Original Instructions

440G-EZ Interlocking Safety Switch

Catalog Numbers 440G-EZS21STL05J, 440G-EZS21STL05H

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Preface
Who Should Use This Publication? 5
Terminology 5
Summary of Changes 5
Additional Resources 6
Chapter 1Safety Information
Product OverviewProject Planning
Installation
Introduction. 7
Intended Use 7
Requirements for Qualified Personnel 8
Project Planning. 8
Mechanical Mounting, Electrical Installation, and Commissioning 8
Operation and Maintenance. 8
Chapter 2
Structure and Function 9
Product Features 9
Product Models 10
Locking Principle 10
Protective Functions 11
Status Indicators 11
Chapter 3
Manufacturer of the Machine 13
Operating Entity of the Machine 13
Assembly 14
Mounting Location 14
Distance 14
Alignment 14
Mounting Methods 14
Electrical Control Integration 15
OSSDs 15
Course of the OSSD Test Over Time 17
Locking Solenoid Control. 17
Application Diagnostic Output 17
Thorough-check Concept. 18
Regular Thorough Check Minimum Requirements 18
Chapter 4
Mount Multiple Safety Switches 19
Mounting 19
Mount the Sensor 20
Mount the Actuator 21
Chapter 5
Wiring Notes on c-UL-us 23
Device Connection (M12, 5-pin) 23
Device Connection (M12, 8-pin) 24
Connect Safety Switches with T-connectors 25
Chapter 6
Commissioning Switch On 27
Thorough-check Requirements. 27
Chapter 7
Maintenance and Maintenance. 29
Clean the Switch 29
Regular Thorough Check 29
Troubleshooting 29
Appendix A
Specifications Technical Data 31
Approximate Dimensions. 34
Appendix B
Ordering Information Package Contents 35
Ordering Information 35
AppendixC
Replacement Parts/Accessories Replacement Parts. 37
Accessories 37
Appendix D
Declaration of Conformity (DoC) EU DoC (excerpt) 39
Complete EU DoC for Download 39
Index 41

Who Should Use This Publication?

Terminology

This user manual contains the information that is needed during the lifecycle of the 440 G -EZ electromagnetic safety switch.

This user manual must be made available to all people who work with the safety switch. The structure of this user manual is based on the lifecycle phases of the safety switch: project planning, mounting, electrical installation, commissioning, operation, and maintenance.

These operating instructions are intended for use by the following:

- Project developers (planners, developers, designers)
- Installers
- Electricians
- Safety experts (such as CE authorized representatives, compliance officers, and people who test and approve the application)
- Operators
- Maintenance personnel

The following terms and abbreviations are used throughout this manual. For definitions of terms not listed here, refer to the Allen-Bradley Industrial Automation Glossary, publication AG-7.1.

Term	Definition
Dangerous state	A status of the machine or facility, where people can be injured. Protective devices help prevent this risk if the machine is operated within its intended use. The figures in this document always show the dangerous state of the machine as movement of a machine part. In practice, there are different dangerous states, such as: - Machine movements - Vlectrical parts - A combination of multiple hazards

This publication contains updated information in Table 3 on page 31.

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description
440G-EZ Interlocking Safety Switch Installation Instructions, publication $\underline{\text { 44OG-IN019 }}$	Provides installation information for 440G-EZ switches.
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides general guidelines for installing a Rockwell Automation ${ }^{\text {in }}$ industrial system.
Product Certifications website: rok.auto/certifications	Provides declarations of conformity, certificates, and other certification details.

You can view or download publications at rok.auto/literature.

Safety Information

Introduction

Intended Use

This chapter contains general safety information about the safety switch.
Further information about specific product use situations can be found in the relevant chapters.

ATTENTION: Hazard due to lack of effectiveness of the protective device
If non-compliant, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Read this publication carefully and make sure that you understand the content fully before working with the device.
- Follow all safety notes in this publication.

The 440 G electromagnetic safety switch is a transponder safety switch with a locking function, which is controlled without contact by actuators and is suitable for the following applications:

- Monitoring of movable physical guards
- Locking device for process protection

The safety switch must only be used within the limits of the prescribed and specified technical data and operating conditions.

Incorrect use, improper modification of, or tampering with the safety switch invalidates any warranty from Rockwell Automation; in addition, any responsibility and liability of Rockwell Automation for damage and secondary damage that this action causes is excluded.

