TC and mV input)
- NAMUR NE43 Upscale: 23 mA
- NAMUR NE43 Downscale: 3.5 mA
- HART protocol revisions: HART 5 and HART 7

Of span = Of the presently selected range

Approvals:
- EMC 2004/108/EC: EN 61326-1
- EAC TR-CU 020/2011: EN 61326-1

Ex / I.S.:
- ATEX 94/9/EC: KEMA 09ATEX0148 X
- CSA: 1125003
- FM: 2D5A7
- IECEx: IECEx KEM 10.0084 X
- EAC Ex TR-CU 012/2011: RU C-DK.GB08.V.00410

Functionel safety:
Hardware assessed for use in SIL applications
FMEDA-report - www.prelectronics.com
Changing the HART protocol version

It is possible to change the unit’s HART protocol revision by using the PReset software and a PR 5909 Loop Link interface or a HART interface. Other HART configuration tools like a Handheld HART Terminal may also be used.

Procedure for using a HART hand-held terminal to change the 6337 from HART 7 to HART 5 and vice versa:

Change the 6337 from HART 7 to HART 5:

Drive the 6337 device Online and enter Device setup - Diag/Service.
Select Write protection and Write protect by entering “********” (8 stars).
Select New password - type “********” (8 stars) & then “HARTREV5”.
Select Write enable by entering “-CHANGE-”.

Change the 6335 (6337) from HART 5 to HART 7:

Drive the 6335 device Online and enter Device setup - Diag/Service.
Select Write protection and Write protect by entering “********” (8 stars).
Select New password - type “********” (8 stars) & then “HARTREV7”.
Select Write enable and enter “-CHANGE-”.

Please note this is only possible if the transmitter is marked “6337” on the label!

Changing the HART protocol version using the PReset software and 5909 Loop Link or HART communication interface

Switching from HART 7 to HART 5:
Select the 6337 product, click the “HART” tab and open the folder “Methods”. Click “Device Password / Write Protection / Protocol...” and select “Change protocol to HART 5” in the pop-up window, then acknowledge by pressing OK.
The following message will now appear:

If you press “Ja” (Yes):

Switching from HART 5 to HART 7:

Please note this is only possible if the transmitter is marked “6337” on the label!

From PReset, select the 6335 product, click the “OPTIONS” tab click “Protect”.
Write protection must be set to “ON”. Select Change Password.
Type in the New Password “HARTREV7” and Re-enter “HARTREV7”. Click OK.
Switch **Write protection OFF** and write-enable the device by typing in the **Password** “-CHANGE-” in the top menu - acknowledge by pressing OK. This action will reset the password to the default active password “* * * * * * * * ” (8 stars) and restart the device in the updated HART 7 mode with write protection disabled. Now, select 6337 in PReset and reconfigure the device.

<table>
<thead>
<tr>
<th>General</th>
<th>Input</th>
<th>Output</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>Loaded Point Linearization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Calibration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Input (X0):</td>
<td>0 °C</td>
<td>Analog Input (X1):</td>
<td>150 °C</td>
</tr>
<tr>
<td>Analog Output (Y0):</td>
<td>4 mA</td>
<td>Analog Output (Y1):</td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART:</td>
<td>Description:</td>
<td>Message:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Password/Write Protection

- **Write protection**: Off
Connections

Inputs:

Channel 1
- RTD, 2-wire
- RTD, 3-wire
- RTD, 4-wire
- TC, internal CJC

Channel 2
- RTD, 2-wire
- RTD, 3-wire
- RTD, 4-wire
- TC, internal CJC

Channel 1
- TC, external CJC
- Resistance, 2-wire
- Resistance, 3-wire
- Resistance, 4-wire

Channel 2
- TC, external CJC
- Resistance, 2-wire
- Resistance, 3-wire
- Resistance, 4-wire

Inputs:

Channel 1
- mV
- RTD, difference or average
- TC, difference or average, with internal CJC
- TC, difference or average, with external CJC

Channel 2
- mV
- RTD, difference or average
- TC, difference or average, with internal CJC
- TC, difference or average, with external CJC

Outputs:

Channel 1
- mV, difference or average
- 2-wire installation
- HART® comm.

