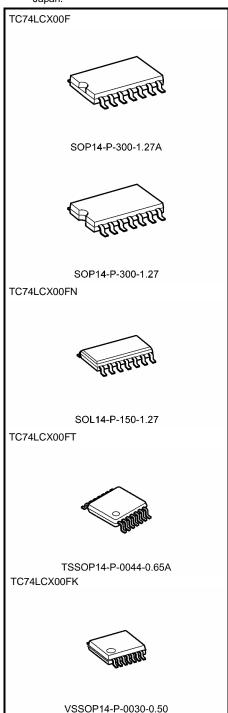
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX00F,TC74LCX00FN,TC74LCX00FT,TC74LCX00FK

Low-Voltage Quad 2-Input NAND Gate with 5-V Tolerant Inputs and Outputs

The TC74LCX00F/FN/FT/FK is a high-performance CMOS 2-input NAND gate. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.


The device is designed for low-voltage (3.3 V) $V_{\rm CC}$ applications, but it could be used to interface to 5 V supply environment for inputs

All inputs are equipped with protection circuits against static discharge.

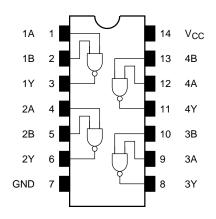
Features

- Low-voltage operation: VCC = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 5.2 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Output current: |IOH|/IOL = 24 mA (min) (VCC = 3.0 V)
- Latch-up performance: ±500 mA
- · Available in JEDEC SOP, JEITA SOP and TSSOP
- · Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 00 type

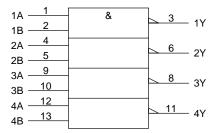
Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

 SOP14-P-300-1.27A
 : 0.18 g (typ.)


 SOP14-P-300-1.27
 : 0.18 g (typ.)

 SOL14-P-150-1.27
 : 0.12 g (typ.)


 TSSOP14-P-0044-0.65A
 : 0.06 g (typ.)

 VSSOP14-P-0030-0.50
 : 0.02 g (typ.)

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inp	outs	Outputs
Α	В	Y
L	L	Н
L H		Н
Н	L	Н
Н	Н	L

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to 7.0	V
		-0.5 to 7.0 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5 (Note 3)	V
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P _D	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

2

Note 2: $V_{CC} = 0 V$

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	2.0 to 3.6	V	
r ower supply voltage	VCC	1.5 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	\/a=	0 to 5.5 (Note 3)	V	
Output voltage	V _{OUT}	0 to V _{CC} (Note 4)	V	
Output current	IOH/IOI	±24 (Note 5)	mA	
Output current	iOH/iOL	±12 (Note 6)	IIIA	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 7)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: $V_{CC} = 0 V$

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 7: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C)

Character	istics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Input voltage	H-level	V _{IH}		_		2.0	_	V
input voltage	L-level	V _{IL}		_	2.7 to 3.6	_	0.8	V
			$I_{OH} = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	_		
	H-level	V _{OH}	VIN = VIH or VIL	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	V
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
Output voltage L-lev				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
		-level V _{OL}	VIN = VIH	$I_{OL} = 100 \ \mu A$	2.7 to 3.6		0.2	
	L-level			$I_{OL} = 12 \text{ mA}$	2.7		0.4	
	L-level	VOL		$I_{OL} = 16 \text{ mA}$	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55	
Input leakage curre	Input leakage current I_{IN} $V_{IN} = 0$ to 5.5 V		2.7 to 3.6	_	±5.0	μΑ		
Power off leakage current I _{OFF} V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μΑ			
Quioccont cupply current		loo	$V_{IN} = V_{CC}$ or GND		2.7 to 3.6		10.0	
Quiescent supply current	lcc	$V_{IN} = 3.6 \text{ to } 5.5 \text{ V}$		2.7 to 3.6		±10.0	μΑ	
Increase in Icc per	input	ΔI_{CC} $V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	500		

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	6.0	- ns
	t_{pHL}		3.3 ± 0.3	1.5	5.2	
Output to output skew	t _{osLH}	(Note)	2.7		_	- ns
	t _{osHL}	(Note)	3.3 ± 0.3	_	1.0	

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \, t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|)$

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	0	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (No	e) 3.3	25	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $ICC (opr) = CPD \cdot VCC \cdot fIN + ICC/4 (per gate)$