The safety switch is not suitable for the ambient conditions such as, but not limited, to the following:

- Applications in which the dangerous state cannot be ended immediately (stopping time)
- Radioactivity (exception: natural radioactivity)
- Vacuum or high pressure
- High UV load
- In the vicinity of low-frequency RFID devices
- In the vicinity of magnetic fields

ATTENTION: Improper use of the safety switch
If a voltage drop occurs, the locking device unlocks regardless of whether the dangerous state of the machine has ended.
This safety switch has a simple electromagnetic locking device. There is no locking device monitoring.

- Do not use the safety switch as a safety locking device according to EN 14119.
- Do not use the safety switch in applications in which the dangerous state cannot be ended immediately (stopping/run-down time).

IMPORTANT Passing metal chips may impair the function of the safety switch.

Requirements for Qualified Personnel

Only qualified safety personnel can configure, mount, connect, commission, and service the safety switch.

Project Planning

For project planning, a person is considered competent when they have expertise and experience in the selection and use of protective devices on machines and is familiar with the relevant technical rules and national work safety regulations.

Mechanical Mounting, Electrical Installation, and Commissioning

For the task, a person is considered qualified when they have the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine to be able to assess whether it is in an operationally safe state.

Operation and Maintenance

For operation and maintenance, a person is considered competent when they have the expertise and experience in the relevant field and is sufficiently familiar with the application of the protective device on the machine and the machine operator has instructed them in its operation.

Product Overview

Structure and Function

Product Features

Item	Description
1	Locking solenoid
2	Sensor surface
3	Cover plate
4	Plug connector IN
5	LOCK light-emitting diode (LED)
6	OSSD LED

Figure 2-Actuator Overview

Item	Description
1	Anchor plate
2	Protective cap
3	Actuator surface

Product Models

The safety switch is available in different models. The following is an overview of unique features of the models:

- One cable with M12 plug connector (5-pin)
- One cable with M12 plug connector (8-pin)

Locking Principle

ATTENTION: Hazard due to lack of effectiveness of the protective device.
If a voltage drop occurs, the locking device unlocks regardless of whether the dangerous state of the machine has ended.

- Do not use the safety switch in applications where the dangerous state cannot be ended immediately (stopping/run-down time).

Power to Lock Principle

- Lock locking device: voltage at locking device input
- Unlock locking function: no voltage at locking device input

If voltage is interrupted, the locking device is unlocked and the protective device can be opened immediately.

The locking device is not monitored, which means that the safety switch does not check whether the anchor plate is applied to the solenoid.

Protective Functions

The safety switch has the following internal protective functions:

- Short-circuit protection at all outputs
- Cross-circuit monitoring at OSSDs
- Overload protection on OSSDs
- Supply voltage reverse polarity protection

Status Indicators

The safety switch displays important status information with the status indicators.

Figure 3 - Status Indicators

Item	Name	Color	Description
1	OSSD	Green/Red	Green when the OSSD pair is in the ON state. Red when the OSSD pair is in the OFF state.
${ }^{(1)}$			

(1) When a load is applied to the application diagnostic output that is too high, the red OSSD status indicator remains continuously ON. The actual switching behavior of the safety switch is not affected.

Notes:

Project Planning

Manufacturer of the Machine

 Machine

ATTENTION: Failure to comply with obligations of manufacturer.

Hazard due to lack of effectiveness of the protective device.

- Conduct a risk assessment before using the safety switch.
- Do not tamper with, open, or modify the components of the safety switch.
- Do not repair defective devices - they must be replaced instead.
- Make sure that switch-on commands, which bring about a dangerous state of the machine, are not enabled until the protective device is closed.
- Make sure that a stop command is triggered when the protective device is opened during the dangerous machine state.
- The safety switches must not be defeated (that is, contacts jumpered), rotated away, removed, or rendered ineffective in any other way. If necessary, put measures in place to reduce possibilities for defeat.

ATTENTION: Failure to comply with obligations of the operating entity.
Hazard due to lack of effectiveness of the protective device.

- Modifications to the machine and modifications to the mechanical mounting of the safety switch necessitate a new risk assessment. The results of this risk assessment may require the operating entity of the machine to fulfill the obligations of the manufacturer.
- Apart from during the procedures described in this document, the components of the safety switch must not be opened or modified.
- Do not perform repair work on the components. Improper repair of the safety switch can lead to a loss of the protective function.
- Verify that there is no bypassing by replacement actuators. Restrict access to actuators.