Channel 2
- mV, difference or average
- 2-wire installation
- HART® comm.
6337 can be configured in the following 3 ways:

1. With PR electronics A/S' communications interface Loop Link and PReset PC configuration software.
2. With a HART modem and PReset PC configuration software.
3. With a HART communicator with PR electronics A/S' DDL driver.

1: Loop Link

For programming please refer to the drawing below and the help functions in PReset.
When communicating with non-installed devices, connectors 11, 12, 13, 14 (channel 1) and 21, 22, 23, 24 (channel 2) can be dismantled in the safe area to connect the terminals of the communications interface to the pins.
Loop Link is not approved for communication with devices installed in hazardous (Ex) area.
2: HART modem
For programming please refer to the drawing below and the help functions in PReset.

3: HART communicator
For programming please refer to the drawing below. To get access to product-specific commands, the HART communicator must be loaded with the PR electronics A/S DDL driver. This can be ordered either at the HART Communication Foundation or PR electronics A/S.
Connection of transmitters in multidrop mode

- The HART communicator or a PC modem can be connected across AB or BC.

- The outputs of max. 63 transmitters can be connected in parallel for a digital HART communication on 2-wires.
- Before it is connected, each transmitter must be configured with a unique number from 1 to 63. If 2 transmitters are configured with the same number, both will be excluded. The transmitters must be programmed for multidrop mode (with a fixed output signal of 4 mA). Maximum current in the loop is therefore 252 mA.
- The communication is either by means of a HART communicator or a HARTmodem.
- The PReset PC configuration software can configure the individual transmitter for multidrop mode and provide it with a unique polling address.
ATEX Installation drawing

For safe installation of 6335A or 6337A the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

ATEX Certificate KEMA 09ATEX0148X

Marking
II 3 G Ex nA [ic] IIC T6.,T4 Gc
II 3 G Ex ic IIC T6.,T4 Gc
II 3 D Ex ic IIIC Dc

T6: -40°C to 60 ºC
T4: -40°C to 85 ºC

Hazardous Area Zone 2 or Zone 22

Terminal:
41,42,43,44 / 51,52,53,54
Ex nA [ic]
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 45 mH
Co: 28 μF

Terminal:
11,12,13,14
21,22,23,24
Ex nA
Umax ≤ 35 VDC

Ex ic
Ui = 35 VDC
Li = 10 μH
Ci = 1.0 nF
General installation instructions

To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere, the following instructions apply:

If the transmitter is applied in type of protection “Ex nA”, it shall be installed in an enclosure that is Ex nA certified according to IEC-EN 60079-15, or “Ex e” certified and suitable for the application and correctly installed.

Cable entry devices and blanking elements shall fulfill the same requirements.

For installation in a potentially explosive dust atmosphere, the following instructions apply:

If the transmitter is supplied with an intrinsically safe signal “ic” and interfaces an intrinsically safe signal "ic" (e.g. a passive device), the transmitter shall be mounted in a metal enclosure that provides a degree of protection of at least IP6X according to EN/IEC 60529, and that is suitable for the application. Cable entry devices and blanking elements shall fulfill the same requirements. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
ATEX Installation drawing

For safe installation of 6335D or 6337D the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

ATEX Certificate: KEMA 09ATEX 0148 X

Marking: II 1G Ex ia IIC T6..T4 Ga
 II 1D Ex ia IIIC Da
 I M 1 Ex ia I Ma

Hazardous area
Zone 0, 1, 2, 20, 21, 22

Non Hazardous Area

Terminal:
41,42,43,44
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
51,52,53,54
Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
11,12,13,14 and
21,22,23,24
Ui: 30 VDC
Ii: 120 mA
Pi: 0.84 W
Li: 10 μH
Ci: 1.0nF

Ex HART Communicator

R: 250 < R < 1100 ohm
General installation instructions
To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere the following instructions apply:
To avoid risk of ignition due to electrostatic discharge (ESD) the transmitter shall be mounted in an enclosure providing a degree of protection of at least IP20 according to EN/IEC 60529.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC
T5: -40 ≤ Ta ≤ 60ºC
T6: -40 ≤ Ta ≤ 40ºC