AC Test Circuit

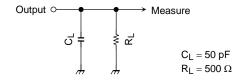


Figure 1

AC Waveform

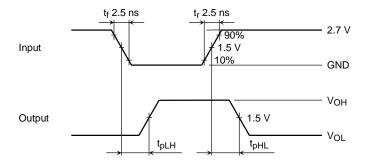
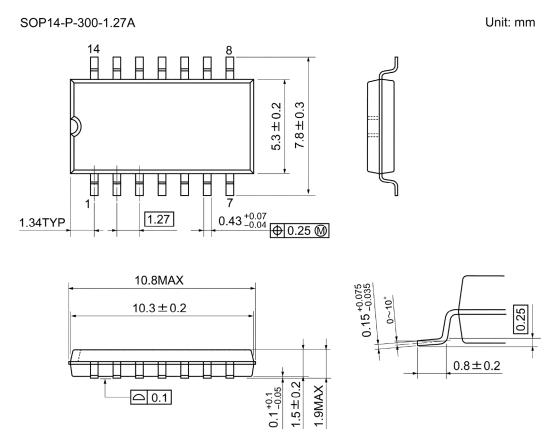
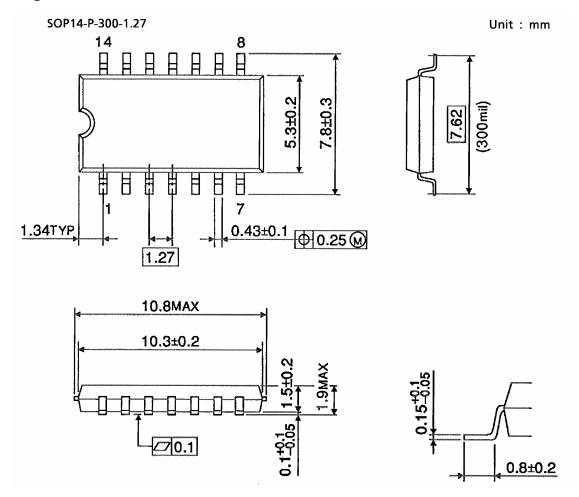
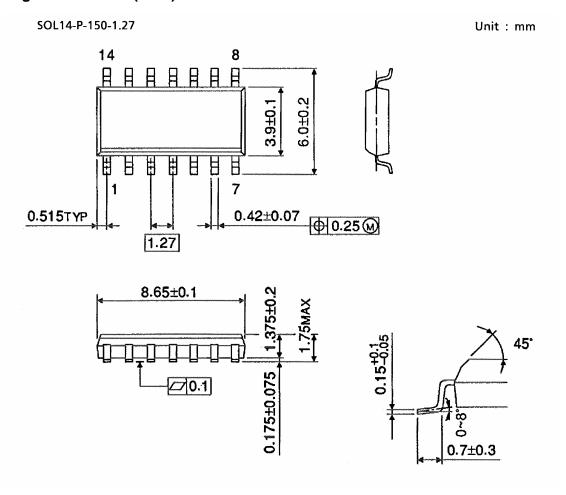




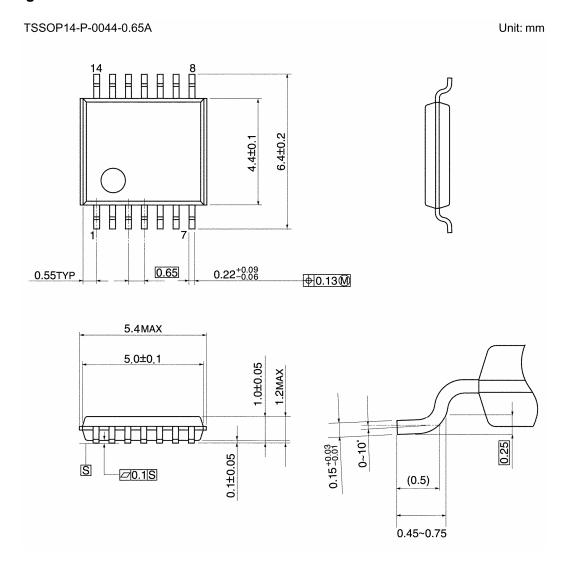
Figure 2 t_{pLH} , t_{pHL}

Weight: 0.18 g (typ.)

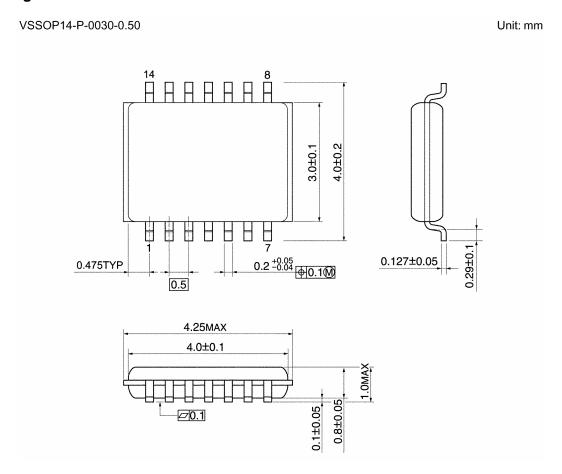


7

Weight: 0.18 g (typ.)


Package Dimensions (Note)

Note: This package is not available in japan.


Weight: 0.12 g (typ.)

Weight: 0.06 g (typ.)

Weight: 0.02 g (typ.)

Note: Lead (Pb)-Free Packages

SOP14-P-300-1.27A SOL14-P-150-1.27 TSSOP14-P-0044-0.65A VSSOP14-P-0030-0.50

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others. 021023_c

11

• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E