Assembly

ATTENTION: Bypassing the protective device.
Hazard due to lack of effectiveness of the protective device.
Avoid incentives to manipulate the safety switch by taking at least one of the
following measures:

- Cover the sensor and the actuator with additional equipment or protect them
against access.
- If possible use permanent mounting methods for actuators (for example, glue,
safety screws, or rivets).

Mounting Location

- Select the mounting location so that the sensor and actuator are accessible for maintenance work and are protected against damage.
- Select a mounting location for the sensor that is as far away from the door hinge as possible.
- If necessary, fit an additional stop for the moving protective device.

Distance

When several safety switches are mounted to the machine, they must be mounted at a minimum distance to one another see Mount Multiple Safety Switches on page 19

Alignment

The safety switch can be mounted in any alignment. When mounted horizontally, the anchor plate with rotating bearings increases the manipulation protection. When mounted horizontally, if the movable physical guard triggers the actuator, the magnet holds the actuator. As the anchor plate has rotating bearings, the gravitational force rotates the actuator surface away from the sensor surface and the OSSDs go into the OFF state.

Mounting Methods

The sensor can be mounted in the following ways:

- Surface mount: The sensor is mounted on the fixed part of the protective device (for example, door frame).
- Flush mount ${ }^{(1)}$: The sensor is mounted in the fixed part of the protective device (for example, door frame). There must be a suitable recess in the mounting surface. The thickness of the mounting surface must be $1.5 \ldots .3 \mathrm{~mm}$ (0.06...0.12 in.).
(1) For the recess dimensions for flush mounting, see Figure 12 on page 34

Electrical Control Integration

Switch-on commands that put the machine in a dangerous state can only be activated when the protective device is closed. When the machine goes into a dangerous state, a stop command must be triggered if the protective device is opened. Depending on the safety concept, a safety relay or a safety controller analyzes the signal.

The control that is connected and all devices responsible for safety must comply with the required Performance Level and the required category (for example, according to ISO 13849-1).

OSSDs

Safety switches with local inputs and outputs can be directly integrated into the machine controller.
ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be
stopped or not stopped in a timely manner.

- Make sure that the following control and electrical requirements are met so the protective function can be fulfilled.
- The output signals from an OSSD pair must not be connected to each other.
- In the machine controller, both signals from an OSSD pair must be processed separately.

Figure 4 - Dual-channel and isolated connection of OSSD 1 and OSSD 2

- The machine must switch to the safe state at any time if at least one OSSD in an OSSD pair switches to the OFF state.
- Prevent the formation of a potential difference between the load and the protective device. If you connect loads to the OSSDs (safety outputs) that then also switch if controlled with negative voltage (for example, electromechanical contactor without reverse polarity protection diode), you must connect the 0 V connections of these loads and the connections of the corresponding protective device individually and directly to the same 0 V terminal strip. If there is a fault, this way verifies that there can be no potential difference between the 0 V connections of the loads and the connections of the corresponding protective device.

Figure 5 - No Potential Difference Between Load and Protective Device

ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.
Downstream contactors must be positively guided and monitored depending on applicable national regulations or required reliability of the safety function.

- Make sure that downstream contactors are monitored (external device monitoring, EDM).

Requirements for the Electrical Control of the Machine

- Use the control without test pulses. The safety switch is self-testing.
- The safety switch tests the OSSDs at regular intervals. To conduct this test, it switches each OSSD briefly (for max. 1 ms) to the OFF state and checks whether this channel is voltage-free during this time.
Make sure that the control of the machine does not react to these test pulses and the machine does not switch off.
- The inputs of a connected evaluation unit must be positive-switching (PNP), as the two outputs of the safety switch send a level of the supply voltage in the switched on state.

The OSSD are short-circuit protected to 24 V DC and 0 V . When the actuator is in the response range of the sensor, the OSSDs signal the ON state with the HIGH signal level (nonisolated). If the actuator is removed from the response range of the sensor or there is a device fault, the OSSD s signal the OFF state with the LOW signal level.

The safety switch complies with the regulations for electromagnetic compatibility (EMC) for the industrial sector (Radio Safety Class A). Radio interference cannot be ruled out when used in residential areas.

ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Make sure that the following control and electrical requirements are met so the safety switch can fulfill its protective function.
- The external voltage supply of the safety switch must be able to withstand brief power failures of 20 ms as specified in IEC 60204-1.
- The power supply unit must provide safe isolation according to IEC 61140 (SELV/PELV). We have suitable power supplies available as accessories, contact your local Allen-Bradley distributor or Rockwell Automation sales office.