For installation in a potentially explosive dust atmosphere, the following instructions apply:
The transmitter shall be mounted in a metal enclosure or equivalent that is providing a degree of protection of at least IP6X according to EN/IEC 60529 that is suitable for the application and correctly installed. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC

For installation in a potentially explosive atmosphere in mines, the following instructions apply:
The transmitter shall be mounted in an enclosure providing a degree of protection of at least IP6X according to EN/IEC 60529. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC
IECEEx Installation drawing

For safe installation of 6335A or 6337A the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

IECEEx Certificate IECEx KEM.10.0084X
Marking Ex nA [ic] IIC T6..T4 Gc
 Ex ic IIC T6..T4 Gc
 Ex ic IIIC Dc

Hazardous Area Zone 2 or Zone 22

T6: -40°C to 60 °C T4: -40°C to 85 °C

Terminal:
41,42,43,44 / 51,52,53,54
Ex nA [ic]

Uo: 9.6 VDC
Io: 28 mA
Po: 67.2 mW
Lo: 35 mH
Co: 3.5 μF

Terminal:
11,12,13,14 21,22,23,24
Ex nA
U ≤ 35 VDC

Ex ic
Ui : 35 VDC
Li : 10 μH
Ci : 1.0 nF
General installation instructions

If the enclosure is made of non-metallic materials or of painted metal, electrostatic charging shall be avoided.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere, the following instructions apply:

If the transmitter is applied in type of protection “Ex nA”, it shall be installed in an enclosure that is Ex nA certified according to IEC-EN 60079-15, or “Ex e” certified and suitable for the application and correctly installed.

Cable entry devices and blanking elements shall fulfill the same requirements.

For installation in a potentially explosive dust atmosphere, the following instructions apply:

If the transmitter is supplied with an intrinsically safe signal "ic" and interfaces an intrinsically safe signal "ic" (e.g. a passive device), the transmitter shall be mounted in a metal enclosure that provides a degree of protection of at least IP6X according to EN/IEC 60529, and that is suitable for the application. Cable entry devices and blanking elements shall fulfill the same requirements. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
IECEx Installation drawing

For safe installation of 6335D or 6337D the following must be observed. The module shall only be installed by qualified personnel who are familiar with the national and international laws, directives and standards that apply to this area.

Year of manufacture can be taken from the first two digits in the serial number.

IECEx Certificate: IECEx KEM.10.0084X

Marking:
- Ex ia IIC T6..T4 Ga
- Ex ia IIIIC Da
- Ex ia I Ma

Standards:

Hazardous area
Zone 0, 1, 2, 20, 21, 22

Terminal:
- 41,42,43,44
 - Uo: 9.6 VDC
 - Io: 28 mA
 - Po: 67.2 mW
 - Lo: 35 mH
 - Co: 3.5 μF

Terminal:
- 51,52,53,54
 - Uo: 9.6 VDC
 - Io: 28 mA
 - Po: 67.2 mW
 - Lo: 35 mH
 - Co: 3.5 μF

Non Hazardous Area

Terminal:
- 11,12,13,14 and 21,22,23,24
 - Ui: 30 VDC
 - Ii: 120 mA
 - Pi: 0.84 W
 - Li: 10 μH
 - Ci: 1.0 nF

Ex HART Communicator

T4: -40 ≤ Ta ≤ 85ºC
T5: -40 ≤ Ta ≤ 60ºC
T6: -40 ≤ Ta ≤ 40ºC

250 < R < 1100 ohm

Barrier

Revision date: 2014-06-20
Version Revision: V4R0
Page: 1/2
General installation instructions
To avoid risk of ignition during installation and maintenance appropriate safety measures against electrostatic discharge (ESD) are to be considered.

The sensor circuit is not infallibly galvanic isolated from the supply output circuit. However, the galvanic isolation between the circuits is capable of withstanding a test voltage of 500Vac during 1 minute.