Course of the OSSD Test Over Time

(1) Usually every 40 ms . The interval is dynamic and can be smaller than 40 ms .

Locking Solenoid Control

The locking solenoid is activated through the upstream control. There is no internal activation or deactivation of the locking solenoid through the safety switch. The locking device and locking force are not monitored. When the machine starts, the following sequence must be followed:

1. Check whether safety switch OSSDs are in the ON state.
2. Supply the locking solenoid with power.
3. Start the machine.

Application Diagnostic Output

The application diagnostic output signal changes as soon as the actuator is moved into or out of the response range of the safety switch. That is, when the movable protective device is opened or closed. This output is not a safety output.

Table 1 - Switching Behavior of the Application Diagnostic Output

Actuator	Application Diagnostic Output
Actuator not in the response area, or safety switch in an error state	OFF
Actuator in the response area	ON

For more information, see Specifications on page 31.

Thorough-check Concept

Appropriately qualified safety personnel must test the safety switch during commissioning, after modifications, and at regular intervals; see Thoroughcheck Requirements on page 27.

Regular thorough checks serve to investigate the effectiveness of the safety switch and discover anomalies that result from modifications or external influences (such as damage or manipulation).

The manufacturer and operating entity must define the type and frequency of the thorough checks on the machine based on the application conditions and the risk assessment. The process of defining the thorough checks must be documented in a traceable manner.

Regular Thorough Check Minimum Requirements

The following thorough checks must be conducted at least once a year:

- Thorough check of the protective function of the safety switch
- Thorough check of the switch housing for damage
- Thorough check of the switch cables for damage
- Thorough check of the safety switch for signs of misuse or manipulation
- Thorough check of the locking solenoid for correct function

Installation

Mount Multiple Safety Switches

IMPORTANT When several safety switches are mounted, the minimum distance between the individual systems must be followed to avoid mutual interference.

Figure 7-Spacing Requirement

The sensor can be mounted in the following ways:

- Surface mount - The sensor is mounted on the fixed part of the protective device (for example, door frame).
- Flush mount - The sensor is mounted in the fixed part of the protective device (for example, door frame). There must be a suitable recess in the mounting surface. The thickness of the mounting surface must be between $1.5 \ldots .3 \mathrm{~mm}$ ($0.06 \ldots . .0 .12 \mathrm{in}$.)

For recess dimensions for flush mounting, see Figure 12 on page 34

> | IMPORTANT | Install the safety switch horizontally to help increase protection against |
| :--- | :--- |
| manipulation. | |

Mount the Sensor

1. Unscrew the fixing screw (hexagon socket, 2 mm [0.08 in.]) and remove the cover plate.

2. Mount the sensor on the fixed part of the protective device with $4 \times \mathrm{M} 4$ screws and secure it with four nuts.

- For surface mount: mount the sensor on the fixed part of the protective device. The screws can be set in the front or the back.

- For flush mount: mount the sensor in the fixed part of the protective device.

3. Set cover plate on the sensor.
4. Tighten the fixing screws to $1 \mathrm{~N} \bullet \mathrm{~m}$.

Mount the Actuator

1. Align the actuator to the mounted sensor.
2. Mount the actuator on the moving part of the protective device (for example, door) with $4 \times \mathrm{M} 4$ screws. Tightening torque: $1 \mathrm{~N} \bullet \mathrm{~m}$. Use disposable screws if possible.

- Maximum angle between sensor and actuator when protective device is closed is 3°

3. Cover drill holes of the actuator with protective caps.

Notes:

Wiring

Notes on c-UL-us

Device Connection
(M12, 5-pin)

For use according to the requirements of UL 508, the following conditions must also be met:

- Voltage supply Uv sensor secured with 2 A fuse
- Voltage supply Uv magnet secured with 2 A fuse

Figure 8 - Device Connection Pin Assignment (Male Connector, M12, 5-pin, A-coded)

Pin	Wire Color ${ }^{(1)}$	Designation	Description
1	Brown	+24 V DC	Safety switch voltage supply
2	White	OSSD 1	OSSD 1 output
3	Blue	OV	OV DC voltage supply
4	Black	OSSD 2	OSSD 2 output
5	Gray	Magnet	Magnet activation 24V DC

(1) Applies to the extension cables recommended as accessories.

[^0]Device Connection (M12, 8-pin)

Figure 9 - Device Connection Pin Assignment (Male Connector, M12, 8-pin, A-coded)

Pin	Wire Color $^{(1)}$	Designation	Description
1	White	Aux	Application diagnostic output (not safe)
2	Brown	$+24 V$ DC	Safety switch voltage supply
3	Green	Magnet	Magnet activation 24V DC
4	Yellow	In 2	OSSD 2 input ${ }^{(2)}$
5	Gray	OSSD 1	OSSD 1 output
6	Pink	OSSD 2	OSSD 2 output
7	Blue	OV	OV DC voltage supply
8	Red	In 1	OSSD 1 input ${ }^{(2)}$

(1) Applies to the extension cables recommended as accessories.
(2) When used as an individual safety switch or as the first safety switch in a cascade apply $24 \mathrm{~V} D \mathrm{D}$.

IMPORTANT Pay attention to tightness of the plug connector.

Connect Safety Switches with T-connectors

The following connection system components facilitate connection.

Item	Connection		Cat. No.
1	Safety-wired Splitter/T-Port		898D-438Y-D8
	Safety-wired Shorting Plug		898D-418U-DM
2		Pin 1 PWR Pin2 OSSD 1+ Pin 3 PA Pin 4 OSSD2 $2+$ Pin 5\quad.	
3	8 -pin Device Patchoords		Cat. No. ${ }^{(1)}$
	1 m (3.3ft)		889D-F8ABDM-1
	2 m (6.6ft)		889D-F8ABDM-2
	5 m (16.4ft)		889D-F8ABDM-5
	10 m (32.8ft)		889D-F8ABDM-10
4	5-pin Patchcords		Cat. No. ${ }^{(1)}$
	1 m (3.3ft)		889D-F5ACDM-1
	$2 \mathrm{~m}(6.6 \mathrm{ft})$		889D-F5ACDM-2
	5 m (16.4ft)		889D-F5ACDM-5
	10 m (32.8ft)		889D-F5ACDM-10
5	5-pin Cordsets		Cat. No. ${ }^{(1)}$
	2 m (6.6ft)		889D-F5AC-2
	5 m (16.4ft)		889D-F5AC-5
	10 m (32.8ft)		889D-F5AC-10

(1) Add the letter S to above catalog numbers for stainless steel connectors (example: 889DS-F5AC-1).

Notes:

Commissioning

ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Before commissioning the machine, have qualified safety personnel check and release it.
- Make sure that the time for the safety requirement (closing the protective device again) is longer than the response time.

Switch 0n

Thorough-check Requirements

The device initializes after it is switched on. OSSD s are switched off in the meantime. The OSSD light-emitting diode lights up after initialization.

The protective device and its application must be thoroughly checked in the following situations:

- Before commissioning
- After changes to the configuration or the safety function
- After changes to the mounting, the alignment, or the electrical connection
- After exceptional events, such as after a manipulation has been detected, after modification of the machine, or after replacing components

The thorough check verifies the following:

- All relevant regulations are complied with and the protective device is active for all operating modes of the machine.
- The documentation corresponds to the state of the machine, including the protective device.

Qualified safety personnel or specially qualified and authorized personnel must conduct the thorough checks and must be document results in a traceable manner.

IMPORTANT - Check whether the protective device of the machine is effective in all operating modes in which the machine can be set.

- Verify that operating personnel have been instructed in the function of the protective device before starting work on the machine. The machine operator has overall responsibility for the instruction, which qualified personnel must conduct.

Notes:

Maintenance and Troubleshooting

Maintenance

Regular Thorough Check

The safety switch must be checked regularly. The type and frequency of thorough checks is defined by the manufacturer and the operating entity of the machine, see Thorough-check Concept on page 18 .

The regular thorough checks serve to investigate the effectiveness of the safety switch and detect any ineffectiveness due to modifications or external influences (for example, damage or manipulation).

> IMPORTANT Conduct the thorough checks according to the instructions from the manufacturer and the machine user.

Troubleshooting

ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be stopped or not stopped in a timely manner.

- Immediately shut down the machine if the behavior of the machine cannot be clearly identified.
- If a machine fault cannot be determined or safely rectified, immediately shut down the machine.
- Secure the machine so that it cannot switch on unintentionally.
ATTENTION: Hazard due to unexpected starting of the machine.
When any work is taking place, use the protective device to secure the machine or
to verify that the machine is not switched on unintentionally.
ATTENTION: Hazard due to lack of effectiveness of the protective device.
If non-compliant, it is possible that the dangerous state of the machine may not be
stopped or not stopped in a timely manner.
- Do not repair device components.
- Do not modify or manipulate device components.
Apart from during the procedures deccribed in this document, the device
components must not be opened.