For installation in a potentially explosive gas atmosphere the following instructions apply:
To avoid risk of ignition due to electrostatic discharge (ESD) the transmitter shall be mounted in an enclosure providing a degree of protection of at least IP20 according to EN/IEC 60529.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC
T5: -40 ≤ Ta ≤ 60ºC
T6: -40 ≤ Ta ≤ 40ºC

For installation in a potentially explosive dust atmosphere, the following instructions apply:
The transmitter shall be mounted in a metal enclosure or equivalent that is providing a degree of protection of at least IP6X according to EN/IEC 60529 that is suitable for the application and correctly installed. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed. The surface temperature of the enclosure is equal to the ambient temperature +20K for a dust layer with a maximum thickness of 5 mm.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC

For installation in a potentially explosive atmosphere in mines, the following instructions apply:
The transmitter shall be mounted in an enclosure providing a degree of protection of at least IP6X according to EN/IEC 60529. Cable entries and blanking elements shall be used that are suitable for the application and correctly installed.
Ambient temperature range:
T4: -40 ≤ Ta ≤ 85ºC
Installation notes.
The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The Canadian Electrical Code (CEC).

Substitution of components may impair intrinsic safety.
Installation notes.
The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The Canadian Electrical Code (CEC).

Channel 1 and Channel 2 are separate channels and therefore separate shielded cables shall be used for each channel.

Substitution of components may impair intrinsic safety.
Installation notes
For installation in Class I the Transmitter must be installed in a suitable enclosure to meet installation
codes stipulated in The National Electrical Code (ANSI-NFPA 70).
Equipment that is FM-approved for intrinsic safety may be connected to barriers based on the Entity
Concept. This concept permits interconnection of approved transmitters, meters and other devices in
combinations, which have not been specifically examined by FM, provided that the agency's criteria
are met. The combination is then intrinsically safe, if the entity concept is acceptable to the authority
having jurisdiction over the installation.
The entity concept criteria are as follows: The intrinsically safe devices, other than barriers, must not
be a source of power. The maximum voltage $U_i(V_{MAX})$ and current $I_i(I_{MAX})$, and maximum power
$P_i(P_{MAX})$, which the device can receive and remain intrinsically safe, must be equal to or greater than
the voltage (U_o or V_{OC} or V_i) and current (I_o or I_{SC} or I_i) and the power P_o which can be delivered by
the barrier. The sum of the maximum unprotected capacitance (C_i) for each intrinsically device and the
interconnecting wiring must be less than the capacitance (C_a) which can be safely connected to the
barrier. The sum of the maximum unprotected inductance (L_i) for each intrinsically device and the
interconnecting wiring must be less than the inductance (L_a) which can be safely connected to the
barrier. The entity parameters U_o, V_{OC} or V_i and I_o, I_{SC} or I_i, and C_a and L_a for barriers are provided by
the barrier manufacturer.
Installation notes

The Transmitter must be installed in a suitable enclosure to meet installation codes stipulated in The National Electrical Code (ANSI-NFPA 70).

To assure a Non-Incendive system the transmitter and associated apparatus must be wired in accordance with the associated apparatus manufacturers field wiring instructions and the circuit diagram shown above.
Document history

The following list provides notes concerning revisions of this document.

<table>
<thead>
<tr>
<th>Rev. ID</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>15/50</td>
<td>ATEX & IECEx M1 approval added</td>
</tr>
</tbody>
</table>
We are near you, all over the world

Our trusted red boxes are supported wherever you are

All our devices are backed by expert service and a 5-year warranty. With each product you purchase, you receive personal technical support and guidance, day-to-day delivery, repair without charge within the warranty period and easily accessible documentation.

We are headquartered in Denmark, and have offices and authorized partners the world over. We are a local business with a global reach. This means that we are always nearby and know your local markets well.

We are committed to your satisfaction and provide PERFORMANCE MADE SMARTER all around the world.

For more information on our warranty program, or to meet with a sales representative in your region, visit prelectronics.com.
PR electronics is the leading technology company specialized in making industrial process control safer, more reliable and more efficient. Since 1974, we have been dedicated to perfecting our core competence of innovating high precision technology with low power consumption. This dedication continues to set new standards for products communicating, monitoring and connecting our customers’ process measurement points to their process control systems.

Our innovative, patented technologies are derived from our extensive R&D facilities and from having a great understanding of our customers’ needs and processes. We are guided by principles of simplicity, focus, courage and excellence, enabling some of the world’s greatest companies to achieve PERFORMANCE MADE SMARTER.