Perform one of the following steps when an error occurs:

- Check voltage supply.
- Check cables.
- Check alignment of safety switch and actuator.
- Check ambient conditions (for example, interfering RFID frequencies or magnetic fields, distances to other safety switches).

> IMPORTANT If safety switch has a fault in a cascade with an end connector, the OSSDs of all safety switches between the safe evaluation unit and the safety switch concerned switch into the OFF state.

Specifications

Technical Data

Table 2 - Features

Attribute	Value
Safe switch on distance $S_{\mathrm{a} 0}$	$4 \mathrm{~mm}(0.16 \mathrm{in})$.
Typical switch on distance S_{0}	15 mm (0.59 in.)
Safe switch off distance S_{ar}	45 mm (1.77 in.)
Max. actuation frequency	0.5 Hz
Locking force	$500 \mathrm{~N}(112.4 \mathrm{lbf})$
Magnetic retaining force when not supplied with power	25 N (5.6 lbf)
Alignment tolerance for locking device	$5 \mathrm{~mm}(0.2 \mathrm{in})$.
Vertical	$5 \mathrm{~mm}(0.2 \mathrm{in})$.
Horizontal	3°
Aperture angle	

Table 3 - Safety

Attribute	Value
Standards	IEC 60947-5-3, IEC 60947-5-1, IEC 61508, EN ISO 13849-1, IEC 62061, ISO 14119, UL 508
Safety Classification (Guard door sensing)	PLe Category 4 per IS0 13949-1, SIL 3 per IEC 61508 and IEC 62061
Certifications	CE Marked for all applicable EU directives, c-UL-us (UL 508), TUUV, C-tick
Performance level	PLe (IS0 13849-1) ${ }^{(1)}$
Category	4 (ISO 13849)
Safety integrity level	SIL 3 (EN 61508)
SIL claim limit	SILCL 3 (EN 62061)
PFHd (mean probability of a dangerous failure per hour)	1.5×10^{-8} at $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ and $1000 \mathrm{~m}(3280.8 \mathrm{ft})$ above sea level
T_{M} (mission time)	20 years (ISO 13849-1)
Type	Type 4 (ISO 14119)
Coding level	Low coding level (ISO 14119)
Safe state when a fault occurs	At least one OSSD is in the OFF state

(1) In a cascade, the performance level for the cascade as a whole depends on the number and type of devices in the cascade. PL e is only possible in cascades with a maximum of 6 devices.

Table 4-System Connection of Variant with $1 \times$ M12 Plug Connector, 5-pin

Attribute	Value
Voltage supply Local inputs and outputs	Male connector, M12, 5-pin, A-coded (common plug connector for voltage supply and outputs)
Length of connecting cable	150 mm (5.91 in.)

Table 5 - System Connection of Variant with $1 \times$ M12 Plug Connector, 8-pin

Attribute	Value
Voltage supply Local inputs and outputs	Male connector, M12, 8-pin, A-coded (common plug connector for voltage supply as well as inputs and outputs)
Length of connecting cable	150 mm (5.91 in.)

Table 6 - Electrical

Attribute	Value
OSSD pairs	1
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$	1500 V
Pollution degree	3 (external, according to EN 60947-1)
Power-up delay (after supply voltage applied) ${ }^{(1)}$	2.5 s
Supply voltage when an individual safety switch is connected	
Supply voltage V_{V} sensor	24 V DC (19.2. . 28.8 V) Class 2 supply
Supply voltage V_{v} magnet	24 V DC (19.2...28.8V) Class 2 supply
Supply voltage when an cascade is connected	
Supply voltage V_{V} sensor	24V DC (22.8...28.8V) Class 2 supply
Supply voltage V_{v} magnet	24 V DC (21.6. . 28.8V) Class 2 supply
Muting time when supply voltage is interrupted	4 ms
Rated insulation voltage Ui	32 V DC
Cable capacitance	400 nF (for Out A and Out B)
Device fuse	0.6... 1 A
Current consumption at 24 V	
Locking device deactivated	50 mA
Locking device active	350 mA
Protection class	IIII (EN 61140/IEC 61140)
Response time ${ }^{(2)}$	$\leq 50 \mathrm{~ms}{ }^{(5)}$
Release time ${ }^{(3)}$	$\leq 100 \mathrm{~ms}^{(5)}$
Risk time ${ }^{(4)}$	$\leq 100 \mathrm{~ms}^{(5)}$

(1) Once the supply voltage has been switched on, the OSSDs are in the OFF state during the time delay before availability. The time specified applies to one sensor; in a cascade, 0.1 s must be added per sensor.
(2) Response time for moving the OSSDs into the OFF state when the actuator is removed from the response area or when the OSSD input signals go into the OFF state.
(3) Response time for moving the OSSD sinto the ON state when the actuator is detected by the sensor and the OSSD input signals are in the ON state.
(4) The risk time is the time needed to detect internal and external faults. External errors affect the OSSDS (short-circuit to an OSSD and cross-circuit between the two OSSDs). At least one of the two OSSDs is safely switched off during the risk time.
(5) In a cascade, the value is multiplied by the number of safety switches in the cascade.

Table 7-Mechanical Data

Attribute	
Dimensions (W xH x D)	
Safety switch	$120 \times 60 \times 38.5 \mathrm{~mm}(4.72 \times 2.36 \times 1.52 \mathrm{in})$.
Actuator	$120 \times 60 \times 20.5 \mathrm{~mm}(4.72 \times 2.36 \times 0.81 \mathrm{in})$.
Material	Anodized aluminum
Sensor housing	Fiber-glass-reinforced PVC
Actuator housing	Nickel-plated steel
Anchor plate	
Weight	$510 \mathrm{~g}(18 \mathrm{oz})$
Safety switch	$210 \mathrm{~g}(7.41 \mathrm{oz})$
Actuator	

Table 8 - Inputs

Attribute	Value
Rated voltage	24 VDC
ON state	$\leq 5 \mathrm{~mA}$
OFF state	0 mA
ON state	$19.2 \ldots 28.8 \mathrm{VDC}$
OFF state	$0 \ldots .2 \mathrm{VDC}$

Table 9-Outputs

Attribute	Value
2 OSSDs (Out 1 and Out 2)	$2 \times \mathrm{PNP}$, max. 100 mA, short-circuit protected and overload-proof
1 Application diagnostic output (Aux)	$25 \mathrm{~mA} \mathrm{max}{ }^{(1)}$, short-circuit protected (resistive load)
Switching voltage (all outputs)	
ON state	$19.2 \ldots .28 .8 \mathrm{~V} \mathrm{DC}$
OFF state	$0 \ldots 2 \mathrm{VDC}$
Switching current (OSSDs)	
ON state	$\leq 100 \mathrm{~mA}$
OFF state	$\leq 500 \mu \mathrm{~A}$
Test pulse duration (OSSDs)	$300 \mu \mathrm{~s}$

(1) A higher load affects the behavior of the status indicators, see Status Indicators on page 11.

Table 10-Enviroment

Attribute	Value
Enclosure rating	IP $67($ IEC 60529$)$
Ambient operating temperature	$-20 \ldots+55^{\circ} \mathrm{C}\left(-4 \ldots+131^{\circ} \mathrm{F}\right)$
Storage temperature	$-25 \ldots+70^{\circ} \mathrm{C}\left(-13 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Relative humidity	50% at $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)($ IEC $60947-5-2)$
Vibration resistance	$1 \mathrm{~mm} / 10 \ldots .55 \mathrm{~Hz}$ (IEC 60068-2-6)
Shock resistance	$30 \mathrm{~g}, 11 \mathrm{~ms}($ IEC $60068-2-27)$
EMC	In accordance with IEC $61326-3-1$, IEC $60947-5-2$, IEC $60947-5-3$, and EN $300330 \mathrm{V2.1.1}$
Minimum distance between two safety switches	Depending on alignment, see Mount Multiple Safety Switches on page 19.

Approximate Dimensions

Figure 10-440G-EZ Sensor with $1 \times$ M12 Male Connector [mm (in.)]

(1) $\mathrm{L}=150 \pm 2 \mathrm{~mm}(5.91 \pm 0.79 \mathrm{in}$.)

Figure 11-440G-EZ Sensor Actuator [mm (in.)]

Figure 12 - Flush Mounting [mm (in.)]

Ordering Information

Package Contents

Ordering Information

Table 11-440G-EZ Product Selection

Sensor Connection Type	Cat. No.
Electromagnetic switch Cable with 5-pin M12 connector	440G-EZS21STL05J
Electromagnetic Switch Cable with 8-pin M12 connector	440G-EZS21STL05H

Notes:

Replacement Parts/Accessories

Replacement Parts

Accessories

Description	Cat. No.
Actuator	440G-EMAS

Table 12-DC Micro (M12) Cables

Description	Cat. No.
8-pin cordset — female, straight	889D-F8AB-x $\boldsymbol{x}^{(1)}$
8-pin patchcord — female, straight	889D-F8ABDM-x $x^{(2)}$
5-pin cordset — female, straight	889D-F5AC-x ${ }^{(1)}$
5-pin patchcord — female, straight	889D-F5ACDM-x ${ }^{(2)}$

(1) Replace the x with a $2(2 \mathrm{~m}), 5(5 \mathrm{~m})$, or $10(10 \mathrm{~m})$ for standard cable lengths.
(2) Replace the x with a $1(1 \mathrm{~m}), 2(2 \mathrm{~m}), 3(3 \mathrm{~m}), 5(5 \mathrm{~m})$, or $10(10 \mathrm{~m})$ for standard cable lengths

Notes:

Declaration of Conformity (DoC)

> EU DoC (excerpt)

Complete EU DoC for Download

Notes:

A

accessories 37
actuator
mount 21 overview 10
alignment 14
application
diagnostic output 17
approximate dimension 34
assembly 14

C

clean
switch 29
commission 27
concept
thorough-check 18
conformity
declaration of 39
connect
safety switch
T-connector 25
content
package 35
control
locking solenoid 17
c-UL-us
note 23

D

dangerous state 5
declaration of conformity 39
device connection
M12, 5-pin 23
M12, 8 -pin 24
diagnostic output application 17
dimension
approximate 34
distance 14
DoC 39

E

electrical
installation 8
electrical control
integration 15 requirement 16
features
product 9
flush mount 19

function 9

protective 11
indicator
status 11
information
safety 7
installation 19
electrical commission 8
integration electrical control 15
intended use 7
introduction safety information 7

L

location
mounting 14
locking principle 10
locking solenoid
control 17

M

M12, 5-pin

 device connection 23M12, 8-pin device connection 24
machine manufacturer 13 operating entity 13
maintenance 8,29
manufacturer machine 13
mechanical mounting 8
method mounting 14
minimum requirement thorough-check 18
model 10
mount
actuator 21
flush 19 multiple safety switches 19 sensor 20 surface 19
mounting 19
location 14 mechanical 8 method 14
multiple safety switches mount 19

0

operating entity

machine 13
operation 8
ordering information 35
OSSD 15
test
course over time 17
overview
actuator 10
product 9 sensor 9

P

package content 35
personnel
qualified 8
planning
project 8, 13
Power to Lock
principle 10
principle
Power to Lock 10
product
features 9 model 10 overview 9
project planning 8, 13
protective function 11

Q

qualified personnel
requirement 8

R

regular thorough check 29
replacement part 37
requirement
electrical control 16 minimum
thorough-check 18 qualified personnel 8 thorough-check 27

s

safety
information 7
safety switch
connect
T-connector 25
sensor
mount 20
overview 9
specifications 31
status indicator 11
structure 9
surface mount 19
switch
clean 29
switch on 27

T

terminology 5
thorough-check
minimum requirement 18 regular 29 requirement 27
thorough-check concept 18
troubleshooting 29
W
wiring 23

Rockwell Automation Support

Use the following resources to access support information.

Technical Support Center	Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.	https://rockwellautomation.custhelp.com/
Local Technical Support Phone Numbers	Locate the phone number for your country.	http://www.rockwellautomation.com/global/support/get-support-now.page
Direct Dial Codes	Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.	$\underline{\text { http://www.rockwellautomation.com/global/support/direct-dial.page }}$
Literature Library	Installation Instructions, Manuals, Brochures, and Technical Data.	http://www.rockwellautomation.com/global/literature-library/overview.page
Product Compatibility and Download Center (PCDC)	Get help determining how products interact, check features and capabilities, and find associated firmware.	http://www.rockwellautomation.com/global/support/pcdc.page

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/ documents/du/ra-du002_-en-e.pdf.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website athttp://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page.

Allen-Bradley, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc.
Trademarks not belonging to Rockwell Automation are property of their respective companies.
Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: IMPORTANT Pay attention to tightness of the plug connector.

